Package ‘hint’

February 20, 2015

Type Package
Title Tools for hypothesis testing based on Hypergeometric Intersection distributions
Version 0.1-1
Date 2013-05-16
Author Alex T. Kalinka
Maintainer Alex T. Kalinka <alex.t.kalinka@gmail.com>
Description
 Hypergeometric Intersection distributions are a broad group of distributions that describe the probability of picking intersections when drawing independently from two (or more) urns containing variable numbers of balls belonging to the same n categories.
License GPL (>= 2)
LazyLoad yes
NeedsCompilation yes
Repository CRAN
Date/Publication 2013-07-24 11:31:45

R topics documented:

hint-package .. 2
add.distr .. 3
Binomialintersection .. 4
hint.dist.test .. 5
hint.test .. 7
Hyperdistinct ... 8
Hyperintersection ... 10
overlay.sim ... 12
plot.hint.test .. 13
plotDistr .. 14
print.hint.test ... 15
sim.hydist ... 16
sim.hypint .. 17
Description

Tools for hypothesis testing based on Hypergeometric Intersection distributions.

Details

Hypergeometric Intersection distributions are a broad group of distributions that describe the probability of picking intersections when drawing independently from two (or more) urns containing variable numbers of balls belonging to the same n categories.

Author(s)

Alex T. Kalinka <alex.t.kalinka@gmail.com>

References

See Also

Hyperintersection, hint.test, BinomialIntersection, Hyperdistinct.

Examples

```r
## Generate a hypergeometric intersection distribution and plot it.
dd <- dhint(110, c(65, 71))
plotDistr(dd)

## Allow duplicates in the second urn and add the distributions to the existing plot.
dd <- dhint(110, c(65, 71), 82)
dd2 <- dhint(59, c(44, 28), 47)
add.distr(dd, dd2, cols = c("blue", "darkgreen"))

## Test whether the intersection of categories in data sets is significant and plot the result:
dd <- data.frame(letters[1:20], rep(1,20), rep(1,20))
tt <- hint.test(dd, letters[1:9], letters[4:15], alternative = "greater")
plot(tt)

## Allow duplicates in the second urn.
dd <- data.frame(letters[1:20], rep(1,20), c(rep(1,4),rep(2,16)))
tt <- hint.test(dd, letters[1:9], letters[9:14], alternative = "less")
plot(tt)
```
add.distr

Add Distributions to a Plot

Description

This function will add one or more distributions or hypothesis tests to an existing plot.

Usage

```r
add.distr(..., cols = "blue", test.cols = "red")
```

Arguments

- `...`: One or more distributions or objects of class `hint.test`.
- `cols`: A character string vector naming the colours of the distributions. If `length(cols)` is less than the number of distributions, the colours will be recycled. Defaults to "blue".
- `test.cols`: A character string vector naming the colours to use for the regions in which the cumulative probability of the hypothesis test was derived (if it exists). If `length(test.cols)` is less than the number of distributions, the colours will be recycled. Defaults to "red".

Value

Plots to the current device.

Author(s)

Alex T. Kalinka <alex.t.kalinka@gmail.com>

See Also

`plot.distr`, `plot.hint.test`.

Examples

```r
dd <- dhint(25, c(12, 9))
plotDistr(dd)
dd1 <- dhint(12, c(4, 7))
dd2 <- dhint(8, c(4, 2))
add.distr(dd1, dd2, cols = c("blue", "darkgreen"))
```
Binomialintersection The Binomial Intersection Distribution

Description
Density, distribution function, quantile function and random generation for the binomial intersection distribution.

Usage

dbint(n, A, range = NULL, log = FALSE)
pbint(n, A, vals, upper.tail = TRUE, log.p = FALSE)
qbint(p, n, A, upper.tail = TRUE, log.p = FALSE)
rbint(num = 5, n, A)

Arguments
n An integer specifying the number of categories in the urns.
A A vector of integers specifying the numbers of balls drawn from each urn. The length of the vector equals the number of urns.
p A probability between 0 and 1.
um An integer specifying the number of random numbers to generate. Defaults to 5.
range, vals A vector of integers specifying the intersection sizes for which probabilities (dbint) or cumulative probabilities (pbint) should be computed (can be a single number). If range is NULL (default) then probabilities will be returned over the entire range of possible values.
log, log.p Logical. If TRUE, probabilities p are given as log(p). Defaults to FALSE.
upper.tail Logical. If TRUE, probabilities are P(X >= v), else P(X <= v). Defaults to TRUE.

