Package ‘hopit’

October 13, 2022

Type Package

Title Hierarchical Ordered Probit Models with Application to Reporting Heterogeneity

Version 0.11.5

Depends R (>= 3.5.0), survey (>= 4.1-1)

Imports MASS, Rcpp, graphics, stats, gridDevices, questionr, parallel, Rdpack (>= 0.11.0)

LinkingTo Rcpp, RcppEigen

Description Self-reported health, happiness, attitudes, and other statuses or perceptions are often the subject of biases that may come from different sources. For example, the evaluation of an individual’s own health may depend on previous medical diagnoses, functional status, and symptoms and signs of illness; as well as lifestyle behaviors, including contextual social, gender, age-specific, linguistic and other cultural factors (Jylha 2009 <doi:10.1016/j.socscimed.2009.05.013>; Ok-suzyan et al. 2019 <doi:10.1016/j.socscimed.2019.03.002>). The hopit package offers versatile functions for analyzing different self-reported ordinal variables, and for helping to estimate their biases. Specifically, the package provides the function to fit a generalized ordered probit model that regresses original self-reported status measures on two sets of independent variables (King et al. 2004 <doi:10.1017/S0003055403000881>; Juerges 2007 <doi:10.1002/hec.1134>; Ok-suzyan et al. 2019 <doi:10.1016/j.socscimed.2019.03.002>). The first set of variables (e.g., health variables) included in the regression are individual statuses and characteristics that are directly related to the self-reported variable. In the case of self-reported health, these could be chronic conditions, mobility level, difficulties with daily activities, performance on grip strength tests, anthropometric measures, and lifestyle behaviors. The second set of independent variables (threshold variables) is used to model cut-points between adjacent self-reported response categories as functions of individual characteristics, such as gender, age group, education, and country (Ok-suzyan et al. 2019 <doi:10.1016/j.socscimed.2019.03.002>). The model helps to adjust for specific socio-demographic and cultural differences in how the continuous latent health is projected onto the ordinal self-rated measure. The fitted model can be used to calculate an individual predicted latent status variable, a latent index, and standardized latent coefficients; and makes it possible to reclassify a categorical status measure that has been adjusted for inter-individual differences in reporting behavior.
anova.hopit

Likelihood Ratio Test Tables

Description

Perform the likelihood ratio test(s) for two or more hopit objects.

Usage

```r
# S3 method for class 'hopit'
anova(object, ..., method = c("sequential",
"with.most.complex", 'with.least.complex'),
direction = c("decreasing", "increasing")
```

Index

anova.hopit .. 2
boot_hopit .. 4
cutPoints ... 7
groupLevels .. 9
healthsurvey .. 11
hopit ... 13
hopit.control ... 21
latentIndex ... 22
percentile_CI .. 24
standardizeCoef ... 25
svy.varcoef_hopit ... 26
anova.hopit

Arguments

- object: an object containing the results returned by a hopit.
- ...: an additional object(s) of the same type.
- method: the method of ordered model comparisons. Choose "sequential" for 1-2, 2-3, 3-4, ... comparisons or "with.most.complex" for 1-2, 1-3, 1-4, ... comparisons, where 1 is the most complex model (the least complex for "with.least.complex").
- direction: determine if the complexity of listed models is "increasing" or "decreasing" (default).

Value

a vector or a matrix with the results of the test(s).

Author(s)

Maciej J. Danko

See Also

print.lrt.hopit, lrt.hopit, hopit.

