Package ‘hierNet’

February 5, 2020

Title A Lasso for Hierarchical Interactions
Version 1.9
Author Jacob Bien and Rob Tibshirani
Description Fits sparse interaction models for continuous and binary responses subject to the strong (or weak) hierarchy restriction that an interaction between two variables only be included if both (or at least one of) the variables is included as a main effect. For more details, see Bien, J., Taylor, J., Tibshirani, R., (2013) “A Lasso for Hierarchical Interactions.” Annals of Statistics. 41(3). 1111-1141.
Maintainer Jacob Bien <jbien@usc.edu>
License GPL-2
NeedsCompilation yes
Repository CRAN
Date/Publication 2020-02-05 13:10:20 UTC

R topics documented:

hierNet ... 2
hierNet.cv ... 4
hierNet.logistic ... 5
hierNet.logistic.path ... 7
hierNet.path ... 9
hierNet.varimp ... 11
predict.hierNet ... 12
predict.hierNet.logistic 13
predict.hierNet.path .. 14

Index 16
hierNet

A Lasso for interactions

Description
One of the main functions in the hierNet package. Builds a regression model with hierarchically
constrained pairwise interactions. Required inputs are an x matrix of features (the columns are the
features) and a y vector of values. Reasonably fast for moderate sized problems (100-200 variables).
We are currently working on an alternate algorithm for large scale problems.

Usage
hierNet(x, y, lam, delta=1e-8, strong=FALSE, diagonal=TRUE, aa=NULL, zz=NULL,
center=TRUE, stand.main=TRUE, stand.int=FALSE,
rho=nrow(x), niter=100, sym.eps=1e-3,
step=1, maxiter=2000, backtrack=0.2, tol=1e-5, trace=0)

Arguments

x A matrix of predictors, where the rows are the samples and the columns are the
predictors

y A vector of observations, where length(y) equals nrow(x)

lam Regularization parameter (>0). L1 penalty param is lam * (1-delta).

delta Elastic Net parameter. Squared L2 penalty param is lam * delta. Not a tuning
parameter: Think of as fixed and small. Default 1e-8.

strong Flag specifying strong hierarchy (TRUE) or weak hierarchy (FALSE). Default
FALSE.

diagonal Flag specifying whether to include "pure" quadratic terms, th_jjX_j^2, in the
model. Default TRUE.

aa An *optional* argument, a list with results from a previous call

zz An *optional* argument, a matrix whose columns are products of features, com-
puted by the function compute.interactions.c

center Should features be centered? Default TRUE; FALSE should rarely be used. This
option is available for special uses only

stand.main Should main effects be standardized? Default TRUE.

stand.int Should interactions be standardized? Default FALSE.

rho ADMM parameter: tuning parameter (>0) for ADMM. If there are convergence
problems, try decreasing rho. Default n.

niter ADMM parameter: number of iterations

sym.eps ADMM parameter: threshold for symmetrizing with strong=TRUE

step Stepsize for generalized gradient descent

maxiter Maximum number of iterations for generalized gradient descent

backtrack Backtrack parameter for generalized gradient descent

tol Error tolerance parameter for generalized gradient descent

trace Output option; trace=1 gives verbose output
Value

- **bp**: p-vector of estimated "positive part" main effect (p=# features)
- **bn**: p-vector of estimated "negative part" main effect; overall main effect estimated coefficients are bp-bn
- **th**: Matrix of estimated interaction coefficients, of dimension p by p. Note: when output from hierNet is printed, th is symmetrized (set to (th+t(th))/2) for simplicity.
- **obj**: Value of objective function at minimum.
- **lam**: Value of lambda used
- **type**: Type of model fit- "gaussian" or "logistic" (binomial)
- **mx**: p-vector of column means of x
- **sx**: p-vector of column standard deviations of x
- **my**: mean of y
- **mzz**: column means of feature product matrix
- **szz**: column standard deviations of feature product matrix
- **call**: The call to hierNet

Author(s)

