Package ‘hfr’

February 27, 2024

Type Package
Title Estimate Hierarchical Feature Regression Models
Date 2024-02-27
Version 0.7.1
Author Johann Pfitzinger [aut, cre]
Maintainer Johann Pfitzinger <johann.pfitzinger@gmail.com>
License GPL-2
Imports quadprog, stats, dendextend, RColorBrewer, corpcor
Encoding UTF-8
RoxygenNote 7.2.3
URL https://hfr.residualmetrics.com,
https://github.com/jpfitzinger/hfr
Suggests MASS, testthat (>= 3.0.0)
Config/testthat/edition 3
NeedsCompilation no
Repository CRAN
Date/Publication 2024-02-27 19:40:06 UTC

R topics documented:

 cv.hfr ... 2
 hfr ... 4
 plot.cv.hfr ... 6
 plot.hfr ... 7
 predict.cv.hfr .. 8
 predict.hfr ... 9
cv.hfr

Cross validation for a hierarchical feature regression

Description

HFR is a regularized regression estimator that decomposes a least squares regression along a supervised hierarchical graph, and shrinks the edges of the estimated graph to regularize parameters. The algorithm leads to group shrinkage in the regression parameters and a reduction in the effective model degrees of freedom.

Usage

cv.hfr(
 x,
 y,
 weights = NULL,
 kappa = seq(0, 1, by = 0.1),
 q = NULL,
 intercept = TRUE,
 standardize = TRUE,
 nfolds = 10,
 foldid = NULL,
 partial_method = c("pairwise", "shrinkage"),
 l2_penalty = 0,
 ...
)

Arguments

x Input matrix or data.frame, of dimension ($N \times p$); each row is an observation vector.
y Response variable.
weights an optional vector of weights to be used in the fitting process. Should be NULL or a numeric vector. If non-NULL, weighted least squares is used for the level-specific regressions.
kappa A vector of target effective degrees of freedom of the regression.
q Thinning parameter representing the quantile cut-off (in terms of contributed variance) above which to consider levels in the hierarchy. This can used to reduce the number of levels in high-dimensional problems. Default is no thinning.
intercept Should intercept be fitted. Default is intercept=TRUE.
standardize Logical flag for x variable standardization prior to fitting the model. The coefficients are always returned on the original scale. Default is standardize=TRUE.
nfolds The number of folds for k-fold cross validation. Default is nfolds=10.
foldid An optional vector of values between 1 and nfolds identifying what fold each observation is in. If supplied, nfolds can be missing.
partial_method Indicate whether to use pairwise partial correlations, or shrinkage partial correlations.
l2_penalty Optional penalty for level-specific regressions (useful in high-dimensional case)
... Additional arguments passed to hclust.

Details
This function fits an HFR to a grid of kappa hyperparameter values. The result is a matrix of coefficients with one column for each hyperparameter. By evaluating all hyperparameters in a single function, the speed of the cross-validation procedure is improved substantially (since level-specific regressions are estimated only once).

When nfolds > 1, a cross validation is performed with shuffled data. Alternatively, test slices can be passed to the function using the foldid argument. The result of the cross validation is given by best_kappa in the output object.

Value
A `cv.hfr` regression object.

Author(s)
Johann Pfitzinger

References

See Also
hfr, coef, plot and predict methods

Examples
x = matrix(rnorm(100 * 20), 100, 20)
y = rnorm(100)
fit = cv.hfr(x, y, kappa = seq(0, 1, by = 0.1))
coef(fit)
hfr

Fit a hierarchical feature regression

Description

HFR is a regularized regression estimator that decomposes a least squares regression along a supervised hierarchical graph, and shrinks the edges of the estimated graph to regularize parameters. The algorithm leads to group shrinkage in the regression parameters and a reduction in the effective model degrees of freedom.

Usage

hfr(
 x,
 y,
 weights = NULL,
 kappa = 1,
 q = NULL,
 intercept = TRUE,
 standardize = TRUE,
 partial_method = c("pairwise", "shrinkage"),
 l2_penalty = 0,
 ...
)

Arguments

x
Input matrix or data.frame, of dimension \((N \times p)\); each row is an observation vector.

y
Response variable.

weights
an optional vector of weights to be used in the fitting process. Should be NULL or a numeric vector. If non-NULL, weighted least squares is used for the level-specific regressions.

kappa
The target effective degrees of freedom of the regression as a percentage of \(p\).

q
Thinning parameter representing the quantile cut-off (in terms of contributed variance) above which to consider levels in the hierarchy. This can be used to reduce the number of levels in high-dimensional problems. Default is no thinning.

intercept
Should intercept be fitted. Default is intercept=TRUE.

standardize
Logical flag for x variable standardization prior to fitting the model. The coefficients are always returned on the original scale. Default is standardize=TRUE.

partial_method
Indicate whether to use pairwise partial correlations, or shrinkage partial correlations.

l2_penalty
Optional penalty for level-specific regressions (useful in high-dimensional case)

...
Additional arguments passed to hclust.
Details

Shrinkage can be imposed by targeting an explicit effective degrees of freedom. Setting the argument kappa to a value between 0 and 1 controls the effective degrees of freedom of the fitted object as a percentage of \(p \). When kappa is 1 the result is equivalent to the result from an ordinary least squares regression (no shrinkage). Conversely, kappa set to 0 represents maximum shrinkage.

