Package ‘hereR’

September 18, 2023

Type Package

Title 'sf'-Based Interface to the 'HERE' REST APIs

Version 1.0.0

Maintainer Merlin Unterfinger <info@munterfinger.ch>

URL https://munterfi.github.io/hereR/,
https://github.com/munterfi/hereR/

BugReports https://github.com/munterfi/hereR/issues/

Description Interface to the 'HERE' REST APIs <https://developer.here.com/develop/rest-apis>:
(1) geocode and autosuggest addresses or reverse geocode POIs using the 'Geocoder' API;
(2) route directions, travel distance or time matrices and isolines using the 'Routing', 'Matrix Routing' and 'Isoline Routing' APIs;
(3) request real-time traffic flow and incident information from the 'Traffic' API;
(4) find request public transport connections and nearby stations from the 'Public Transit' API;
(5) request intermodal routes using the 'Intermodal Routing' API;
(6) get weather forecasts, reports on current weather conditions, astronomical information and alerts at a specific location from the 'Destination Weather' API.
Locations, routes and isolines are returned as 'sf' objects.

Depends R (>= 3.3.0)

Imports crul (>= 1.1.0), curl (>= 4.3), data.table (>= 1.13.0),
flexpolyline (>= 0.2.0), jsonlite (>= 1.7.0), sf (>= 0.9-0),
stringr (>= 1.4.0)

Suggests covr (>= 3.5.0), ggplot2 (>= 3.3.2), htmlwidgets (>= 1.5.1),
knitr (>= 1.29), leafpop (>= 0.0.5), lwgeom (>= 0.2-5), mapview
(>= 2.9.0), rmarkdown (>= 2.3), testthat (>= 2.3.2)

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

VignetteBuilder knitr
Example Areas of Interest

Description

Some example Areas of Interest (AOIs): The boundary polygons of the districts of Zurich. The districts serve as the basis for administrative tasks within the City of Zurich.

Usage

data(aoi)

Format

An object of class "sf", "data.frame".
Description

Completes addresses using the HERE 'Geocoder Autosuggest' API.

Usage

```r
autosuggest(address, results = 5, url_only = FALSE)
```

Arguments

- `address` character, address text to propose suggestions.
- `results` numeric, maximum number of suggestions (Valid range: 1 and 100).
- `url_only` boolean, only return the generated URLs (default = FALSE)?

Value

A data.frame object, containing the suggestions for the input addresses.

Examples

```r
# Provide an API Key for a HERE project
set_key("<YOUR API KEY>")

suggestions <- autosuggest(address = poi$city, url_only = TRUE)
```
connection

HERE Public Transit API: Transit Route

Description

Route public transport connections with geometries (LINESTRING) between pairs of points using the HERE 'Public Transit' API. Two modes are provided:

- **summary = FALSE**: The public transport connections are returned as multiple sections with the same vehicle and transport mode. Each section has a detailed route geometry.
- **summary = TRUE**: A summary of the connections is retrieved, where each connection is represented as one row with a unified and simplified geometry.

Usage

```r
connection(
  origin, 
  destination, 
  datetime = Sys.time(), 
  arrival = FALSE, 
  results = 3, 
  transfers = -1, 
  transport_mode = NULL, 
  summary = FALSE, 
  url_only = FALSE
)
```

Arguments

- **origin**: sf object, the origin locations of geometry type POINT.
- **destination**: sf object, the destination locations of geometry type POINT.
- **datetime**: POSIXct object, datetime for the departure (or arrival if `arrival = TRUE`).
- **arrival**: boolean, calculate connections for arrival at the defined time (default = FALSE)?
- **results**: numeric, maximum number of suggested public transport routes (Valid range: 1 and 6).
- **transfers**: numeric, maximum number of transfers allowed per route (Valid range: -1 and 6, whereby the default = -1 allows for unlimited transfers).
- **transport_mode**: character, enable or disable ("-" prefix) transport modes. Note: Do not enable and disable modes at the same time (default = NULL).
- **summary**: boolean, return a summary of the public transport connections instead of the sections of the routes (default = FALSE)?
- **url_only**: boolean, only return the generated URLs (default = FALSE)?

