Package ‘hibayes’

February 20, 2024

Title Individual-Level, Summary-Level and Single-Step Bayesian Regression Model

Version 3.0.3

Date 2024-02-20

Description A user-friendly tool to fit Bayesian regression models. It can fit 3 types of Bayesian models using individual-level, summary-level, and individual plus pedigree-level (single-step) data for both Genomic prediction/selection (GS) and Genome-Wide Association Study (GWAS), it was designed to estimate joint effects and genetic parameters for a complex trait, including:

1. fixed effects and coefficients of covariates,
2. environmental random effects, and its corresponding variance,
3. genetic variance,
4. residual variance,
5. heritability,
6. genomic estimated breeding values (GEBV) for both genotyped and non-genotyped individuals,
7. SNP effect size,
8. phenotype/genetic variance explained (PVE) for single or multiple SNPs,
9. posterior probability of association of the genomic window (WPPA),
10. posterior inclusive probability (PIP).

The functions are not limited, we will keep on going in enriching it with more features.

License GPL-3

Maintainer Lilin Yin <ylilin@163.com>

URL https://github.com/YinLiLin/hibayes

BugReports https://github.com/YinLiLin/hibayes/issues

Encoding UTF-8

Imports utils, stats, methods, stringr, CMplot
ibrm

Description
Bayes linear regression model using individual level data

\[y = X\beta + Rr + M\alpha + e \]

where \(\beta \) is a vector of estimated coefficient for covariates, and \(r \) is a vector of environmental random effects. \(M \) is a matrix of genotype covariate, \(\alpha \) is a vector of estimated marker effect size. \(e \) is a vector of residuals.

Usage

\[
\text{ibrm}(\text{formula}, \text{data} = \text{NULL}, \text{M} = \text{NULL}, \text{M.id} = \text{NULL}, \text{method} = \text{c("BayesCpi", "BayesA", "BayesL", "BSLMM", "BayesR", "BayesB", "BayesC", "BayesBpi", "BayesRR")}, \text{map} = \text{NULL}, \text{Pi} = \text{NULL}, \text{fold} = \text{NULL}, \text{...})
\]
niter = NULL,
nburn = NULL,
thin = 5,
windsize = NULL,
windnum = NULL,
dfvr = NULL,
s2vr = NULL,
vg = NULL,
dfvg = NULL,
s2vg = NULL,
ve = NULL,
dfve = NULL,
s2ve = NULL,
lambda = 0,
printfreq = 100,
seed = 666666,
threads = 4,
verbose = TRUE
)

Arguments

formula a two-sided linear formula object describing both the fixed-effects and random-effects part of the model, with the response on the left of a ‘~’ operator and the terms, separated by ‘+’ operators, on the right. Random-effects terms are distinguished by vertical bars (‘|’) separating expressions for design matrices from grouping factors.
data the data frame containing the variables named in ‘formula’, NOTE that the first column in ‘data’ should be the individual id.
M numeric matrix of genotype with individuals in rows and markers in columns, NAs are not allowed.
M.id vector of id for genotyped individuals, NOTE that no need to adjust the order of id to be the same between ‘data’ and ‘M’, the package will do it automatically.

- "BayesRR": Bayes Ridge Regression, all SNPs have non-zero effects and share the same variance, equals to RRBLUP or GBLUP.
- "BayesA": all SNPs have non-zero effects, and take different variance which follows an inverse chi-square distribution.
- "BayesB": only a small proportion of SNPs (1-Pi) have non-zero effects, and take different variance which follows an inverse chi-square distribution.
- "BayesBpi": the same with "BayesB", but ‘Pi’ is not fixed.
- "BayesC": only a small proportion of SNPs (1-Pi) have non-zero effects, and share the same variance.
- "BayesCpi": the same with "BayesC", but ‘Pi’ is not fixed.
- "BayesL": BayesLASSO, all SNPs have non-zero effects, and take different variance which follows an exponential distribution.
• "BSLMM": all SNPs have non-zero effects, and take the same variance, but a small proportion of SNPs have additional shared variance.
• "BayesR": only a small proportion of SNPs have non-zero effects, and the SNPs are allocated into different groups, each group has the same variance.

map (optional, only for GWAS) the map information of genotype, at least 3 columns are: SNPs, chromosome, physical position.
Pi vector, the proportion of zero effect and non-zero effect SNPs, the first value must be the proportion of non-effect markers.
fold proportion of variance explained for groups of SNPs, the default is c(0, 0.0001, 0.001, 0.01).
niter the number of MCMC iteration.
nburn the number of iterations to be discarded.
thin the number of thinning after burn-in. Note that smaller thinning frequency may have higher accuracy of estimated parameters, but would result in more memory for collecting process, on contrary, bigger frequency may have negative effect on accuracy of estimations.
windsize window size in bp for GWAS, the default is NULL.
windnum fixed number of SNPs in a window for GWAS, if it is specified, ‘windsize’ will be invalid, the default is NULL.