Details
The binomial intersection distribution is given by

\[P(X = v|N) = \binom{b}{v} \left(\prod_{i=1}^{N-1} p_i \right)^v \left(1 - \prod_{i=1}^{N-1} p_i \right)^{b-v} \]

where b gives the sample size which is smallest. This is an approximation for the hypergeometric intersection distribution when n is large and b is small relative to the samples taken from the N − 1 other urns.

Value
dbint, pbint, and qbint return a data frame with two columns: v, the intersection size, and p, the associated p-values. rbint returns an integer vector of random samples based on the binomial intersection distribution.
Author(s)
Alex T. Kalinka <alex.t.kalinka@gmail.com>

References

See Also
Hyperintersection, hint.test, hint.dist.test, plotDistr, Hyperdistinct.

Examples
```r
# Generate the distribution of intersections sizes:
dd <- dbintHRPL cH1PL 1RL 11L 1TII
# Restrict the range of intersections.
dd <- dbintHRPL cH1PL 1RIL range = 0:5
# Generate cumulative probabilities.
pp <- pbintHR9L cH1UL 8IL vals = 5
pp <- pbintHR9L cH1UL 8IL vals = 2, upper.tail = FALSE
# Extract quantiles:
qq <- qbintHPN1UL RSL cH1RL 1PII
# Generate random samples from Binomial intersection distributions.
rr <- rbintHnum [1PL 18L cH9L 1TII
```

Description
Tests whether the absolute distance between two intersection sizes would be expected by chance, i.e. whether they fall into opposite tails of their respective Hypergeometric Intersection distributions.

Usage
```r
hint.dist.test(d, n1, A1, n2, A2, q1 = 0, q2 = 0, alternative = "greater")
```

Arguments
- **d**: A positive integer specifying the observed distance to be tested.
- **n1**: An integer specifying the number of categories in the urns for the first distribution.
- **A1**: An integer vector specifying the number of balls drawn from urns for the first distribution.
- **n2**: An integer specifying the number of categories in the urns for the second distribution.
A2 An integer vector specifying the number of balls drawn from the urns for the second distribution.

q1 An integer specifying the number of categories with duplicates in the second urn of the first distribution. If 0 then the symmetric, singleton case is computed, otherwise the asymmetric, duplicates case is computed (see Hyperintersection).

q2 An integer specifying the number of categories with duplicates in the second urn of the second distribution. If 0 then the symmetric, singleton case is computed, otherwise the asymmetric, duplicates case is computed (see Hyperintersection).

alternative A character string specifying the hypothesis to be tested. Can be one of "greater", "less", or "two.sided".

Details

The distribution of absolute distances between two hypergeometric intersection sizes is given by

\[P(X = d) = \sum_{\{v_1, v_2\} \in D_d} P(v_1 | n_1, a_1, b_1, ...) \cdot P(v_2 | n_2, a_2, b_2, ...) \]

where \(D_d \) is the set of pairs of intersection sizes, \(\{v_1, v_2\} \), with absolute differences of size \(d \).

Value

An object of class \texttt{hintNtest}, which is a list containing the following components:

- \texttt{parameters} An integer vector giving the parameter values.
- \texttt{p.value} A numerical value giving the p-value associated with the test.
- \texttt{alternative} A character string naming the hypothesis that was tested.

Author(s)

Alex T. Kalinka <alex.t.kalinka@gmail.com>

References

See Also

\texttt{phint}, \texttt{hintNtest}, \texttt{plotDistr}, \texttt{plotNhintNtest}.

Examples

\texttt{hintNdistNtest(4, 20, c(11, 9), 24, c(14, 17), alternative = "greater")}
hint.test
A Hypergeometric Intersection Test

Description

Apply the hypergeometric intersection test to categorical data to test for enrichment or depletion of intersections between two samples.