Value

An sf object containing the requested routes.
flow

References

HERE Public Transit API: Transit Route

Examples

Provide an API Key for a HERE project
set_key("<YOUR API KEY>"

Connection sections
sections <- connection(
 origin = poi[3:4,], destination = poi[5:6,],
 summary = FALSE, url_only = TRUE
)

Connection summary
summary <- connection(
 origin = poi[3:4,], destination = poi[5:6,],
 summary = TRUE, url_only = TRUE
)

flow

HERE Traffic API: Flow

Description

Real-time traffic flow from the HERE 'Traffic' API in areas of interest (AOIs). The traffic flow data contains speed and congestion information, which corresponds to the status of the traffic at the time of the query.

Usage

flow(aoi, min_jam_factor = 0, url_only = FALSE)

Arguments

aoi sf object, Areas of Interest (POIs) of geometry type POLYGON.
min_jam_factor numeric, only retrieve flow information with a jam factor greater than the value provided (default = 0).
url_only boolean, only return the generated URLs (default = FALSE)?

Value

An sf object containing the requested traffic flow information.

Note

The maximum width and height of the bounding box of the input AOIs is 1 degree. This means that each polygon (= one row) in the AOI sf object should fit in a 1 x 1 degree bbox.
References

HERE Traffic API: Flow

Examples

```r
# Provide an API Key for a HERE project
global.set_key("<YOUR API KEY>")

# Real-time traffic flow
flow_data <- flow(
  aoi = aoi,
  url_only = TRUE
)
```

geocode

HERE Geocoding & Search API: Geocode

Description

Geocodes addresses using the HERE 'Geocoding & Search API' API.

Usage

```
geocode(address, alternatives = FALSE, sf = TRUE, url_only = FALSE)
```

Arguments

- **address**: character, addresses to geocode or a list containing qualified queries with the keys "country", "state", "county", "city", "district", "street", "houseNumber" or "postalCode".
- **alternatives**: boolean, return also alternative results (default = FALSE)?
- **sf**: boolean, return an sf object (default = TRUE) or a data.frame?
- **url_only**: boolean, only return the generated URLs (default = FALSE)?

Value

If `sf = TRUE`, an sf object, containing the position coordinates geocoded addresses as geometry list column and the access coordinates as well-known text (WKT). If `sf = FALSE`, a data.frame containing the coordinates of the geocoded addresses as `lng`, `lat` columns.

According to the Geocoding and Search API Reference, the access coordinates are "[c]oordinates of the place you are navigating to (for example, driving or walking). This is a point on a road or in a parking lot." The position coordinates are "[t]he coordinates (latitude, longitude) of a pin on a map corresponding to the searched place."

References

HERE Geocoding & Search API: Geocode
incident

Examples

Provide an API Key for a HERE project
set_key("<YOUR API KEY>"

locs <- geocode(address = poi$city, url_only = TRUE)

incident

HERE Traffic API: Incidents

Description

Traffic incident information from the HERE 'Traffic' API in areas of interest (AOIs). The incidents contain information about location, duration, severity, type, description and further details.

Usage

incident(aoi, from = NULL, to = NULL, url_only = FALSE)

Arguments

- **aoi** sf object, Areas of Interest (POIs) of geometry type POLYGON.
- **from** POSIXct object, start time of the earliest traffic incidents (default = NULL).
- **to** POSIXct object, end time of the latest traffic incidents (default = NULL).
- **url_only** boolean, only return the generated URLs (default = FALSE)?

Value

An sf object containing the traffic incidents.

Note

The maximum width and height of the bounding box of the input AOIs is 1 degree. This means that each polygon (= one row) in the AOI sf object should fit in a 1 x 1 degree bbox.