When \(p > N \) kappa is a percentage of \((N - 2) \).

If no kappa is set, a linear regression with kappa = 1 is estimated.

Hierarchical clustering is performed using hclust. The default is set to ward.D2 clustering but can be overridden by passing a method argument to

For high-dimensional problems, the hierarchy becomes very large. Setting q to a value below 1 reduces the number of levels used in the hierarchy. q represents a quantile-cutoff of the amount of variation contributed by the levels. The default (q = NULL) considers all levels.

When data exhibits multicollinearity it can be useful to include a penalty on the l2 norm in the level-specific regressions. This can be achieved by setting the l2_penalty parameter.

Value

An 'hfr' regression object.

Author(s)

Johann Pfitzinger

References

See Also

cv.hfr, se.avg, coef, plot and predict methods

Examples

```r
x = matrix(rnorm(100 * 20), 100, 20)
y = rnorm(100)
fit = hfr(x, y, kappa = 0.5)
coef(fit)
```
Description

Plots the dendrogram of a fitted \texttt{cv.hfr} model. The heights of the levels in the dendrogram are given by a shrinkage vector, with a maximum (unregularized) overall graph height of p (the number of covariates in the regression). Stronger shrinkage leads to a shallower hierarchy.

Usage

```r
## S3 method for class 'cv.hfr'
plot(x, kappa = NULL, show_details = TRUE, max_leaf_size = 3, ...)
```

Arguments

- \texttt{x} Fitted \texttt{cv.hfr} model.
- \texttt{kappa} The hyperparameter used for plotting. If empty, the optimal value is used.
- \texttt{show_details} print model details on the plot.
- \texttt{max_leaf_size} maximum size of the leaf nodes. Default is \texttt{max_leaf_size=3}.
- \texttt{...} additional methods passed to \texttt{plot}.

Details

The dendrogram is generated using hierarchical clustering and modified so that the height differential between any two splits is the shrinkage weight of the lower split (ranging between 0 and 1). With no shrinkage, all shrinkage weights are equal to 1 and the dendrogram has a height of p. With shrinkage the dendrogram has a height of $(\kappa \times p)$.

The leaf nodes are colored to indicate the coefficient sign, with the size indicating the absolute magnitude of the coefficients.

A color bar on the right indicates the relative contribution of each level to the coefficient of determination, with darker hues representing a larger contribution.

Value

A plotted dendrogram.

Author(s)

Johann Pfitzinger

See Also

\texttt{cv.hfr, predict} and \texttt{coef} methods
Examples

```
x = matrix(rnorm(100 * 20), 100, 20)
y = rnorm(100)
fit = cv.hfr(x, y, kappa = seq(0, 1, by = 0.1))
plot(fit, kappa = 0.5)
```

plot.hfr
Plot the dendrogram of an HFR model

Description

Plots the dendrogram of a fitted hfr model. The heights of the levels in the dendrogram are given by a shrinkage vector, with a maximum (unregularized) overall graph height of \(p \) (the number of covariates in the regression). Stronger shrinkage leads to a shallower hierarchy.

Usage

```r
## S3 method for class 'hfr'
plot(x, show_details = TRUE, confidence_level = 0, max_leaf_size = 3, ...)
```

Arguments

- `x`: Fitted 'hfr' model.
- `show_details`: print model details on the plot.
- `confidence_level`: coefficients with a lower approximate statistical confidence are highlighted in the plot, see details. Default is `confidence_level=0`.
- `max_leaf_size`: maximum size of the leaf nodes. Default is `max_leaf_size=3`.
- `...`: additional methods passed to `plot`.

Details

The dendrogram is generated using hierarchical clustering and modified so that the height differential between any two splits is the shrinkage weight of the lower split (ranging between 0 and 1). With no shrinkage, all shrinkage weights are equal to 1 and the dendrogram has a height of \(p \). With shrinkage the dendrogram has a height of \((\kappa \times p)\).

The leaf nodes are colored to indicate the coefficient sign, with the size indicating the absolute magnitude of the coefficients.

The average standard errors along the branch of each coefficient can be used to highlight coefficients that are not statistically significant. When `confidence_level > 0`, branches with a lower confidence are plotted as dotted lines.