Usage

```r
hint.test(cats, draw1, draw2, alternative = "greater")
```

Arguments

- **cats**: A data frame or matrix with 3 columns; the first gives the category identifier, and the second and third give the number of balls belonging to this category in the first and second urns respectively.
- **draw1**: A vector of objects corresponding to the categories given in `cats` drawn from the first urn.
- **draw2**: A vector of objects corresponding to the categories given in `cats` drawn from the second urn.
- **alternative**: A character string specifying the hypothesis to be tested. Can be one of "greater", "less", or "two.sided".

Details

The hypergeometric intersection distributions describe the distribution of intersection sizes when sampling without replacement from two separate urns in which reside balls belonging to the same n object categories (see `hyperintersection`).

Value

An object of class `hint.test`, which is a list containing the following components:

- **parameters**: An integer vector giving the parameter values.
- **p.value**: A numerical value giving the p-value associated with the test.
- **alternative**: A character string naming the hypothesis that was tested.

Author(s)

Alex T. Kalinka <alex.t.kalinka@gmail.com>

References

Hyperdistinct

See Also

phint, hint.dist.test, plotDistr, plot.hint.test.

Examples

build data input:
```
## Build data input:
dd <- data.frame(letters[1:20], rep(1,20), rep(1,20))
hint.test(dd, letters[1:9], letters[4:14], alternative = "greater")
```
```
## Build data input:
dd <- data.frame(letters[1:20], rep(1,20), c(rep(1,4),rep(2,16)))
hint.test(dd, letters[1:9], letters[4:14], alternative = "less")
```

Hyperdistinct

Drawing Distinct Categories from a Single Urn

Description

Density, distribution function, quantile function and random generation for the distribution of distinct categories drawn from a single urn in which there are duplicates in q of the categories.

Usage

```
dhydist(n, a, q, range = NULL, log = FALSE)
phydist(n, a, q, vals, upper.tail = TRUE, log.p = FALSE)
qhydist(p, n, a, q, upper.tail = TRUE, log.p = FALSE)
rhydist(num = 5, n, a, q)
```

Arguments

- `n`: An integer specifying the number of categories in the urn.
- `a`: An integer specifying the number of balls drawn from the urn.
- `q`: An integer specifying the number of categories in the urn which have duplicate members.
- `p`: A probability between 0 and 1.
- `num`: An integer specifying the number of random numbers to generate. Defaults to 5.
- `range`, `vals`: A vector of integers specifying the intersection sizes for which probabilities (dhydist) or cumulative probabilities (phydist) should be computed (can be a single number). If `range` is NULL (default) then probabilities will be returned over the entire range of possible values.
- `log`, `log.p`: Logical. If TRUE, probabilities p are given as log(p). Defaults to FALSE.
- `upper.tail`: Logical. If TRUE, probabilities are P(X >= c), else P(X <= c). Defaults to TRUE.
Details

The distribution of the number of distinct categories drawn when sampling without replacement from a single urn containing duplicates in \(q \) of its \(n \) categories is given by

\[
P(X = c) = \binom{n}{a} \sum_{j=0}^{q} \binom{q-a+c}{j} \binom{n-a+c-j}{2c-a-j} / \binom{n+q}{a}
\]

When all of the \(n \) categories contain duplicates, this can be expressed in a closed form:

\[
P(X = c) = \binom{n}{c} \binom{c}{a-c} 2^{2c-a} / \binom{2n}{a}
\]

Value

dhydist, phydist, and qhydist return a data frame with two columns: \(c \), the number of distinct categories drawn, and \(p \), the associated \(p \)-values. rhydist returns an integer vector of random samples based on the distribution of distinct categories when sampling from a single urn containing \(q \) duplicates in \(n \) categories.

Author(s)

Alex T. Kalinka <alex.t.kalinka@gmail.com>

References

See Also

Hyperintersection, plotDistr.

Examples

```r
## Generate the distribution of distinct categories drawn from a single urn.
dd <- dhydist(20, 10, 12)
## Restrict the range of intersections.
dd <- dhydist(20, 10, 12, range = 5:10)
## Generate cumulative probabilities.
pp <- phydist(29, 15, 8, vals = 5)
pp <- phydist(29, 15, 8, vals = 2, upper.tail = FALSE)
## Extract quantiles:
qq <- qhydist(0.15, 23, 12, 10)
## Generate random samples based on this distribution.
rr <- rhydist(num = 10, 18, 9, 12)
```
Hyperintersection

The Hypergeometric Intersection Family of Distributions

Description

Density, distribution function, quantile function and random generation for the hypergeometric intersection distribution.