Details
• the fixed effects and covariates in 'formula' must be in factors and numeric, respectively. if not, please remember to use ‘as.factor’ and ‘as.numeric’ to transform.
• the package has the automatical function of taking the intersection and adjusting the order of id between ‘data’ and the genotype ‘M’, thus the first column in ‘data’ should be the individual id.
• if any one of the options 'windsize' and 'windnum' is specified, the GWAS results will be returned, and the 'map' information must be provided, in which the physical positions should be all in digital values.

• the 'windsize' or 'windnum' option only works for the methods of which the assumption has a proportion of zero effect markers, e.g., BayesB, BayesBpi, BayesC, BayesCpi, BSLMM, and BayesR.

Value

the function returns a 'blrMod' object containing

mu the regression intercept
pi estimated proportion of zero effect and non-zero effect SNPs
$beta$ estimated coefficients for all covariates
r estimated environmental random effects
V_r estimated variance for all environmental random effect
V_g estimated genetic variance
V_e estimated residual variance
h_2 estimated heritability ($h_2 = V_g / (V_r + V_g + V_e)$)
$alpha$ estimated effect size of all markers
g genomic estimated breeding value
e residuals of the model
pip the frequency for markers to be included in the model during MCMC iteration, known as posterior inclusive probability (PIP)
$gwas$ WPPA is defined to be the window posterior probability of association, it is estimated by counting the number of MCMC samples in which

$$\alpha$$

is nonzero for at least one SNP in the window

$MCMCsamples$ the collected samples of posterior estimation for all the above parameters across MCMC iterations

References

Zhou, Xiang, Peter Carbonetto, and Matthew Stephens. "Polygenic modeling with Bayesian sparse
Moser, Gerhard, et al. "Simultaneous discovery, estimation and prediction analysis of complex

Examples

Load the example data attached in the package
pheno_file_path = system.file("extdata", "demo.phe", package = "hibayes")
pheno = read.table(pheno_file_path, header=TRUE)

bfile_path = system.file("extdata", "demo", package = "hibayes")
bin = read_plink(bfile_path, threads=1)

fam = bin$fam
geno = bin$geno
map = bin$map

For GS/GP
no environmental effects:
fit = ibrm(T1~1, data=pheno, M=geno, M.id=fam[,2], method="BayesCpi",
niter=2000, nburn=1200, thin=5, threads=1)

overview of the returned results
summary(fit)

add fixed effects or covariates:
fit = ibrm(T1~sex+season+day+bwt, data=pheno, M=geno, M.id=fam[,2], method="BayesCpi")

add environmental random effects:
fit = ibrm(T1~sex+(1|loc)+(1|dam), data=pheno, M=geno, M.id=fam[,2], method="BayesCpi")

For GWAS
fit = ibrm(T1~sex+bwt+(1|dam), data=pheno, M=geno, M.id=fam[,2],
method="BayesCpi", map=map, windsize=1e6)

get the SD of estimated SNP effects for markers
summary(fit)$alpha

get the SD of estimated breeding values
summary(fit)$g

ldmat

LD variance-covariance matrix calculation
ldmat

Description

To calculate density or sparse LD variance-covariance matrix with genotype in bigmemory format.

Usage

```r
ldmat(
  geno,  
  map = NULL,  
  gwas.geno = NULL,  
  gwas.map = NULL,  
  chisq = NULL,  
  ldchr = FALSE,  
  threads = 4,  
  verbose = FALSE
)
```

Arguments

- `geno`: the reference genotype panel in bigmemory format.
- `map`: the map information of reference genotype panel, columns are: SNPs, chromosome, physical position.
- `gwas.geno`: (optional) the genotype of gwas samples which were used to generate the summary data.
- `gwas.map`: (optional) the map information of the genotype of gwas samples, columns are: SNPs, chromosome, physical position.
- `chisq`: chi-square value for generating sparse matrix, if \(n \times r^2 < chisq \), it would be set to zero.
- `ldchr`: logical, whether to calculate the LD between chromosomes.
- `threads`: the number of threads used in computation.
- `verbose`: whether to print the information.

Value

For full LD matrix, it returns a standard R matrix, for sparse matrix, it returns a `dgCMatrix`.