Examples

```
# DATA
data(healthsurvey)

# the order of response levels decreases from the best health to
# the worst health; hence the hopit() parameter decreasing.levels
# is set to TRUE
levels(healthsurvey$health)

# Example 1 ---------------------
# fitting two nested models
model1 <- hopit(latent.formula = health ~ hypertension + high_cholesterol +
    heart_attack_or_stroke + poor_mobility + very_poor_grip +
    depression + respiratory_problems +
    IADL_problems + obese + diabetes + other_diseases,
    thresh.formula = ~ sex + ageclass + country,
    decreasing.levels = TRUE,
    control = list(trace = FALSE),
    data = healthsurvey)

# a model with an interaction between hypertension and high_cholesterol
model2 <- hopit(latent.formula = health ~ hypertension * high_cholesterol +
    heart_attack_or_stroke + poor_mobility + very_poor_grip +
    depression + respiratory_problems +
    IADL_problems + obese + diabetes + other_diseases,
    thresh.formula = ~ sex + ageclass + country,
    decreasing.levels = TRUE,
```

control = list(trace = FALSE),
 data = healthsurvey)

a likelihood ratio test
lrt1 <- anova(model1, model2)
lrt1

print results in a shorter form
print(lrt1, short = TRUE)

or equivalently
lrt.hopit(model2, model1)

Example 2 ---------------------

fitting additional nested models
model3 <- hopit(latent.formula = health ~ hypertension * high_cholesterol +
 heart_attack_or_stroke + poor_mobility + very_poor_grip +
 depression + respiratory_problems +
 IADL_problems + obese * diabetes + other_diseases,
 thresh.formula = ~ sex + ageclass + country,
 decreasing.levels = TRUE,
 control = list(trace = FALSE),
 data = healthsurvey)

model4 <- hopit(latent.formula = health ~ hypertension * high_cholesterol +
 heart_attack_or_stroke + poor_mobility + very_poor_grip +
 depression + respiratory_problems +
 IADL_problems + obese * diabetes + other_diseases,
 thresh.formula = ~ sex * ageclass + country,
 decreasing.levels = TRUE,
 control = list(trace = FALSE),
 data = healthsurvey)

sequential likelihood ratio tests
model complexity increases so direction = "increasing"
anova(model1, model2, model3, model4,
 direction = "increasing", method = "sequential")

likelihood ratio tests of the most complex model with the rest of the models
anova(model1, model2, model3, model4,
 direction = "increasing", method = "with.most.complex")

likelihood ratio tests of the least complex model with the rest of the models
anova(model1, model2, model3, model4,
 direction = "increasing", method = "with.least.complex")

boot_hopit

Bootstrapping hopit model
Description

`boot_hopit` performs the bootstrap of a function dependent on a fitted model. In each of the bootstrap repetitions, a set of new model coefficients is drawn from the multivariate normal distribution, assuming the originally estimated model coefficients (see `coef_hopit`) as a mean and using the model variance-covariance matrix (see `vcov.hopit`). The drawn coefficients are then used to calculate the measure of interest using a function delivered by the `func` parameter.

Usage

```r
boot_hopit(
  model,
  func,
  data = model$frame,
  nboot = 500,
  unlist = TRUE,
  boot.only.latent = TRUE,
  parallel.flag = FALSE,
  parallel.nb_cores = NULL,
  parallel.packages = NULL,
  parallel.variables = NULL,
  robust.vcov,
  ...
)
```

Arguments

- `model` a fitted hopit model.
- `func` a function to be bootstrapped of the form `func(model, ...)`.
- `data` data used to fit the model.
- `nboot` a number of bootstrap replicates.
- `unlist` a logical indicating whether to unlist the boot object.
- `boot.only.latent` a logical indicating whether to perform the bootstrap on latent variables only.
- `parallel.flag` a logical if to use parallel computations.
- `parallel.nb_cores` number of cores (<= number of CPU cores on the current host).
- `parallel.packages` list of packages needed to run "func".
- `parallel.variables` list of global variables and functions needed to run "func".
- `robust.vcov` see `vcov.hopit`.
- `...` other parameters passed to the `func`.

Value

a list with bootstrapped elements.
Author(s)
Maciej J. Danko

See Also
percentile_CI, getLevels, getCutPoints, latentIndex, standardiseCoef, hopit.