References

HERE Traffic API: Incidents

Examples

Provide an API Key for a HERE project
set_key("<YOUR API KEY>"

Traffic incidents
incidents <- incident(
 aoi = aoi,
 url_only = TRUE
)
Description

Calculates route geometries (LINESTRING) between given pairs of points using the HERE 'Intermodal Routing' API.

Usage

```r
ingermodal_route(
  origin,
  destination,
  datetime = Sys.time(),
  results = 3,
  transfers = -1,
  url_only = FALSE
)
```

Arguments

- `origin`: sf object, the origin locations of geometry type POINT.
- `destination`: sf object, the destination locations of geometry type POINT.
- `datetime`: POSIXct object, datetime for the departure (default = `Sys.time()`).
- `results`: numeric, maximum number of suggested route alternatives (Valid range: 1 and 7, default = 3).
- `transfers`: numeric, maximum number of transfers allowed per route (Valid range: -1 and 6, default = -1).
- `url_only`: boolean, only return the generated URLs (default = FALSE)?

Value

An sf object containing the requested intermodal routes.

References

HERE Intermodal Routing API: Routes

Examples

```r
# Provide an API Key for a HERE project
set_key("<YOUR API KEY>")

# Intermodal routing
routes <- intermodal_route(
  origin = poi[1:3, ],
  destination = poi[4:6, ],
)
isoline

url_only = TRUE

---

**isoline**

**HERE Isoline Routing API: Calculate Isoline**

**Description**

Calculates isolines (POLYGON or MULTIPOLYGON) using the HERE 'Isoline Routing' API that connect the end points of all routes leaving from defined centers (POIs) with either a specified length, a specified travel time or consumption (only the default E-car available).

**Usage**

```r
isoline(
 poi,
 datetime = Sys.time(),
 arrival = FALSE,
 range = seq(5, 30, 5) * 60,
 range_type = "time",
 routing_mode = "fast",
 transport_mode = "car",
 traffic = TRUE,
 optimize = "balanced",
 consumption_model = NULL,
 aggregate = FALSE,
 url_only = FALSE
)
```

**Arguments**

- **poi** sf object, Points of Interest (POIs) of geometry type POINT.
- **datetime** POSIXct object, datetime for the departure (or arrival if arrival = TRUE).
- **arrival** boolean, are the provided Points of Interest (POIs) the origin or destination locations (default = FALSE)?
- **range** numeric, a vector of type integer containing the breaks for the generation of the isolines: (1) time in seconds; (2) distance in meters; (3) consumption in Wh.
- **range_type** character, unit of the isolines: "distance", "time" or "consumption".
- **routing_mode** character, set the routing mode: "fast" or "short".
- **transport_mode** character, set the transport mode: "car", "pedestrian" or "truck".
- **traffic** boolean, use real-time traffic or prediction in routing (default = TRUE)? If no traffic is selected, the datetime is set to "any" and the request is processed independently from time.
- **optimize** character, specifies how isoline calculation is optimized: "balanced", "quality" or "performance" (default = "balanced").
consumption_model
character, specify the consumption model of the vehicle (default = NULL an
average electric car is set).
aggregate
boolean, aggregate (with function min) and intersect the isolines from geometry
type POLYGON to geometry type MULTIPOLYGON (default = FALSE)?
url_only
boolean, only return the generated URLs (default = FALSE)?

Value
An sf object containing the requested isolines.

References
HERE Isoline Routing API

Examples
# Provide an API Key for a HERE project
set_key("<YOUR API KEY>")

# Isochrone for 5, 10, 15, 20, 25 and 30 minutes driving time
isolines <- isoline(
  poi = poi,
  range = seq(5, 30, 5) * 60,
  url_only = TRUE
)

# Example Points of Interest

data(poi)

Description
Some example Points of Interest (POIs): Cities in Switzerland and Liechtenstein with more than
100'000 inhabitants.

Usage
data(poi)

Format
An object of class "sf", "data.frame".

Source
Made with Natural Earth. Free vector and raster map data @naturalearthdata.com

Examples
data(poi)
reverse_geocode

**Description**

Get addresses from locations using the HERE 'Geocoder' API. The return value is an sf object, containing point geometries with suggestions for addresses near the provided POIs.

**Usage**