Examples

```r
bfile_path = system.file("extdata", "demo", package = "hibayes")
data = read_plink(bfile_path)
gen = data$geno
map = data$map

xx = ldmat(geno, threads=4, verbose=FALSE)  # chromosome wide full ld matrix
# xx = ldmat(geno, chisq=5, threads=4)  # chromosome wide sparse ld matrix
# xx = ldmat(geno, map, ldchr=FALSE, threads=4)  # chromosome block ld matrix
# xx = ldmat(geno, map, ldchr=FALSE, chisq=5, threads=4)  # chromosome block + sparse ld matrix
```
read_plink

data load

Description
To load plink binary data

Usage

read_plink(
 bfile = "",
 maxLine = 10000,
 impute = TRUE,
 mode = c("A", "D"),
 out = NULL,
 threads = 4
)

Arguments

bfile character, prefix of Plink binary format data.
maxLine number, set the number of lines to read at a time.
impute logical, whether to impute missing values in genotype by major alleles.
mode "A" or "D", additive effect or dominant effect.
out character, path and prefix of output file
threads number, the number of used threads for parallel process

Value

four files will be generated in the directed folder: "xx.desc", "xx.bin", "xx.id", "xx.map", where 'xx' is the prefix of the argument 'out', the memory-mapping files can be fast loaded into memory by 'geno = attach.big.matrix("xx.desc")'. Note that hibayes will code the genotype A1A1 as 2, A1A2 as 1, and A2A2 as 0, where A1 is the first allele of each marker in "bim" file, therefore the estimated effect size is on A1 allele, users should pay attention to it when a process involves marker effect.

Examples

bfile_path = system.file("extdata", "demo", package = "hibayes")
data = read_plink(bfile_path, out=tempfile(), mode="A")
fam = data$fam
geno = data$geno
map = data$map
sbrm

S Bayes model

Description

Bayes linear regression model using summary level data

Usage

```r
sbrm(
  sumstat,
  ldm,
  map = NULL,
  Pi = NULL,
  lambda = NULL,
  fold = NULL,
  niter = NULL,
  nburn = NULL,
  thin = 5,
  windsize = NULL,
  windnum = NULL,
  vg = NULL,
  dfvg = NULL,
  s2vg = NULL,
  ve = NULL,
  dfve = NULL,
  s2ve = NULL,
  printfreq = 100,
  seed = 666666,
  threads = 4,
  verbose = TRUE
)
```

Arguments

- `sumstat`: matrix of summary data, details refer to https://cnsgenomics.com/software/gcta/#COJO.
- `ldm`: dense or sparse matrix, ld for reference panel (m * m, m is the number of SNPs). NOTE that the order of SNPs should be consistent with summary data.
 - "BayesRR": Bayes Ridge Regression, all SNPs have non-zero effects and share the same variance, equals to RRBLUP or GBLUP.
 - "BayesA": all SNPs have non-zero effects, and take different variance which follows an inverse chi-square distribution.
• "BayesB": only a small proportion of SNPs (1-Pi) have non-zero effects, and take different variance which follows an inverse chi-square distribution.
• "BayesBpi": the same with "BayesB", but 'Pi' is not fixed.
• "BayesC": only a small proportion of SNPs (1-Pi) have non-zero effects, and share the same variance.
• "BayesCpi": the same with "BayesC", but 'Pi' is not fixed.
• "BayesL": BayesLASSO, all SNPs have non-zero effects, and take different variance which follows an exponential distribution.
• "BayesR": only a small proportion of SNPs have non-zero effects, and the SNPs are allocated into different groups, each group has the same variance.
• "CG": conjugate gradient algorithm with assigned lambda.

map (optional, only for GWAS) the map information of genotype, at least 3 columns are: SNPs, chromosome, physical position.

Pi vector, the proportion of zero effect and non-zero effect SNPs, the first value must be the proportion of non-effect markers.

lambda value or vector, the ridge regression value for each SNPs.

fold percentage of variance explained for groups of SNPs, the default is c(0, 0.0001, 0.001, 0.01).

niter the number of MCMC iteration.

nburn the number of iterations to be discarded.

thin the number of thinning after burn-in. Note that smaller thinning frequency may have higher accuracy of estimated parameters, but would result in more memory for collecting process, on contrary, bigger frequency may have negative effect on accuracy of estimations.

windsize window size in bp for GWAS, the default is 1e6.

windnum fixed number of SNPs in a window for GWAS, if it is specified, 'windsize' will be invalid, the default is NULL.

vg prior value of genetic variance.

dfvg the number of degrees of freedom for the distribution of genetic variance.

s2vg scale parameter for the distribution of genetic variance.