Jacob Bien and Robert Tibshirani

References

See Also

predict.hierNet, hierNet.cv, hierNet.path

Examples

```r
set.seed(12)
# fit a single hierNet model
x=matrix(rnorm(100*10),ncol=10)
x=scale(x,TRUE,TRUE)
y=x[,1]+2*x[,2]+ x[,1]*x[,2]+3*rnorm(100)
fit=hierNet(x,y, lam=50)
print(fit)

# try strong (rather than weak) hierarchy
fit=hierNet(x,y, lam=50, strong=TRUE)
print(fit)

# a typical analysis including cross-validation
set.seed(12)
x=matrix(rnorm(100*10),ncol=10)
```
\[
x = \text{scale}(x, \text{TRUE}, \text{TRUE})
\]
\[
y = x[,1] + 2 \times x[,2] + x[,1] \times x[,2] + 3 \times \text{rnorm}(100)
\]
\[
\text{fit} = \text{hierNet.path}(x, y)
\]
\[
\text{fitcv} = \text{hierNet.cv}(\text{fit}, x, y)
\]
\[
\text{print}(\text{fitcv})
\]
\[
\text{lamhat} = \text{fitcv}lamhat.1se
\]
\[
\text{fit2} = \text{hierNet}(x, y, \text{lam} = \text{lamhat})
\]
\[
\text{yhat} = \text{predict} (\text{fit2}, x)
\]

hierNet.cv

Cross-validation function for hierNet

Description

Uses cross-validation to estimate the regularization parameter for hierNet

Usage

```r
hierNet.cv(fit, x, y, nfolds=10, folds=NULL, trace=0)
```

Arguments

- **fit**: Object returned from call to hierNet.path or hierNet.logistic.path. All parameter settings will be taken from this object.
- **x**: A matrix of predictors, where the rows are the samples and the columns are the predictors.
- **y**: A vector of observations, where length(y) equals nrow(x).
- **nfolds**: Number of cross-validation folds.
- **folds**: (Optional) user-supplied cross-validation folds. If provided, nfolds is ignored.
- **trace**: Verbose output? 0=no, 1=yes

Value

- **lamlist**: Vector of lambda values tried.
- **cv.err**: Estimate of cross-validation error.
- **cv.se**: Estimated standard error of cross-validation estimate.
- **lamhat**: Lambda value minimizing cv.err.
- **lamhat.1se**: Largest lambda value with cv.err less than or equal to min(cv.err) + SE.
- **folds**: Indices of folds used in cross-validation.
- **yhat**: n by nlam matrix of predicted values. Here, ith prediction is based on training on all folds that do not include the ith data point.
- **nonzero**: Vector giving number of non-zero coefficients for each lambda value.
- **call**: The call to hierNet.cv.
hierNet.logistic

Author(s)
Jacob Bien and Robert Tibshirani

References

See Also
hierNet,hierNet.path, hierNet.logistic,hierNet.logistic.path

Examples

```r
set.seed(12)
x=matrix(rnorm(100*10),ncol=10)
x=scale(x,TRUE,TRUE)
y=x[,1]+2*x[,2]+ x[,1]*x[,2]+3*rnorm(100)
fit=hierNet.path(x,y)
fitcv=hierNet.cv(fit,x,y)
print(fitcv)
plot(fitcv)
```

```r
x=matrix(rnorm(100*10),ncol=10)
x=scale(x,TRUE,TRUE)
y=x[,1]+2*x[,2]+ x[,1]*x[,2]+3*rnorm(100)
y=1*(y>0)
fit=hierNet.logistic.path(x,y)
fitcv=hierNet.cv(fit,x,y)
print(fitcv)
plot(fitcv)
```

hierNet.logistic

A logistic regression Lasso for interactions

Description
One of the main functions in the hierNet package. Builds a logistic regression model with hierarchically constrained pairwise interactions. Required inputs are an x matrix of features (the columns are the features) and a y vector of values. Reasonably fast for moderate sized problems (100-200 variables). We are currently working on a alternate algorithm for large scale problems.

Usage

```r
hierNet.logistic(x, y, lam, delta=1e-8, diagonal=TRUE, strong=FALSE, aa=NULL, zz=NULL, center=TRUE, stand.main=TRUE, stand.int=FALSE, rho=nrow(x), niter=100, sym.eps=1e-3,# ADMM params step=1, maxiter=2000, backtrack=0.2, tol=1e-5, trace=1)
```
Arguments

