Package ‘hextri’

October 13, 2022

Type Package
Title Hexbin Plots with Triangles
Version 0.9.17
Author Thomas Lumley (Jie Fu Yu made a prototype)
Maintainer Thomas Lumley <t.lumley@auckland.ac.nz>
Description Display hexagonally binned scatterplots for multi-
class data, using coloured triangles to show class proportions.
License MIT + file LICENSE
Imports hexbin, graphics, FNN, grid, grDevices
Suggests lattice, knitr, datasets
VignetteBuilder knitr
NeedsCompilation no
Repository CRAN
Date/Publication 2022-04-26 09:20:02 UTC

R topics documented:

 hexclass ... 1
 panel.hextri ... 4
 sainte_lague ... 5

Index

hexclass Hexagonal binning with classes

Description

Displays a hexagonally-binned scatterplot with coloured subtriangles to indicate number of observations in each class. With a single class, gives a base-graphics version of the ordinary hexbin plot.
Usage

hextri(x,...)
Default S3 method:
hextri(x, y, class, colours, nbins = 10, border =
TRUE, diffuse=FALSE, style=c("alpha","size"), weights=NULL,
sorted=!diffuse,minfrac=0, ...)
S3 method for class 'formula'
hextri(x, data=parent.frame(), class,colours,nbins=10,
border=TRUE, diffuse=FALSE, style=c("alpha","size"),weights=NULL, sorted=!diffuse,
xlab=NULL, ylab=NULL,minfrac=0,...)

Arguments

x Coordinates of points, or for the formula method, a model formula
y coordinates
data The class and weights arguments are looked up here, in addition to the formula itself
class Factor giving class membership for points
colours Vector of colors (number, name, or hashtag format) giving the colours for each class
nbins Number of bins in the x-axis direction
border Include a narrow transparent border around each triangle and hexagon
diffuse Pass on rounding error to nearest not-yet-drawn hexes so that rare classes get represented
style Represent data by hexagon size or by alpha-blending
weights If not NULL, sampling weights or frequency weights. The hexbin plot will be based on the sum of weights in the hex
sorted Should the triangles be sorted into a consistent order within each hex? More attractive but can cause 3-d artifacts and may be less accurate.
xlab,ylab Specify to override the formula-based defaults
minfrac Cells with radius smaller than this fraction of a whole cell will be drawn as points. Most useful with style="size"
... Passed to the plot call that sets up the plot region

details

Uses the Sainte-Lague method to apportion counts to triangles, ensuring the counts round to exactly six triangles per hexagon.

The binning/aspect ratio are adjusted to give regular hexagons on the figure region set by plot(x,y).
If you reshape the window you will need to redraw the plot.

Value

A list with components x, y, and col suitable as input to polygon()
hexclass

Author(s)

Thomas Lumley

See Also

sainte_lague

Examples

xx<-rnorm(1000)
yy<-rnorm(1000)
cc<-cut(xx*yy,c(-Inf,-.4,0,.4,Inf))

plot(xx,yy,col=(1:4)[cc])
hextri(xx,yy,cc,1:4,nbins=20,border=TRUE,style="size")

##formula method
data(NHANES, package="hexbin")
hextri(Weight~Age, class=Smoke, col=c("red","orange","green","grey40"),
data=NHANES, style="size",nbins=20, main="Smoking")
legend("topright",fill=c("red","orange","green","grey40"),
legend=c("Current","Past","Never","unknown"),bty="n")

minimum sizes

data(NHANES, package="hexbin")
hextri(Weight~Age, class=Smoke, col=c("red","orange","green","grey40"),
data=NHANES, style="size",nbins=20, main="Smoking",minfrac=.2)
legend("topright",fill=c("red","orange","green","grey40"),
legend=c("Current","Past","Never","unknown"),bty="n")

using the return value of hextri
rval<-hextri(xx,yy,cc,1:4,nbins=20,border=TRUE,style="alpha")
plot(y~x,data=rval,type="n")
with(rval, polygon(x,y,col=col,border=NA))

diffusion
xx<-runif(10000)
yy<-runif(10000)
ccc<-rep(1:3,c(4750,4750,500))
hextri(xx,yy,cc,2:4,border=TRUE,diffuse=FALSE,style="size")
hextri(xx,yy,cc,2:4,border=TRUE,diffuse=TRUE,sorted=TRUE, style="size")
hextri(xx,yy,cc,2:4,border=TRUE,diffuse=TRUE,style="size",weights=cc)
Description

Displays a hexagonally-binned scatterplot with coloured subtriangles to indicate number of observations in each class. Uses the Sainte-Lague method to apportion counts to triangles, ensuring the counts round to exactly six triangles per hexagon.

Usage

```r
panel.hextri(x, y, groups, subscripts, colours, nbins = 10, border = TRUE,
  diffuse = FALSE, style = c("alpha", "size"), weights = NULL,
  sorted=!diffuse, shape = 1, ...)
```

Arguments

- `x, y`: point coordinates for the subset being plotted
- `groups`: A factor giving the class identity for all points (will be filled in automatically by `xyplot`)
- `subscripts`: Vector selecting the elements of `groups` that are in the panel (will be filled in automatically by `xyplot`)
- `colours`: Vector of colors (number, name, or hashtag format) giving the colours for each class
- `nbins`: Number of bins along the x axis
- `border`: If TRUE, leave a transparent border around each element drawn
- `diffuse`: If TRUE pass on rounding error to nearest not-yet-drawn hexes so that rare classes get represented
- `style`: Represent data by hexagon size or by alpha-blending
- `weights`: If not NULL, sampling weights or frequency weights. The hexbin plot will be based on the sum of weights in the hex
- `sorted`: Sort the triangles into a consistent order within each hex?
- `shape`: Aspect ratio for each hex.
- `...`: because you have to.

Value

A panel

Author(s)

Thomas Lumley
sainte_lague

See Also
 hextri is the base-graphics plot

Examples

library(lattice)
x<-rnorm(1000)
y<-rnorm(1000)
c<-cut(xx*yy, c(-Inf,-.4,0,.4,Inf))
z<-cut(xx+yy, c(-Inf,-1,0,1,Inf))
plot(xx,yy,col=(1:4)[c])

xyplot(yy~xx|zz, panel=panel.hextri, groups=cc, col=1:4, style="size", nbins=10)

data(airquality)
airquality$o3group<-with(airquality, cut(Ozone, c(0,18,60,Inf)))

xyplot(Temp~Solar.R|equal.count(Wind,4), groups=o3group, panel=panel.hextri,
data=na.omit(airquality), col=1:4, style=1, nbins=10)

sainte_lague

Proportional representation by Sainte-Lague method

Description

Originally an algorithm for proportional allocation of seats to parties in elections, used here to assign the six triangles in each hex to classes.

Usage

sainte_lague(votes, nseats)

Arguments

 votes Vector of 'votes' for each party, non-negative numeric values
 nseats Single integer giving the number of seats to be allocated (6, here)

Value

 Numeric vector of length nseats giving the class membership for each seat, with an error attribute giving the rounding errors for each party.

References

 https://en.wikipedia.org/wiki/Sainte-Lagu%C3%AB_method
See Also

hextri

Examples

sainte_lague(c(100,200,300,50),6)
Index

* hplot
 hexclass, 1
 panel.hextri, 4

hexclass, 1
hextri, 5, 6
hextri (hexclass), 1

panel.hextri, 4

sainte_lague, 3, 5