ve prior value of residual variance.

dfve the number of degrees of freedom for the distribution of residual variance.

s2ve scale parameter for the distribution of residual variance.

printfreq frequency of collecting the estimated parameters and printing on console. Note that smaller frequency may have higher accuracy of estimated parameters, but would result in more time and memory for collecting process, on contrary, bigger frequency may have an negative effect on accuracy of estimations.

seed seed for random sample.

threads number of threads used for OpenMP.

verbose whether to print the iteration information on console.
Details

- if any one of the options 'windsize' and 'windnum' is specified, the GWAS results will be returned, and the 'map' information must be provided, in which the physical positions should be all in digital values.
- the 'windsize' or 'windnum' option only works for the methods of which the assumption has a proportion of zero effect markers, e.g., BayesB, BayesBpi, BayesC, BayesCpi, BSLMM, and BayesR.

Value

the function returns a 'blrMod' object containing

π estimated proportion of zero effect and non-zero effect SNPs

V_g estimated genetic variance

V_e estimated residual variance

h^2 estimated heritability ($h^2 = V_g / (V_g + V_e)$)

α estimated effect size of all markers

π_{pip} the frequency for markers to be included in the model during MCMC iteration, also known as posterior inclusive probability (PIP)

α_{gwas} WPPA is defined to be the window posterior probability of association, it is estimated by counting the number of MCMC samples in which α is nonzero for at least one SNP in the window

$MCMC samples$ the collected samples of posterior estimation for all the above parameters across MCMC iterations

References

Examples

```r
bfile_path = system.file("extdata", "demo", package = "hibayes")
bin = read_plink(bfile_path, threads=1)
fam = bin$fam
geno = bin$geno
map = bin$map

sumstat_path = system.file("extdata", "demo.ma", package = "hibayes")
sumstat = read.table(sumstat_path, header=TRUE)
head(sumstat)
```

compute ld variance covariance matrix
construct genome wide full variance-covariance matrix
ssbrm

Single-step Bayes model

Description

Single-step Bayes linear regression model using individual level data and pedigree information

\[y = X\beta + Rr + M\alpha + U\epsilon + e \]

where \(y \) is the vector of phenotypic values for both genotyped and non-genotyped individuals, \(\beta \) is a vector of estimated coefficient for covariates, \(M \) contains the genotype (\(M_2 \)) for genotyped individuals and the imputed genotype (\(M_1 = A_{12}A_{22}^{-1}M_2 \)) for non-genotyped individuals, \(\epsilon \) is the vector of genotype imputation error, \(e \) is a vector of residuals.

Usage

```
ssbrm(
  formula,
  data = NULL,
  M = NULL,
  M.id = NULL,
  pedigree = NULL,
  method = c("BayesCpi", "BayesA", "BayesL", "BayesR", "BayesB", "BayesC", "BayesBpi", "BayesRR"),
  Pi = c(0.95, 0.05),
  niter = 20000, nburn = 12000, seed = 666666, map = map, windsize = 1e6, threads = 1)
```
map = NULL,
Pi = NULL,
fold = NULL,
niter = NULL,
nburn = NULL,
thin = 5,
windsize = NULL,
windnum = NULL,
maf = 0.01,
dfvr = NULL,
s2vr = NULL,
vg = NULL,
dfvg = NULL,
s2vg = NULL,
ve = NULL,
dfve = NULL,
s2ve = NULL,
printfreq = 100,
seed = 666666,
threads = 4,
verbose = TRUE
)

Arguments

formula a two-sided linear formula object describing both the fixed-effects and random-effects part of the model, with the response on the left of a ‘~’ operator and the terms, separated by ‘+’ operators, on the right. Random-effects terms are distinguished by vertical bars (’|’) separating expressions for design matrices from grouping factors.

data the data frame containing the variables named in 'formula', NOTE that the first column in 'data' should be the individual id.

M numeric matrix of genotype with individuals in rows and markers in columns, NAs are not allowed.

M.id vector of id for genotype.

pedigree matrix of pedigree, 3 columns limited, the order of columns shoud be "id", "sir", "dam".

method bayes methods including: "BayesB", "BayesA", "BayesL", "BayesRR", "BayesBpi", "BayesC", "BayesCpi", "BayesR".
 • "BayesRR": Bayes Ridge Regression, all SNPs have non-zero effects and share the same variance, equals to RRBLUP or GBLUP.
 • "BayesA": all SNPs have non-zero effects, and take different variance which follows an inverse chi-square distribution.
 • "BayesB": only a small proportion of SNPs (1-Pi) have non-zero effects, and take different variance which follows an inverse chi-square distribution.
 • "BayesBpi": the same with "BayesB", but 'Pi' is not fixed.
"BayesC": only a small proportion of SNPs (1-\(\pi\)) have non-zero effects, and share the same variance.

