Package ‘hierformR’
August 29, 2016

Type Package
Title Analysis of Dynamics Hierarchy Formation
Version 0.1.0
Maintainer James P. Curley <jc3181@columbia.edu>
Description Determine paths and states that social networks develop over
time to form social hierarchies. Based upon algorithms described in
Depends R (>= 3.1.0)
Imports igraph, utils
License GPL-3
LazyData TRUE
RoxygenNote 5.0.0
NeedsCompilation no
Author James P. Curley [aut, cre],
Ivan D. Chase [aut]
Repository CRAN
Date/Publication 2016-06-10 18:27:00

R topics documented:

 addstates .. 2
csf ... 2
csf_n ... 3
delete_isolates .. 3
lastints ... 4
lastnet .. 5
netchar ... 5
rowmatch .. 6
stateclass ... 6
stateclasses ... 7
stateid ... 7
states .. 8
wldf ... 9
addstates

Add State ids and classes

Description
Add State ids and classes

Usage
addstates(df)

Arguments
- df
a dataframe with two variables, winners and losers

Value
the df with two extra rows containing state id and class

Examples

```r
df <- data.frame(winner=c(1,2,3,1,2,3,1,2,3,1,2,3,3,1,3,2,1,1,1,1,2,2),
                 loser=c(2,4,4,4,2,1,3,3,4,2,3,2,3,4,2,4,3,3,3,2,2,4,3))
addstates(df)
```

csf

Determine class-stability factor (CSF)

Description
Determine class-stability factor (CSF)

Usage
csf(df)

Arguments
- df
either a two-column dataframe of winners and losers or a dataframe produced by `addstates` with columns winner, loser, id and class

Value
a named vector of state ids with the CSF for all link numbers
```
csf_n

Examples

df <- data.frame(winner = c(1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 4, 3, 1, 3, 2, 1, 1, 1, 2, 2),
    loser = c(2, 4, 4, 4, 3, 2, 1, 3, 3, 4, 2, 3, 2, 4, 2, 4, 3, 3, 3, 2, 2, 4, 3))
csf(df)
csf(addstates(wldf()))
```

csf_n

Determine class-stability factor (CSF) for specific number of links

Description

Determine class-stability factor (CSF) for specific number of links

Usage

```
csf_n(df, links = 4)
```

Arguments

df a dataframe produced by ‘addstates’ with columns winner, loser, id and class

links the number of links to determine the CSF for

Value

a named vector of state ids with the CSF for defined number of links

Examples

```
csf_n(addstates(wldf()), links = 6)
```

delete_isolates

Delete isolated nodes from network

Description

Delete isolated nodes from network

Usage

```
delete_isolates(q)
```

Arguments

q an igraph object
Value

an igraph object containing only connected nodes

Examples

```r
g <- igraph::graph.edgelist(cbind(a=c(1,2,3,4), b=c(3,1,1,4)), directed=TRUE)
delete_isolates(g)
```

`lastints`
Get last interaction between each pair of nodes

Description

Get last interaction between each pair of nodes

Usage

```r
lastints(df)
```

Arguments

- `df`
a dataframe with two variables, winners and losers

Value

a list with each element being the last interaction for each pair of nodes up to that row of the dataframe

Examples

```r
df <- data.frame(winner=c(1,1,2,2,1,3,1,2,3,4,1,3,1,2,1,1,2,1,2,1,3,2,1,3,4,2,3,4,3,3,2,2,4,3),
                 loser=c(2,4,4,4,3,2,1,3,3,4,4,2,3,2,3,4,2,4,3,3,3,2,2,4,3))
lastints(df)
```
lastnet

Get last interaction between each pair of nodes

Description
Get last interaction between each pair of nodes

Usage
lastnet(df)

Arguments
df a dataframe with two variables, winners and losers

Value
a list with each element being the network object derived from the last interaction for each pair of nodes up to that row of the dataframe

Examples
df<-data.frame(winner=c(1,2,3,1,2,3,2,1,2,3,3,1,2,3,4,3,1,3,2,1,1,1,1,1,2,2),
loser=c(2,4,4,4,3,2,1,3,3,4,4,2,3,2,3,4,2,4,3,3,2,2,4,3)
)
lastnet(df)

netchar
Get characteristics of a directed graph

Description
Get characteristics of a directed graph

Usage
netchar(g)

Arguments
g a unweighted directed igraph object.