- **x**: A matrix of predictors, where the rows are the samples and the columns are the predictors.
- **y**: A vector of observations, with values 0 or 1, where length(y) equals nrow(x).
- **lam**: Regularization parameter (>0). L1 penalty param is \(\text{lam} \times (1 - \delta) \).
- **delta**: Elastic Net parameter. Squared L2 penalty param is \(\text{lam} \times \delta \). Not a tuning parameter: Think of as fixed and small. Default 1e-8.
- **diagonal**: Flag specifying whether to include "pure" quadratic terms, \(\text{th}_{jj}x_j^2 \), in the model. Default TRUE.
- **strong**: Flag specifying strong hierarchy (TRUE) or weak hierarchy (FALSE). Default FALSE.
- **aa**: An *optional* argument, a list with results from a previous call.
- **zz**: An *optional* argument, a matrix whose columns are products of features, computed by the function compute.interactions.c.
- **center**: Should features be centered? Default TRUE; FALSE should rarely be used. This option is available for special uses only.
- **stand.main**: Should main effects be standardized? Default TRUE.
- **stand.int**: Should interactions be standardized? Default FALSE.
- **rho**: ADMM parameter: tuning parameter (>0) for ADMM. If there are convergence problems, try decreasing rho. Default n.
- **niter**: ADMM parameter: number of iterations.
- **sym.eps**: ADMM parameter Thresholding for symmetrizing with strong=TRUE.
- **step**: Stepsize for generalized gradient descent.
- **maxiter**: Maximum number of iterations for generalized gradient descent.
- **backtrack**: Backtrack parameter for generalized gradient descent.
- **tol**: Error tolerance parameter for generalized gradient descent.
- **trace**: Output option; trace=1 gives verbose output.

Value

- **b0**: Intercept.
- **bp**: p-vector of estimated "positive part" main effect (p=#features).
- **bn**: p-vector of estimated "negative part" main effect; overall main effect estimated coefficients are bp-bn.
- **th**: Matrix of estimated interaction coefficients, of dimension p by p.
- **obj**: Value of objective function at minimum.
- **lam**: Value of lambda used.
- **type**: Type of model fit- "gaussian" or "logistic" (binomial).
- **mx**: p-vector of column means of x.
- **my**: Mean of y.
- **sx**: p-vector of column standard deviations of x.
- **mzz**: column means of feature product matrix.
- **call**: The call to hierNet.
hierNet.logistic.path

Fit a path of logistic hierNet models- lasso models with interactions

Description

One of the main functions in the hierNet package. Fits a logistic path of hierNet models over different values of the regularization parameter. Calls hierNet.logistic, which builds a regression model with hierarchically constrained pairwise interactions. Required inputs are an x matrix of features (the columns are the features) and a y vector of values. Reasonably fast for moderate sized problems (100-200 variables). We are currently working on a alternate algorithm for large scale problems.

Usage

```r
hierNet.logistic.path(x, y, 
   lamlist = NULL, delta=1e-8, minlam = NULL, maxlam = NULL, flmin=.01, nlam = 20, 
   diagonal = TRUE, strong = FALSE, aa = NULL, zz = NULL, 
   stand.main = TRUE, stand.int = FALSE, 
   rho = nrow(x), niter = 100, sym.eps = 0.001, 
   step = 1, maxiter = 2000, backtrack = 0.2, tol = 1e-05, trace = 0)
```
Arguments

x A matrix of predictors, where the rows are the samples and the columns are the predictors
y A vector of observations equal to 0 or 1, where length(y) equals nrow(x)
lamlist Optional vector of values of lambda (the regularization parameter). L1 penalty param is lambda * (1-delta).
delta Elastic Net parameter. Squared L2 penalty param is lambda * delta. Not a tuning parameter: Think of as fixed and small. Default 1e-8.
minlam Optional minimum value for lambda
maxlam Optional maximum value for lambda
flmin Fraction of maxlam; minlam= flmin*maxlam. If computation is slow, try increasing flmin to focus on the sparser part of the path
nlam Number of values of lambda to be tried
diagonal Flag specifying whether to include "pure" quadratic terms, th_jjX_j^2, in the model. Default TRUE.
stand.main Should main effects be standardized? Default TRUE
stand.int Should interactions be standardized? Default FALSE
strong Flag specifying strong hierarchy (TRUE) or weak hierarchy (FALSE). Default FALSE
aa An *optional* argument, a list with results from a previous call
zz An *optional* argument, a matrix whose columns are products of features, computed by the function compute.interactions.c
rho ADMM parameter: tuning parameter (>0) for ADMM. If there are convergence problems, try decreasing rho. Default n.
init ADMM parameter: number of iterations
sym.eps ADMM parameter Thresholding for symmetrizing with strong=TRUE
step Stepsize for generalized gradient descent
maxiter Maximum number of iterations for generalized gradient descent
backtrack Backtrack parameter for generalized gradient descent
tol Error tolerance parameter for generalized gradient descent
trace Output option; trace=1 gives verbose output

Value

bp p by nlam matrix of estimated "positive part" main effects (p=#features)
bh p by nlam matrix of estimated "negative part" main effects
th p by p by nlam array of estimated interaction coefficients
obj nlam values of objective function, one per lambda value
lamlist Vector of values of lambda used
mx p-vector of column means of x
hierNet.path

sx p-vector of column standard deviations of x
my mean of y
mzz column means of feature product matrix
szz column standard deviations of feature product matrix

