Package ‘hmma’

April 8, 2020

Type Package

Title Constructs Asymmetric Hidden Markov Models

Version 1.0.0

Description Asymmetric hidden Markov model (HMM-A) learning. HMM-As are similar to regular HMMs, but use Bayesian Networks (BNs) in their emission distribution. The HMM-As can therefore offer more problem insight [Bueno et al. 2017, <doi:10.1016/j.ijar.2017.05.011>].

License GPL-3

Encoding UTF-8

LazyData true

Depends R (>= 3.6.0)

VignetteBuilder knitr

Suggests knitr, testthat, rmarkdown

Imports bnlearn, mhsmm, MCMCpack, Rgraphviz, graph, methods

RoxygenNote 7.1.0

NeedsCompilation yes

Author Marcos L.P Bueno [aut], Arjen Hommersom [aut, cre], Joop Thibaudier [aut], Marco Scutari [ctb], Robert Ness [ctb], Robert Gentleman and Ross Ihaka [cph], The R Development Core Team [cph], The R Foundation [cph]

Maintainer Arjen Hommersom <arjen.hommersom@ou.nl>

Repository CRAN

Date/Publication 2020-04-08 16:00:02 UTC
R topics documented:

createHmma 2
hmma 3
hmmaExampleData 4
learnModel 4
predict.hmma 5
simulate.hmma 6
visualise 7

Index 8

createHmma

Create an asymmetric hidden Markov model.

Description

The createHmma method creates a HMM-A from the specifications provided. The amount of states are implicitly derived from the initial distribution. Bayesian networks can be created using the bnlearn package.

Usage

createHmma(init, trans, bns)

Arguments

init This initial distribution as a vector.
trans The transition distribution as a matrix.
bns The Bayesian networks for the states.

See Also

bnlearn for more information regarding the creation of Bayesian networks

Examples

Start by creating the initial and transition distribution
init <- c(0.3, 0.7)
trans <- c(0.4, 0.7, 0.6, 0.3)
dim(trans) <- c(2,2)

Create a Baysian network for each state using 'bnlearn'
library(bnlearn)
struc <- model2network("[X1][X2]")
cptX1 <- matrix(c(0.15, 0.85), ncol = 2, dimnames = list(NULL, c("TRUE", "FALSE")))
cptX2 <- matrix(c(0.7, 0.3), ncol = 2, dimnames = list(NULL, c("TRUE", "FALSE")))
bn1 <- custom.fit(struc, dist = list(X1 = cptX1,
X2 = cptX2))

struc <- model2network("[X2|X1][X1]")
cptX1 <- matrix(c(0.4, 0.6), ncol = 2, dimnames = list(NULL, c("TRUE", "FALSE")))
cptX2 <- matrix(c(0.9, 0.1, 0.5, 0.5), nrow = 2, ncol = 2)
dimnames(cptX2) <- list("X2" = c("TRUE", "FALSE"),
 "X1" = c("TRUE", "FALSE"))

bn2 <- custom.fit(struc, dist = list(X1 = cptX1, X2 = cptX2))

bns <- list()
bns[[1]] <- bn1
bns[[2]] <- bn2

Create the model
hmma <- createHmma(init = init, trans = trans, bns = bns)

hmma

hmma: A package for the construction of asymmetric hidden Markov models

Description

The hmma package is able to construct asymmetric hidden Markov models (HMM-As) from data. HMM-As are similar to regular HMMs, but use Bayesian Networks (BNs) in their emission distribution.

Details

HMMs have successfully been used in “speech recognition systems, in numerous applications in computational molecular biology, in data compression, and in other areas of artificial intelligence and pattern recognition”.

When limited data is available, HMMs may be unable to correctly capture these distributions. Bueno et al. show that HMMs can be enriched by employing state-specific Bayesian networks (BNs), i.e. BNs that may be different from state to state. This enables the model to better capture certain dependencies, depending on the state. The resulting models are called asymmetric hidden Markov models (HMM-As). (see: http://dx.doi.org/10.1016/j.ijar.2017.05.011 for more information)
hmmaExampleData
An example dataset for use on HMM-As

Description

This dataset has been generated using a HMM-A with two different Bayesian networks. The observations consist of 100 sequences of length 20.

Usage

hmmaExampleData

Format

A list with the following items

- `x` All observations.
- `N` The length of the observation sequence.

Details

The sum of all observation lengths (hmmaExampleData$N) must be equal to the total number of observations (hmmExampleData$x).

learnModel
Learn a HMM-A from data

Description

The `learnModel` function, learns a HMM-A from the supplied data file. The function first creates a random model: the initial and transition distributions are initialized using a Dirichlet https://en.wikipedia.org/wiki/Dirichlet_distribution distribution. Thereafter the model is maximised for the datafile that is supplied.