Examples

DATA
data(healthsurvey)

the order of response levels decreases from the best health to
the worst health; hence the hopit() parameter decreasing.levels
is set to TRUE
levels(healthsurvey$health)

fit a model
model1 <- hopit(latent.formula = health ~ hypertension + high_cholesterol +
 heart_attack_or_stroke + poor_mobility + very_poor_grip +
 depression + respiratory_problems +
 IADL_problems + obese + diabetes + other_diseases,
 thresh.formula = ~ sex + ageclass + country,
 decreasing.levels = TRUE,
 control = list(trace = FALSE),
 data = healthsurvey)

Example 1 ---------------------
bootstrapping cut-points

cutpoints <- function(model) getCutPoints(model)$cutpoints
B <- boot_hopit(model = model1, func = cutpoints, nboot = 100)

cutpoints.CI <- percentile_CI(B)

Example 2 ---------------------
bootstrapping differences in health levels

diff_BadHealth <- function(model) {
 hl <- getLevels(model = model, formula=~ sex + ageclass, sep=' ')
 hl$original[,1] + hl$original[,2] - hl$adjusted[,1]- hl$adjusted[,2]
}

cutpoints(model1)
cutpoints.CI
diff_BadHealth(model1)
est.org <- diff_BadHealth(model = model1)

perform the bootstrap
B <- boot_hopit(model = model1, func = diff_BadHealth, nboot = 100)

calculate lower and upper bounds using the percentile method
est.CI <- percentile_CI(B)

plot the difference and its (asymmetrical) confidence intervals
pmar <- par('mar'); par(mar = c(9.5, pmar[2:4]))
m <- max(abs(est.CI))
pos <- barplot(est.org, names.arg = names(est.org), las = 3,
ylab = 'Original - Adjusted',
ylim=c(-m, m), angle = c(45, -45),
col = c('blue', 'orange'))
for (k in seq_along(pos)) lines(c(pos[k,1],pos[k,1]),
est.CI[,k], lwd = 2, col = 2)
abline(h = 0); box(); par(mar = pmar)

getCutPoints

getCutPoints
Calculate the threshold cut-points and individual adjusted responses using Jurges’ method

Description

Calculate the threshold cut-points and individual adjusted responses using Jurges’ method

Usage

`getCutPoints(model, decreasing.levels = model$decreasing.levels, subset = NULL)`

Arguments

- **model**: a fitted `hopit` model.
- **decreasing.levels**: a logical indicating whether self-reported health classes are ordered in increasing order.
- **subset**: an optional vector specifying a subset of observations.

Value

A list with the following components:

- **cutpoints**: cut-points for the adjusted categorical response levels with the corresponding percentiles of the latent index.
- **adjusted.levels**: adjusted categorical response levels for each individual.
getCutPoints

Author(s)
Maciej J. Danko

References

See Also
latentIndex, standardiseCoef, getLevels, hopit.

Examples

```r
# DATA
data(healthsurvey)

# the order of response levels decreases from the best health to
# the worst health; hence the hopit() parameter decreasing.levels
# is set to TRUE
levels(healthsurvey$health)

# Example 1 ---------------------
# fit a model
model1 <- hopit(latent.formula = health ~ hypertension + high_cholesterol +
                 heart_attack_or_stroke + poor_mobility + very_poor_grip +
                 depression + respiratory_problems +
                 IADL_problems + obese + diabetes + other_diseases,
                 thresh.formula = ~ sex + ageclass + country,
                 decreasing.levels = TRUE,
                 control = list(trace = FALSE),
                 data = healthsurvey)

# calculate the health index cut-points
z <- getCutPoints(model = model1)
z$cutpoints

plot(z)

# tabulate the adjusted health levels for individuals (Jurges method):
rev(table(z$adjusted.levels))

# tabulate the original health levels for individuals
table(model1$y_i)

# tabulate the predicted health levels
```
getLevels

Summarize the adjusted and the original self-rated response levels.

Usage

```r
getLevels(
  model,
  formula = model$thresh.formula,
  data = model$frame,
  sep = "_",
  decreasing.levels = model$decreasing.levels,
  sort.flag = FALSE,
  weight.original = TRUE
)
```

Arguments

- `model`: a fitted `hopit` model.
- `formula`: a formula containing the grouping variables. It is by default set to threshold formula.
- `data`: data used to fit the model.
- `sep`: a separator for the level names.
- `decreasing.levels`: a logical indicating whether self-reported health classes are ordered in increasing order.
- `sort.flag`: a logical indicating whether to sort the levels.
- `weight.original`: a logical indicating if use survey weights for calculation of original responses.