Usage

- `dhint(n, A, q = 0, range = NULL, approx = FALSE, log = FALSE, verbose = TRUE)`
- `phint(n, A, q = 0, vals, upper.tail = TRUE, log.p = FALSE)`
- `qhint(p, n, A, q = 0, upper.tail = TRUE, log.p = FALSE)`
- `rhint(num = 5, n, A, q = 0)`

Arguments

- `n`: An integer specifying the number of categories in the urns.
- `A`: A vector of integers specifying the numbers of balls drawn from each urn. The length of the vector equals the number of urns.
- `q`: An integer specifying the number of categories in the second urn which have duplicate members. If `q` is 0 (default) then the symmetrical, singleton case is computed, otherwise the asymmetrical, duplicates case is computed (see Details).
- `p`: A probability between 0 and 1.
- `num`: An integer specifying the number of random numbers to generate. Defaults to 5.
- `range, vals`: A vector of integers specifying the intersection sizes for which probabilities (`dhint`) or cumulative probabilities (`phint`) should be computed (can be a single number). If `range` is NULL (default) then probabilities will be returned over the entire range of possible values.
- `approx`: Logical. If TRUE, a binomial approximation will be used to generate the distribution.
- `log, log.p`: Logical. If TRUE, probabilities p are given as log(p). Defaults to FALSE.
- `verbose`: Logical. If TRUE, progress of calculation in the asymmetric, duplicates case is printed to the screen.
- `upper.tail`: Logical. If TRUE, probabilities are `P(X >= v)`, else `P(X <= v)`. Defaults to TRUE.

Details

The hypergeometric intersection distributions describe the distribution of intersection sizes when sampling without replacement from two separate urns in which reside balls belonging to the same
n object categories. In the simplest case when there is exactly one ball in each category in each urn (symmetrical, singleton case), then the distribution is hypergeometric:

\[P(X = v) = \frac{\binom{a}{v} \binom{n-a}{b-v}}{\binom{n}{b}} \]

When there are three urns, the distribution is given by

\[P(X = v) = \frac{\binom{a}{v} \sum_i \binom{a-v}{i} \binom{n-a}{b-v-i} \binom{n-v-i}{c-v}}{\binom{n}{b} \binom{n}{c}} \]

If, however, we allow duplicates in \(q \leq n \) of the categories in the second urn, then the distribution of intersection sizes is described by the following variant of the hypergeometric:

\[P(X = v) = \sum_{m=0}^{\alpha} \sum_{l=0}^{\beta} \sum_{i=0}^{l} \binom{n-q}{v-l} \binom{q-l}{m} \binom{n-v-q+l}{a-v-m} \binom{l}{j} \binom{n+q-a-m-j}{b-v} \binom{n}{a} \binom{n+q}{b} \]

Value

dhint, phint, and qhint return a data frame with two columns: v, the intersection size, and p, the associated p-values. rhint returns an integer vector of random samples based on the hypergeometric intersection distribution.

Author(s)

Alex T. Kalinka <alex.t.kalinka@gmail.com>

References

See Also

BinomialIntersection, hint.test, hint.dist.test, plotDistr, Hyperdistinct.

Examples

```r
## generate the distribution of intersections sizes without duplicates:
dd <- dhint(c(20, 12))
## Restrict the range of intersections.
dd <- dhint(c(20, 12), range = c(0, 5))
## Allow duplicates in q of the categories in the second urn:
dd <- dhint(c(35, 15, 22), verbose = FALSE)
## Generate cumulative probabilities.
pp <- phint(c(29, 15), vals = 5)
pp <- phint(c(29, 15), vals = 2, upper.tail = FALSE)
## Extract quantiles:
qq <- qhint(c(0.15, 23, c(12, 10)))
qq <- qhint(c(0.15, 23, c(12, 10)), 18)
```
Generate random samples from Hypergeometric intersection distributions.

```r
rr <- rhint(num = 10, 18, c(9, 14))
rr <- rhint(num = 10, 22, c(11, 17), 12)
```

overlay.sim

Overlay Simulation Results on Distribution

Description

This function adds simulated data to a distribution plot.