A color bar on the right indicates the relative contribution of each level to the coefficient of determination, with darker hues representing a larger contribution.
Value

A plotted dendrogram.

Author(s)

Johann Pfitzinger

See Also

hfr, se.avg, predict and coef methods

Examples

```r
x = matrix(rnorm(100 * 20), 100, 20)
y = rnorm(100)
fit = hfr(x, y, kappa = 0.5)
plot(fit)
```

Description

Predict values using a fitted cv.hfr model

Usage

```r
## S3 method for class 'cv.hfr'
predict(object, newdata = NULL, kappa = NULL, ...)
```

Arguments

- `object` Fitted 'cv.hfr' model.
- `newdata` Matrix or data.frame of new values for x at which predictions are to be made.
- `kappa` The hyperparameter used for prediction. If empty, the optimal value is used.
- `...` additional methods passed to predict.

Details

Predictions are made by multiplying the newdata object with the estimated coefficients. The chosen hyperparameter value to use for predictions can be passed to the kappa argument.

Value

A vector of predicted values.
predict.hfr

Author(s)
Johann Pfitzinger

See Also
hfr, cv.hfr and coef methods

Examples

x = matrix(rnorm(100 * 20), 100, 20)
y = rnorm(100)
fit = cv.hfr(x, y, kappa = seq(0, 1, by = 0.1))
predict(fit, kappa = 0.1)

predict.hfr Model predictions

Description
Predict values using a fitted hfr model

Usage
S3 method for class 'hfr'
predict(object, newdata = NULL, ...)

Arguments

object Fitted 'hfr' model.
newdata Matrix or data.frame of new values for x at which predictions are to be made.
... additional methods passed to predict.

Details
Predictions are made by multiplying the newdata object with the estimated coefficients.

Value
A vector of predicted values.

Author(s)
Johann Pfitzinger

See Also
hfr, cv.hfr and coef methods
Examples

```r
x = matrix(rnorm(100 * 20), 100, 20)
y = rnorm(100)
fit = hfr(x, y, kappa = 0.5)
predict(fit)
```

print.cv.hfr

Print an HFR model

Description

Print summary statistics for a fitted cv.hfr model

Usage

```r
## S3 method for class 'cv.hfr'
print(x, ...)
```

Arguments

- `x`: Fitted cv.hfr model.
- `...`: additional methods passed to print.

Details

The call that produced the object `x` is printed, following by a data.frame of summary statistics, including the effective degrees of freedom of the model, the R.squared and the regularization parameter.

Value

Summary statistics of HFR model

Author(s)

Johann Pfitzinger

See Also

hfr, cv.hfr and coef methods

Examples

```r
x = matrix(rnorm(100 * 20), 100, 20)
y = rnorm(100)
fit = cv.hfr(x, y, kappa = seq(0, 1, by = 0.1))
predict(fit)
```
print.hfr

Print an HFR model

Description

Print summary statistics for a fitted hfr model

Usage

S3 method for class 'hfr'
print(x, ...)

Arguments

x
Fitted hfr model.

...
additional methods passed to print.

Details

The call that produced the object x is printed, following by a data.frame of summary statistics, including the effective degrees of freedom of the model, the R.squared and the regularization parameter.

Value

Summary statistics of HFR model

Author(s)

Johann Pfitzinger

See Also

hfr, cv.hfr and coef methods

Examples

x = matrix(rnorm(100 * 20), 100, 20)
y = rnorm(100)
fit = hfr(x, y, kappa = 0.5)
print(fit)
se.avg

Calculate approximate standard errors for a fitted HFR model

Description

This function computes the weighted average standard errors across levels using Burnham & Anderson (2004).

Usage

se.avg(object)

Arguments

- `object` Fitted `hfr` model.

Details

The HFR computes linear regressions over several levels of an estimated hierarchy. By averaging the standard errors across hierarchical levels, an indication can be obtained about the average significance of the variables.

Standard errors are understated, since the uncertainty in the hierarchy estimation is not reflected.

Value

A vector of standard errors.

Author(s)

Johann Pfitzinger

References

See Also

`hfr` method

Examples

```r
x = matrix(rnorm(100 * 20), 100, 20)
y = rnorm(100)
fit = hfr(x, y, kappa = 0.5)
se.avg(fit)
```
Index

coeff, 3, 5, 6, 8–11
cv.hfr, 2, 5, 6, 9–11

hfr, 3, 4, 8–12

plot, 3, 5
plot.cv.hfr, 6
plot.hfr, 7
predict, 3, 5, 6, 8
predict.cv.hfr, 8
predict.hfr, 9
print.cv.hfr, 10
print.hfr, 11

se.avg, 5, 8, 12