Author(s)
Jacob Bien and Robert Tibshirani

References

See Also
`hierNet,predict.hierNet, hierNet.cv`

Examples

```r  
set.seed(12)  
x=matrix(rnorm(100*10),ncol=10)  
x=scale(x,TRUE,TRUE)  
y=x[,1]+2*x[,2]+ x[,1]*x[,2]+3*rnorm(100)  
y=1*(y>0)  
fit=hierNet.logistic.path(x,y)  
print(fit)  
```

hierNet.path

Fit a path of hierNet models- lasso models with interactions

Description

One of the main functions in the hierNet package. Fits a path of hierNet models over different values of the regularization parameter. Calls hierNet, which builds a regression model with hierarchically constrained pairwise interactions. Required inputs are an x matrix of features (the columns are the features) and a y vector of values. Reasonably fast for moderate sized problems (100-200 variables). We are currently working on an alternate algorithm for large scale problems.

Usage

```r  
hierNet.path(x, y,  
    lamlist = NULL, delta=1e-8, minlam = NULL, maxlam = NULL, nlam=20, flmin=.01,  
    diagonal = TRUE, strong = FALSE, aa = NULL, zz = NULL,  
    stand.main = TRUE, stand.int = FALSE,  
    rho = nrow(x), niter = 100, sym.eps = 0.001,  
    step = 1, maxiter = 2000, backtrack = 0.2, tol = 1e-05, trace = 0)  
```
Arguments

x A matrix of predictors, where the rows are the samples and the columns are the predictors
y A vector of observations, where length(y) equals nrow(x)
lamlist Optional vector of values of lambda (the regularization parameter). L1 penalty param is lambda * (1-delta).
delta Elastic Net parameter. Squared L2 penalty param is lambda * delta. Not a tuning parameter: Think of as fixed and small. Default 1e-8.
minlam Optional minimum value for lambda
maxlam Optional maximum value for lambda
nlam Number of values of lambda to be tried
flmin Fraction of maxlam; minlam= flmin*maxlam. If computation is slow, try increasing flmin to focus on the sparser part of the path
diagonal Flag specifying whether to include "pure" quadratic terms, th_jjX_j^2, in the model. Default TRUE.
strong Flag specifying strong hierarchy (true) or weak hierarchy (false). Default false
aa An *optional* argument, a list with results from a previous call
zz An *optional* argument, a matrix whose columns are products of features, computed by the function compute.interactions.c
stand.main Should main effects be standardized? Default TRUE
stand.int Should interactions be standardized? Default FALSE
rho ADMM parameter: tuning parameter (>0) for ADMM. If there are convergence problems, try decreasing rho. Default n.
niter ADMM parameter: number of iterations
sym.eps ADMM parameter Thresholding for symmetrizing with strong=TRUE
step Stepsize for generalized gradient descent
maxiter Maximum number of iterations for generalized gradient descent
backtrack Backtrack parameter for generalized gradient descent
tol Error tolerance parameter for generalized gradient descent
trace Output option; trace=1 gives verbose output

Value

bp p by nlam matrix of estimated "positive part" main effects (p=#variables)
bn p by nlam matrix of estimated "negative part" main effects
th p by (p by nlam array of estimated interaction coefficients
obj nlam values of objective function, one per lambda value
lamlist Vector of values of lambda used
mx p-vector of column means of x
sx p-vector of column standard deviations of x
my mean of y
mzz column means of feature product matrix
szz column standard deviations of feature product matrix
hierNet.varimp

Author(s)
Jacob Bien and Robert Tibshirani

References

See Also
 * hierNet, predict.hierNet, hierNet.cv*

Examples
```r
set.seed(12)
x=matrix(rnorm(100*10),ncol=10)
x=scale(x,TRUE,TRUE)
y=x[,1]+2*x[,2]+ x[,1]*x[,2]+3*rnorm(100)
fit=hierNet.path(x,y)
print(fit)
```

hierNet.varimp

Variable importance for hierNet.

Description
(This is an experimental function.) Calculates a measure of the importance of each variable.

Usage
```r
hierNet.varimp(fit, x, y, ...)
```

Arguments

- **fit** The results of a call to the "hierNet"
- **x** The training set feature matrix used in call produced "fit"
- **y** The training set response vector used in call produced "fit"
- **...** additional arguments (not currently used)

Value
Table of variable importance.