Usage

```r
overlay.sim(sim, breaks, col = "red", pch = 1, lwd = 1)
```

Arguments

- `breaks`: A vector of integers specifying the x-axis range for which simulated data values should be plotted.
- `col`: A character string naming the colour of the data points. Defaults to "red".
- `pch`: A number specifying the point type. Defaults to 1.
- `lwd`: A number specifying the line width. Defaults to 1.

Value

Simulated data will be added to an existing plot.

Author(s)

Alex T. Kalinka <alex.t.kalinka@gmail.com>

References

See Also

`sim.hypint`, `sim.hydist`.
Examples

```r
## generate exact distribution and plot:
dd <- dhint(108, c(54,76,89))
plot(dd[,1], dd[,2], col="blue")
## simulate drawing from 3 urns (sims should be larger).
nn <- sim.hydist(108, c(54,76,89), sims = 10)
## add data to existing distribution plot:
overlay.sim(nn, breaks = 0:54)
```

Description

This function visualises the results of a Hypergeometric Intersection test.

Usage

```r
## S3 method for class 'hint.test'
plot(x, ...)  
```

Arguments

- `x` An object of class `hint.test`.
- `...` Additional arguments to be passed to `plot`.

Details

Plots the relevant Hypergeometric Intersection distribution as a segment plot, and highlights the region where the observed statistic falls, i.e. the region from which the probability is computed (two.sided tests are visualised in one tail, the one with the smallest density). This can be especially useful for pedagogical purposes.

Value

Plots to the current device.

Author(s)

Alex T. Kalinka <alex.t.kalinka@gmail.com>

See Also

`plot.dist, hint.test, hint.dist.test dhint`
Examples

```r
## Build hint.test object:
dd <- data.frame(letters[1:20], rep(1,10), rep(1,10))
tt <- hint.test(dd, letters[1:9], letters[7:15], alternative = "greater")

## Plot the distribution with the test region highlighted in red.
plot(tt, col = "blue")
```

plotDistr
Plot a Distribution

Description

Plot a distribution or visualise the result of a hypothesis test.

Usage

```r
plotDistr(distr, col = "black", test.col = "red", xlim = NULL, ylim = NULL,
          xlab = "Intersection size (v)", ylab = "Probability", add = FALSE, ...)
```

Arguments

- **distr**: A data frame or matrix in which the first column gives random variable values, and the second gives probabilities. Can also be a vector (in which case random variables of 0:length(distr) will be automatically assigned, or an object of class hint.test.
- **col**: A character string naming the colour to use for the distribution. Defaults to "black".
- **test.col**: A character string naming the colour to use for the region in which the cumulative probability of the hypothesis test was derived (if it exists). Defaults to "red".
- **xlim**: A vector of two numbers giving the range for the x-axis. If NULL (default), then this is determined by the maximum and minimum values in distr.
- **ylim**: A vector of two numbers giving the range for the y-axis. If NULL (default), then this is determined by the maximum and minimum values in distr.
- **xlab**: A character string giving a label for the x-axis. Defaults to "Intersection size (v)".
- **ylab**: A character string giving a label for the y-axis. Defaults to "Probability".
- **add**: Logical. Whether the plot will be added to an existing plot or not. Defaults to FALSE.
- **...**: Additional arguments to be passed to plot.

Details

Visualising the results of a hypothesis test may often be of interest, but can be especially useful for pedagogical purposes.
print.hint.test

Value

Plots to the current device.

Author(s)

Alex T. Kalinka <alex.t.kalinka@gmail.com>

See Also

plot.hint.test, hint.test, hint.dist.test.

Examples

dd <- dhintHRUL cH1RL 9II
plotDistr(dd)

print.hint.test

Print a Summary of a hint.test Object

Description

Prints a summary of a hint.test object to the screen.

Usage

S3 method for class 'hint.test'
print(x, ...)

Arguments

x An object of class hint.test.
... Additional arguments to be passed to print.