```r
reverse_geocode(poi, results = 1, sf = TRUE, url_only = FALSE)
```

**Arguments**

- `poi`: sf object, Points of Interest (POIs) of geometry type POINT.
- `results`: numeric, maximum number of results (Valid range: 1 and 100).
- `sf`: boolean, return an sf object (default = TRUE) or a data.frame?
- `url_only`: boolean, only return the generated URLs (default = FALSE)?

**Value**

If `sf = TRUE`, an sf object, containing the position coordinates of the reverse geocoded POIs as geometry list column and the access coordinates as well-known text (WKT). If `sf = FALSE`, a data.frame containing the coordinates of the reverse geocoded POIs as lng, lat columns.

**Note**

If no addresses are found near a POI, NULL for this POI is returned. In this case the rows corresponding to this particular POI are missing and merging the POIs by row is not possible. However, in the returned sf object, the column “id” matches the rows of the input POIs. The “id” column can be used to join the original POIs.

**References**

HERE Geocoder API: Reverse Geocode

**Examples**

```r
Provide an API Key for a HERE project
set_key("YOUR API KEY")

Get addresses
addresses <- reverse_geocode(poi = poi, results = 3, url_only = TRUE)
```
**route**

HERE Routing API: Calculate Route

**Description**

Calculates route geometries (LINESTRING) between given pairs of points using the HERE 'Routing' API. Routes can be created for various transport modes, as for example 'car' or 'bicycle', incorporating current traffic information, if available. For routes using the transport mode "car" a vehicle consumption model can be specified, to obtain an estimate of the consumption.

**Usage**

route(
  origin,
  destination,
  datetime = Sys.time(),
  arrival = FALSE,
  results = 1,
  routing_mode = "fast",
  transport_mode = "car",
  traffic = TRUE,
  avoid_area = NULL,
  avoid_feature = NULL,
  consumption_model = NULL,
  vignettes = TRUE,
  url_only = FALSE
)

**Arguments**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>origin</td>
<td>sf object, the origin locations of geometry type POINT.</td>
</tr>
<tr>
<td>destination</td>
<td>sf object, the destination locations of geometry type POINT.</td>
</tr>
<tr>
<td>datetime</td>
<td>POSIXct object, datetime for the departure (or arrival if arrival = TRUE).</td>
</tr>
<tr>
<td>arrival</td>
<td>boolean, calculate routes for arrival at the defined time (default = FALSE)?</td>
</tr>
<tr>
<td>results</td>
<td>numeric, maximum number of suggested routes (Valid range: 1 and 7).</td>
</tr>
<tr>
<td>routing_mode</td>
<td>character, set the routing type: &quot;fast&quot; or &quot;short&quot; (default = &quot;fast&quot;).</td>
</tr>
<tr>
<td>transport_mode</td>
<td>character, set the transport mode: &quot;car&quot;, &quot;truck&quot;, &quot;pedestrian&quot;, &quot;bicycle&quot;, &quot;scooter&quot;, &quot;taxi&quot;, &quot;bus&quot; or &quot;privateBus&quot; (default = &quot;car&quot;).</td>
</tr>
<tr>
<td>traffic</td>
<td>boolean, use real-time traffic or prediction in routing (default = TRUE)? If no traffic is selected, the datetime is set to &quot;any&quot; and the request is processed independently from time.</td>
</tr>
<tr>
<td>avoid_area</td>
<td>sf object, area (only bounding box is taken) to avoid in routes (default = NULL).</td>
</tr>
<tr>
<td>avoid_feature</td>
<td>character, transport network features to avoid, e.g. &quot;tollRoad&quot; or &quot;ferry&quot; (default = NULL).</td>
</tr>
</tbody>
</table>
route_matrix

consumption_model
character, specify the consumption model of the vehicle (default = NULL an average electric car is set).

vignettes
boolean, include vignettes in the total toll cost of routes (default = TRUE).

url_only
boolean, only return the generated URLs (default = FALSE)?

Value
An sf object containing the requested routes.

Tolls are requested for routes with transport mode "car", "truck" "taxi" or "bus". The currency defaults to the current system locale settings. A different currency can be set using set_currency and a currency code compliant to ISO 4217.

References
HERE Routing API: Calculate Route

Examples

# Provide an API Key for a HERE project
set_key("<YOUR API KEY>")

# Get all from - to combinations from POIs
from <- poi[rep(seq_len(nrow(poi)), each = nrow(poi)), ]
to <- poi[rep(seq_len(nrow(poi)), nrow(poi)), ]
idx <- apply(to != from, any, MARGIN = 1)
to <- to[idx, ]
from <- from[idx, ]

# Routing
routes <- route(
  origin = from, destination = to, results = 3,
  transport_mode = "car", url_only = TRUE
)

route_matrix

HERE Matrix Routing API: Calculate Matrix

Description
Calculates a matrix of M:N, M:1 or 1:N route summaries between given points of interest (POIs) using the HERE 'Matrix Routing' API. Various transport modes and traffic information at a provided timestamp are supported. The requested matrix is split into (sub-)matrices of dimension 15x100 to use the maximum matrix size per request and thereby minimize the number of overall needed requests. The result is one route summary matrix, that fits the order of the provided POIs: orig_id, dest_id.
Usage