Usage

```
learnModel(
  data,
  amountOfStates = 2,
  maxit = 50,
  seed,
  iss = 1e-04,
  debug = FALSE
)
```
predict.hmma

Arguments

- **data**: The datafile. The datafile should be a list containing a dataframe with the data as its x component and contain the lengths of the observations at the N component (see details).
- **amountOfStates**: The amount of states.
- **maxit**: The maximum amount of iterations.
- **seed**: Seed (optional).
- **iss**: The Imaginary Sample Size (iss), also called priors, to add data.
- **debug**: Debugmode.

Details

The `learnModel` makes use of the `mhsmm` `hmmfit` function. An example of the structure of the datafile can be found in `hmmaExampleData`.

Value

The output of the function is an asymmetric hidden Markov model. This model contains the amount of states, the initial distribution, the transition distribution and the emission distribution (Bayesian networks in the different states).

The model can quickly be visualised with the `visualise` method. The `visualise` method does not show the Bayesian networks within the states as this would result in unreadable graphs. Instead, the `bnlearn` `graphviz.plot` method can be used (see the examples below).

Examples

```r
fit <- learnModel(data = hmmaExampleData, amountOfStates = 3, seed = 1234)
visualise(fit)

# See bn in first state
library(bnlearn)
graphviz.plot(fit$parms.emission[[1]])
```

predict.hmma

Predict sequence of data on HMMA

Description

`predict.hmma` is simply a wrapper function for the `mhsmm` `predict.hmmspec` function. It generates the predicted state sequence for data, given the model.

Usage

```r
## S3 method for class 'hmma'
predict(object, data, method = "viterbi", ...)
```
Arguments

- **object**: The HMMA
- **data**: The data file
- **method**: The prediction method (viterbi or smoothed, see details)
- **...**: Further arguments.

Details

From the mhsmm documentation: If method="viterbi", this technique applies the Viterbi algorithm for HMMs, producing the most likely sequence of states given the observed data. If method="smoothed", then the individually most likely (or smoothed) state sequence is produced, along with a matrix with the respective probabilities for each state. This function differs from predict.hmm in that it takes the output from hmmspec i.e. this is useful when users already know their parameters and wish to make predictions.

Value

The return object contains the data, a vector ‘s’ with the reconstructed state sequence, the vector N with the lengths of the sequences, a matrix p with the probabilities of the states (only with smoothed). For more details see `predict.hmmspec`.

The loglikelihood is returned as the $loglik$ component.

See Also

`predict.hmmspec` for more information.

simulate.hmma

Simulates a HMM-A.

Description

`simulate.hmma` simulates a HMM-A. The only difference between `simulate.hmma` and `simulate.hmmspec` is that this function adds the names of the nodes of the Bayesian networks to the results. The `simulate.hmmspec` function only uses numbers, instead of names.

Usage

```r
## S3 method for class 'hmma'
simulate(object, nsim, seed = NULL, ...)
```

Arguments

- **object**: A hmma object
- **nsim**: An integer or vector of integers (for multiple sequences) specifying the length of the sequence(s)
- **seed**: seed for the random number generator
- **...**: Further arguments passed to or from other methods.
Value

A simulation with the following values

- s The states of the model.
- x The observations.
- n The length of the observation.

Examples

Get a HMM-A (e.g. from learnModel or createHmma)
model <- learnModel(data = hmmaExampleData, amountOfStates = 2, seed = 1234)

Simulate the data, results in 100 observation sequences of length 20.
data <- simulate(model, nsim = c(rep(20, 100)))

visualise

Visualise the HMM-A

Description

The function `visualise` shows a graphical representation of the found HMM-A. Only the initial distribution and transition distribution are shown. Each state contains a Bayesian network, these would be unreadable when displayed within each state. The `bnlearn graphviz.plot` method is used to display the bayesian networks.

Usage

`visualise(model, numDigitsRound = 2)`

Arguments

- `model` The model.
- `numDigitsRound` The amount of decimals that should be presented in the graph.

Examples

First, we need a model that we want to visualise, we create
one using the learnModel function.
fit <- learnModel(data = hmmaExampleData, amountOfStates = 3)

To visualise the states and transitions, we use the visualise method
visualise(fit)

To visualise the BNs within the states, use the code below
library(bnlearn)
graphviz.plot(fit$parms.emission[[1]])
Index

*Topic datasets
 hmmaExampleData, 4

bnlearn, 2
createHmma, 2
graphviz.plot, 5, 7

hmma, 3
hmmaExampleData, 4, 5
hmmfit, 5
learnModel, 4
predict.hmma, 5
predict.hmmspec, 5, 6
simulate.hmma, 6
visualise, 5, 7