Value

Prints summary output to the screen.

Author(s)

Alex T. Kalinka <alex.t.kalinka@gmail.com>

See Also

hint.test, hint.dist.test.
Examples

```r
## Build test object.
dd <- data.frame(letters[1:20], rep(1,10), rep(1,10))
tt <- hint.test(dd, letters[1:9], letters[7:15], alternative = "greater")

## Print summary:
print(tt)
```

sim.hydist
Simulating the Drawing of Distinct Categories

Description

This function simulates the drawing of balls from a single urn containing q duplicates in n categories to generate distributions of the number of distinct categories drawn.

Usage

```r
sim.hydist(n, a, sims = 10000, Na = rep(2, n))
```

Arguments

- `n`: An integer specifying the number of categories in the urn.
- `a`: An integer specifying the number of balls drawn from the urn.
- `sims`: An integer specifying the number of replicate draws for the simulation. Defaults to 10,000.
- `Na`: A vector of integers specifying the number of balls in each category of the urn.

Details

The simulation allows any number of balls in each of the n categories via the Na argument.

Value

An integer vector of length sims giving the numbers of distinct categories for all replicates of the simulation.

Author(s)

Alex T. Kalinka <alex.t.kalinka@gmail.com>

References

See Also

Hyperdistinct.

Examples

```r
## All n categories contain duplicates:
nn <- sim.Nhypint(108, 74, sims = 10)
## Duplicates in 78 of the categories:
nn <- sim.Nhypint(108, 74, sims = 10, Na = c(rep(1,(108-78)),rep(2,78)))
```

Description

This function simulates the drawing of balls from two urns to generate distributions of intersection sizes.

Usage

`sim.hypint(n, A, sims = 10000, Na = NULL)`

Arguments

- `n`: An integer specifying the number of categories in the urns.
- `A`: A vector of integers specifying the samples to be taken from each urn. The length of the vector equals the number of urns.
- `sims`: An integer specifying the number of replicate draws for the simulation. Defaults to 10,000.
- `Na`: A list of integer vectors specifying the number of balls in each category for each urn.

Details

The simulation allows any number of balls in each of the `n` categories via the `Na` argument.

Value

An integer vector of length `sims` giving intersection sizes for all replicates of the simulation.

Author(s)

Alex T. Kalinka <alex.t.kalinka@gmail.com>

References

See Also

Hyperintersection, hint.test.

Examples

nn <- sim.hypint(108, c(54, 73), sims = 10)
Index

*Topic distribution
 Binomialintersection, 4
 hint-package, 2
 hint.dist.test, 5
 hint.test, 7
 Hyperdistinct, 8
 Hyperintersection, 10
 plot.hint.test, 13
 plotDistr, 14
*Topic htest
 hint-package, 2
 hint.dist.test, 5
 hint.test, 7
 plot.hint.test, 13
 plotDistr, 14
*Topic package
 hint-package, 2
*Topic univar
 Binomialintersection, 4
 hint-package, 2
 Hyperdistinct, 8
 Hyperintersection, 10

add.distr, 3

Binomialintersection, 2, 4, 11

dbint (Binomialintersection), 4
dhint, 13
dhint (Hyperintersection), 10
dhydist (Hyperdistinct), 8

hint (hint-package), 2
hint-package, 2
hint.dist.test, 5, 5, 8, 11, 13, 15
hint.test, 2, 5, 6, 7, 11, 13, 15, 18
Hyperdistinct, 2, 5, 8, 11, 17
Hyperintersection, 2, 5–7, 9, 10, 18

overlay.sim, 12

pbinf (Binomialintersection), 4
phint, 6, 8
phint (Hyperintersection), 10
phydist (Hyperdistinct), 8
plot.hint.test, 3, 6, 8, 13, 15
plotDistr, 3, 5, 6, 8, 9, 11, 13, 14
print.hint.test, 15

qbinf (Binomialintersection), 4
qhint (Hyperintersection), 10
qhydist (Hyperdistinct), 8

rbint (Binomialintersection), 4
rhint (Hyperintersection), 10
rhydist (Hyperdistinct), 8

sim.hydist, 12, 16
sim.hypint, 12, 17