```r
route_matrix(
 origin,
 destination = origin,
 datetime = Sys.time(),
 routing_mode = "fast",
 transport_mode = "car",
 traffic = TRUE,
 url_only = FALSE
)
```

Arguments

- **origin** sf object, the origin locations (M) of geometry type `POINT`.
- **destination** sf object, the destination locations (N) of geometry type `POINT`.
- **datetime** POSIXct object, datetime for the departure.
- **routing_mode** character, set the routing type: "fast" or "short" (default = "fast").
- **transport_mode** character, set the transport mode: "car", "truck", "pedestrian", "bicycle", "scooter", "taxi", "bus" or "privateBus" (default = "car").
- **traffic** boolean, use real-time traffic or prediction in routing (default = TRUE)? If no traffic is selected, the datetime is set to "any" and the request is processed independently from time.
- **url_only** boolean, only return the generated URLs (default = FALSE)?

Value

A `data.frame`, which is an edge list containing the requested M:N route combinations.

References

HERE Matrix Routing API

Examples

```r
Provide an API Key for a HERE project
set_key("<YOUR API KEY>")

Create routes summaries between all POIs
mat <- route_matrix(
 origin = poi,
 url_only = TRUE
)
```
**set_currency**

*Set the currency for HERE API requests*

**Description**

If the currency is not set using this function call, the currency defined in the monetary representations in the current locale is used. If the monetary formatting category "LC_MONETARY" of the C locale is not set, "USD" is set as default.

**Usage**

```
set_currency(currency = NULL)
```

**Arguments**

- `currency` character, the currency code compliant to ISO 4217 to use in the requests (default = NULL, which defaults to the current system locale settings).

**Value**

None.

**Examples**

```
set_currency("CHF")
```

---

**set_freemium**

*Set whether plan is freemium or not*

**Description**

If set to TRUE the hereR package limits the requests per second (RPS) sent to the APIs and routing matrices will be chopped up into submatrices of size 15x100. This option is necessary for freemium licenses to avoid hitting the rate limit of the APIs with status code 429. Deactivate this option to increase speed of requests for paid plans.

**Usage**