Author(s)
Jacob Bien and Robert Tibshirani
References

See Also

hierNet, hierNet.path

Examples

```r
set.seed(12)
x=matrix(rnorm(100*10),ncol=10)
x=scale(x,TRUE,TRUE)
y=x[,1]+2*x[,2]+ x[,1]*x[,2]+3*rnorm(100)
newx=matrix(rnorm(100*10),ncol=10)
fit=hierNet(x,y, lam=50)
yhat=predict(fit,newx)

fit=hierNet.path(x,y)
yhat=predict(fit,newx)
```

predict.hierNet

Prediction function for hierNet and hierNet.logistic.

Description

A function to perform prediction, using an x matrix and the output of the "hierNet" or "hierNet.logistic" function.

Usage

```r
## S3 method for class 'hierNet'
predict(object, newx, newzz=NULL, ...)
```

Arguments

- **object**
 The results of a call to the "hierNet" or "hierNet.path" or function. The coefficients that are part of this object will be used for making predictions.

- **newx**
 The new x at which predictions should be made. Can be a vector or a matrix (one observation per row).

- **newzz**
 Optional matrix of products of columns of newx, computed by compute.interactions.c

- **...**
 Additional arguments (not currently used)

Value

- **yhat**
 Vector of predictions for each observation. For logistic model, these are the estimated probabilities.
Author(s)
Jacob Bien and Robert Tibshirani

References

See Also
hierNet, hierNet.path

Examples
set.seed(12)
x=matrix(rnorm(100*10),ncol=10)
x=scale(x,TRUE,TRUE)
y=x[,1]+2*x[,2]+ x[,1]*x[,2]+3*rnorm(100)
newx=matrix(rnorm(100*10),ncol=10)
fit=hierNet(x,y,lambda=50)
yhat=predict(fit,newx)

fit=hierNet.path(x,y)
yhat=predict(fit,newx)

predict.hierNet.logistic

Prediction function for hierNet.logistic.

Description
A function to perform prediction, using an x matrix and the output of the "hierNet.logistic" function or "hierNet.logistic.path".

Usage
S3 method for class 'hierNet.logistic'
predict(object, newx, newzz=NULL,...)

Arguments

 object The results of a call to the "hierNet.logistic" or "hierNet.logistic.path" or function. The coefficients that are part of this object will be used for making predictions.
 newx The new x at which predictions should be made. Can be a vector or a matrix (one observation per row).
 newzz Optional matrix of products of columns of newx, computed by compute.interactions.c additional arguments (not currently used)
Value

yhat
Matrix of predictions (probabilities), one row per observation

Author(s)

Jacob Bien and Robert Tibshirani

References

See Also

hierNet.logistic, hierNet.logistic.path

Examples

```r
set.seed(12)
x=matrix(rnorm(100*10),ncol=10)
x=scale(x,TRUE,TRUE)
y=x[,1]+2*x[,2]+ x[,1]*x[,2]+3*rnorm(100)
y=1*(y>0)
newx=matrix(rnorm(100*10),ncol=10)
fit=hierNet.logistic(x,y, lam=5)
yhat=predict(fit,newx)

fit=hierNet.logistic.path(x,y)
yhat=predict(fit,newx)
```

Description

A function to perform prediction, using an x matrix and the output of the "hierNet.path" or "hierNet.logistic.path" functions.

Usage

```r
## S3 method for class 'hierNet.path'
predict(object, newx, newzz=NULL, ...)
```
predict.hierNet.path

Arguments

object
The results of a call to the "hierNet" or "hierNet.path" or function. The coefficients that are part of this object will be used for making predictions.

newx
The new x at which predictions should be made. Can be a vector or a matrix (one observation per row).

newzz
Optional matrix of products of columns of newx, computed by compute.interactions.c

... additional arguments (not currently used)

Value

yhat
Matrix of predictions, one row per observation. For logistic model, these are the estimated probabilities.

Author(s)

Jacob Bien and Robert Tibshirani

References

See Also

hierNet, hierNet.path

Examples

set.seed(12)
x=matrix(rnorm(100*10),ncol=10)
x=scale(x,TRUE,TRUE)
y=x[,1]+2*x[,2]+x[,1]*x[,2]+3*rnorm(100)
newx=matrix(rnorm(100*10),ncol=10)
fit=hierNet(x,y,lambda=50)
yhat=predict(fit,newx)

fit=hierNet.path(x,y)
yhat=predict(fit,newx)
Index

hierNet, 2, 5, 9, 11–13, 15
hierNet.cv, 3, 4, 9, 11
hierNet.logistic, 5, 5, 14
hierNet.logistic.path, 5, 7, 14
hierNet.path, 3, 5, 9, 12, 13, 15
hierNet.varimp, 11

predict.hierNet, 3, 9, 11, 12
predict.hierNet.logistic, 7, 13
predict.hierNet.path, 14