"BayesCpi": the same with "BayesC", but \(\pi\) is not fixed.

"BayesL": BayesLASSO, all SNPs have non-zero effects, and take different variance which follows an exponential distribution.

"BayesR": only a small proportion of SNPs have non-zero effects, and the SNPs are allocated into different groups, each group has the same variance.

map (optional, only for GWAS) the map information of genotype, at least 3 columns are: SNPs, chromosome, physical position.

\(\pi\) vector, the proportion of zero effect and non-zero effect SNPs, the first value must be the proportion of non-effect markers.

fold proportion of variance explained for groups of SNPs, the default is \(c(0, 0.0001, 0.001, 0.01)\).

niter the number of MCMC iteration.

nburn the number of iterations to be discarded.

thin the number of thinning after burn-in. Note that smaller thinning frequency may have higher accuracy of estimated parameters, but would result in more memory for collecting process, on contrary, bigger frequency may have negative effect on accuracy of estimations.

windsize window size in bp for GWAS, the default is NULL.

windnum fixed number of SNPs in a window for GWAS, if it is specified, ‘windsize’ will be invalid, the default is NULL.

maf the effects of markers whose MAF is lower than the threshold will not be estimated.

dfvr the number of degrees of freedom for the distribution of environmental variance.

s2vr scale parameter for the distribution of environmental variance.

vg prior value of genetic variance.

dfvg the number of degrees of freedom for the distribution of genetic variance.

s2vg scale parameter for the distribution of genetic variance.

ve prior value of residual variance.

dfve the number of degrees of freedom for the distribution of residual variance.

s2ve scale parameter for the distribution of residual variance.

printfreq frequency of printing iterative details on console.

seed seed for random sample.

threads number of threads used for OpenMP.

verbose whether to print the iteration information on console.

Value

the function returns a ‘blrMod’ object containing

\(S_J\) coefficient for genotype imputation residuals
V_{eps} estimated variance of genotype imputation residuals

ϵ genotype imputation residuals

μ the regression intercept

π estimated proportion of zero effect and non-zero effect SNPs

β estimated coefficients for all covariates

r estimated environmental random effects

V_r estimated variance for all environmental random effect

V_g estimated genetic variance

V_e estimated residual variance

h^2 estimated heritability ($h^2 = \frac{V_g}{V_r + V_g + V_e}$)

α estimated effect size of all markers

e residuals of the model

pip the frequency for markers to be included in the model during MCMC iteration, also known as posterior inclusive probability (PIP)

g_{was} WPPA is defined to be the window posterior probability of association, it is estimated by counting the number of MCMC samples in which α is nonzero for at least one SNP in the window

$\text{MCMC}_{\text{samples}}$ the collected samples of posterior estimation for all the above parameters across MCMC iterations

References

Examples

```r
# Load the example data attached in the package
pheno_file_path = system.file("extdata", "demo.phe", package = "hibayes")
pheno = read.table(pheno_file_path, header=TRUE)

bfile_path = system.file("extdata", "demo", package = "hibayes")
bin = read_plink(bfile_path, threads=1)
fam = bin$fam
geno = bin$geno
map = bin$map

pedigree_file_path = system.file("extdata", "demo.ped", package = "hibayes")
```
ped = read.table(pedigree_file_path, header=TRUE)

For GS/GP
no environmental effects:
fit = ssbrm(T1~1, data=pheno, M=geno, M.id=fam[,2], pedigree=ped,
method="BayesCpi", niter=1000, nburn=600, thin=5, printfreq=100, threads=1)

overview of the returned results
summary(fit)

add fixed effects or covariates:
fit = ssbrm(T1~sex+bwt, data=pheno, M=geno, M.id=fam[,2], pedigree=ped,
method="BayesCpi")

add environmental random effects:
fit = ssbrm(T1~(1|loc)+(1|dam), data=pheno, M=geno, M.id=fam[,2],
pedigree=ped, method="BayesCpi")

For GWAS
fit = ssbrm(T1~sex+bwt+(1|dam), data=pheno, M=geno, M.id=fam[,2],
pedigree=ped, method="BayesCpi", map=map, windsize=1e6)

get the SD of estimated SNP effects for markers
summary(fit)$alpha
get the SD of estimated breeding values
summary(fit)$g
Index

ibrm, 2
ldmat, 6
read_plink, 8
sbrm, 9
ssbrm, 12