Value
a single row dataframe with characteristics of the graph
Examples

g = igraph::graph.edgelist(cbind(a = c(1L, 2, 3, 3), b = c(4, 1, 1, 2)), directed = TRUE)
netchar(g)

description

Match rows of dataframes

Usage

rowmatch(v1, v2, nomatch = NA)

Arguments

v1
a dataframe or matrix

v2
a row of a dataframe or matrix or a vector of length equal to ncol(v1)

nomatch
how to represent non matching indices of rows

Value

a vector with a 1 in the index of matched rows

Examples

v1 <- data.frame(A = c(1, 2, 3), B = c(2, 3, 3), C = c(3, 3, 2), D = c(1, 1, 1))
v2 <- data.frame(A = 3, B = 3, C = 2, D = 1)
rowmatch(v1, v2, nomatch = NA)

stateclass

Find State Class

Description

Find State Class

Usage

stateclass(x)

Arguments

x
a vector of network characteristics generated by get_statespace function
Value
the state class corresponding to the network characteristics

Examples
```r
g = igraph::graph.edgelist(cbind(a = c(1L, 2L, 3L), b = c(4L, 1L, 2L)), directed = TRUE)
gs = netchar(g)
stateclass(gs)
```

stateclasses

State classes of 41 network states

Description
Vector defining the classes of 41 network states

Usage
```
stateclasses
```

Format
A vector of length 41:

stateid

Find State ID

Description
Find State ID

Usage
```
stateid(x)
```

Arguments
```
x a vector of network characteristics generated by get_statespace function
```

Value
the state id corresponding to the network characteristics

Examples
```r
g = igraph::graph.edgelist(cbind(a = c(1L, 2L, 3L), b = c(4L, 1L, 2L)), directed = TRUE)
gs = netchar(g)
stateid(gs)
```
Characteristics of 41 network states for 4 node graphs

Description

Dataframe showing the transitivity and intransitivity of each of the four triads, the number of nodes, the number of edges, the number of other individuals dominated by the top-ranked individual, the mean distance of the network and the maximum difference between out-degree and in-degrees, in a four node network. Also gives the class of each state.

Usage

states

Format

A data frame with 41 rows and 14 variables:

X003 Number of unconnected nodes
X012 Number of triads with one single directed edge
X021D Number of triads with 2 edges going down
X021U Number of triads with 2 edges going up
X021C Number of triads with 2 edges that could be transitive/intransitive
X030T Number of transitive triads
X030C Number of intransitive triads
maxdom Number of individuals dominated by top ranked individual
noedges Number of edges in network
nonodes Number of nodes in network
distance Mean distance of the network
degreediff Max difference between each nodes out-degree and in-degree
id The id of the network
class The class of the network
Generate random winner-loser dataframe

Description

Generate random winner-loser dataframe

Usage

```r
wldf(ints = 100, actors = 4, intprob = NULL)
```

Arguments

- `ints`: number of interactions
- `actors`: number of individuals
- `intprob`: vector of interaction probabilities of same length as `actors`

Value

a dataframe with two variables, winner and loser

Examples

```r
df<-data.frame(winner=c(1,2,3,1,2,3,2,1,2,3,3,1,2,3,4,3,1,3,2,1,1,1,2,2),
    loser=c(2,4,4,3,2,1,3,3,4,4,2,3,2,3,4,2,4,3,3,3,2,2,4,3))
wldf()
wldf(ints=30, actors=3, intprob=c(0.8,0.1,0.1))
```
Index

*Topic datasets
 stateclasses, 7
 states, 8

addstates, 2

csf, 2
csf_n, 3

delete_isolates, 3

lastints, 4
lastnet, 5

netchar, 5

rowmatch, 6

stateclass, 6
stateclasses, 7
stateid, 7
states, 8

wldf, 9