```
set_freemium(ans = TRUE)
```

**Arguments**

- `ans` boolean, use limits or not (default = TRUE)?

**Value**

None.
**set_key**  
*Set HERE Application Credentials*

**Description**
Provide an API Key for a HERE project of type 'REST'. The key is set for the current R session and is used to authenticate in the requests to the APIs.

**Usage**
```
set_key(api_key)
```

**Arguments**
- `api_key` character, the API key from a HERE project.

**Details**
No login yet? Get a login and key here: [klick](#)

**Value**
None.

**Examples**
```
set_key("<YOUR API KEY>")
```

---

**set_verbose**  
*Verbose API usage of hereR*

**Description**
If set to TRUE the hereR package is messaging information about the amount of requests sent to the APIs and data size received.

**Usage**
```
set_verbose(ans = FALSE)
```

**Arguments**
- `ans` boolean, verbose or not (default = FALSE)?
**Description**

Retrieve stations with the corresponding line information around given locations using the HERE 'Public Transit' API.

**Usage**

```r
station(poi, radius = 500, results = 50, url_only = FALSE)
```

**Arguments**

- `poi`: sf object, Points of Interest (POIs) of geometry type POINT.
- `radius`: numeric, the search radius in meters (default = 500).
- `results`: numeric, maximum number of suggested public transport stations (Valid range: 1 and 50, default = 50).
- `url_only`: boolean, only return the generated URLs (default = FALSE)?

**Value**

An sf object containing the requested stations with the corresponding line information.

**References**

HERE Public Transit API: Station Search

**Examples**

```r
Provide an API Key for a HERE project
set_key("<YOUR API KEY>"

Stations
stations <- station(poi = poi, url_only = TRUE)
```
### unset_key

*Remove HERE Application Credentials*

**Description**

Remove previously set HERE API key from the current R session.

**Usage**

```r
unset_key()
```

**Value**

None.

**Examples**

```r
unset_key()
```

### weather

*HERE Destination Weather API: Observations, Forecasts, Astronomy and Alerts*

**Description**

Weather forecasts, reports on current weather conditions, astronomical information and alerts at a specific location (coordinates or location name) based on the HERE 'Destination Weather' API. The information comes from the nearest available weather station and is not interpolated.

**Usage**

```r
weather(poi, product = "observation", url_only = FALSE)
```

**Arguments**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>poi</td>
<td>sf object or character, Points of Interest (POIs) of geometry type POINT or location names (e.g. cities or regions).</td>
</tr>
<tr>
<td>product</td>
<td>character, weather product of the 'Destination Weather API'. Supported products: &quot;observation&quot;, &quot;forecastHourly&quot;, &quot;forecastAstronomy&quot; and &quot;alerts&quot;.</td>
</tr>
<tr>
<td>url_only</td>
<td>boolean, only return the generated URLs (default = FALSE)?</td>
</tr>
</tbody>
</table>

**Value**

An sf object containing the requested weather information at the nearest weather station. The point geometry in the sf object is the location of the weather station.
weather

References

HERE Destination Weather API

Examples

# Provide an API Key for a HERE project
set_key("<YOUR API KEY>")

# Observation
observation <- weather(poi = poi, product = "observation", url_only = TRUE)

# Forecast
forecast <- weather(poi = poi, product = "forecast_hourly", url_only = TRUE)

# Astronomy
astronomy <- weather(poi = poi, product = "forecast_astronomy", url_only = TRUE)

# Alerts
alerts <- weather(poi = poi, product = "alerts", url_only = TRUE)
Index

* datasets
  aoi, 2
  poi, 10

aoi, 2
autosuggest, 3
connection, 4
flow, 5
geocode, 6
incident, 7
intermodal_route, 8
isoline, 9

poi, 10

reverse_geocode, 11
route, 12
route_matrix, 13

set_currency, 13, 15
set_freemium, 15
set_key, 16
setVerbose, 16
station, 17

unset_key, 18

weather, 18