Value

A list with the following components:

- `original`: frequencies of original response levels for selected groups/categories.
- `adjusted`: frequencies of adjusted response levels (Jurges 2007 method) for selected groups/categories.
- `N.original`: the number of original response levels for selected groups/categories.
- `N.adjusted`: the number of adjusted response levels (Jurges 2007 method) for selected groups/categories.
- `categories`: selected groups/categories used in summary.
- `tab`: an original vs. an adjusted contingency table.
getLevels

mat a matrix with columns: grouping variables, original response levels, adjusted response levels. Each row corresponds to a single individual from the data used to fit the model.

Author(s)

Maciej J. Danko

References

See Also

getcutPoints, latentIndex, standardiseCoef, hopit.

Examples

DATA
data(healthsurvey)

the order of response levels decreases from the best health to the worst health; hence the hopit() parameter decreasing.levels is set to TRUE
levels(healthsurvey$health)

fit a model
model1 <- hopit(latent.formula = health ~ hypertension + high_cholesterol + heart_attack_or_stroke + poor_mobility + very_poor_grip + depression + respiratory_problems + IADL_problems + obese + diabetes + other_diseases, thresh.formula = ~ sex + ageclass + country, decreasing.levels = TRUE, control = list(trace = FALSE), data = healthsurvey)

Example 1 ---------------------
calculate a summary by country
hl <- getLevels(model=model1, formula=~ country, sep=' ')
plot(hl, las=1, mar = c(3,2,1.5,0.5))

differences between frequencies of original and adjusted health levels
round(100*(hl$original - hl$adjusted),2)

extract good and bad health levels (combined levels)
Org <- cbind(bad = rowSums(hl$original[,1:2]),
good = rowSums(hl$original[,4:5])
Adj <- cbind(bad = rowSums(hl$adjusted[,1:2]),
 good = rowSums(hl$adjusted[,4:5]))
round(100*(Org - Adj),2)

plot the differences
barplot(t(Org - Adj), beside = TRUE, density = 20, angle = c(-45, 45),
 col = c('pink4', 'green2'),
 ylab = 'Original - adjusted reported health frequencies')
abline(h = 0); box()
legend('top', c('Bad health', 'Good health'),
 density = 20, angle = c(-45, 45),
 fill = c('pink4', 'green2'), bty = 'n', cex = 1.2)

in country X, bad health seems to be over-reported while good health
is under-reported; in country Z, good health is highly over-reported.

Example 2 ---------------------
summary by gender and age
hl <- getLevels(model = model1, formula=~ sex + ageclass, sep='
')
plot(hl)

differences between frequencies of original and adjusted health levels
round(100*(hl$original - hl$adjusted),2)

extract good health levels (combined "Very good" and "Excellent" levels)
Org <- rowSums(hl$original[,4:5])
Adj <- rowSums(hl$adjusted[,4:5])
round(100*(Org - Adj),2)

pmar <- par('mar'); par(mar = c(9.5, pmar[2:4]))
barplot(Org-Adj,
 ylab = 'Original - adjusted reported good health frequencies',
 las = 3,
 density = 20, angle = c(45, -45), col = c('blue', 'orange'))
abline(h = 0); box(); par(mar = pmar)
legend('top', c('Man', 'Woman'), density = 20, angle = c(-45, 45),
 fill = c('blue', 'orange'), bty = 'n', cex = 1.2)

results show that women in general tend to over-report good health,
while men aged 50-59 greatly under-report good health.

more examples can be found in the description of the boot_hopit() function.

healthsurvey

Artificially generated health survey data

Description

A dataset containing artificially generated survey data
Usage

healthsurvey

Format

A data frame with 10000 rows and 11 variables:

ID personal identification number.
health reported health, 5 levels.
diabetes has diabetes? "yes" or "no".
obese is obese? "yes" or "no".
IADL_problems has problems with Instrumental Activities of Daily Living? "yes" or "no".
hypertension has hypertension? "yes" or "no".
high_cholesterol has high cholesterol? "yes" or "no".
respiratory_problems has respiratory problems? "yes" or "no".
heart_attack_or_stroke had a stroke or a heart attack? "yes" or "no".
poor_mobility has poor mobility? "yes" or "no".
very_poor_grip cannot perform grip strength test? "yes" or "no".
other_diseases has other diseases? "yes" or "no".
sex sex/gender: "woman" or "man".
ageclass categorized age: [50,60), [60,70), [70,80), [80,120).
education two levels of education: primary or lower ("prim-") and secondary or higher ("sec+").
country country: "X", "Y", or "Z".
csw cross-sectional survey weights.
psu primary statistical unit.

Source

healthsurvey is a completely artificial data set simulated using distributions of some major health
and socio-demographic characteristics. The distributions and the data structure are roughly based
on the WAVE1 SHARE database (DOIs: 10.6103/SHARE.w1.600); see (Borsch-Supan et al. 2013)
for technical details. None of the records represent any part of the true data.

The SHARE data collection has been primarily funded by the European Commission through FP5
(QLK6-CT-2001-00360), FP6 (SHARE-I3: RII-CT-2006-062193, COMPARE: CIT5-CT-2005-028857,
SHARELIFE: CIT4-CT-2006-028812) and FP7 (SHARE-PREP: N°211909, SHARE-LEAP: N°227822,
SHARE M4: N°261982). Additional funding from the German Ministry of Education and Re-
search, the Max Planck Society for the Advancement of Science, the U.S. National Institute on
Aging (U01_AG09740-13S2, P01_AG005842, P01_AG08291, P30_AG12815, R21_AG025169,
Y1-AG-4553-01, IAG_BSR06-11, OGHA_04-064, HHSN271201300071C) and from various na-
tional funding sources is gratefully acknowledged (see www.share-project.org).
References

Examples

```r
# load *healthsurvey* dataset
data(healthsurvey)

# horizontal view of the dataset (omitting ID)
print(t(healthsurvey[1:6,-1]), quote=FALSE, na.print='NA', right=TRUE)
```

Generalized hierarchical ordered threshold models.

Description

The ordered response data classify a measure of interest into ordered categories collected during a survey. For example, if the dependent variable is a happiness rating, a respondent typically answers a question such as: “Taking all things together, would you say you are ... ?” and then selects from response options along the lines of: “very happy”, “pretty happy”, “not too happy”, and “very unhappy” (Liao et al. 2005). Similarly, if interviewees are asked to evaluate their health in general (e.g., “Would you say your health is ... ?”) they, can typically choose among several categories, such as “very good”, “good”, “fair”, “bad”, and “very bad” (King et al. 2004; Jurges 2007; Rebelo and Pereira 2014; Oksuzyan et al. 2019). In political science, a respondent may be asked for an opinion about recent legislation (e.g. “Rate your feelings about the proposed legislation.”) and asked to choose among categories like: "strongly oppose", "mildly oppose", "indifferent", "mildly support", and "strongly support" (Greene and Hensher 2010). It is easy to imagine other multi-level ordinal variables that might be used during a survey and to which the methodology described below could be applied.

In practice, it is assumed that when responding to a survey question about their general happiness, health, feelings, attitudes or other status, participants are assessing their true value of this unobserved continuous variable, and project it onto the discrete scale provided. The thresholds that individuals use to categorize their true status by selecting a specific response option may be affected by the reference group chosen, their earlier life experiences, and cross-cultural differences in using scales. Thus, the responses of individuals may differ depending on their gender, age, cultural background, education, and personality traits; among other factors (King et al. 2004; Jurges 2007; Oksuzyan et al. 2019).

From the perspective of reporting behavior modeling, one of the main tasks researchers face is to compute this continuous estimate of the underlying, latent measures of individuals based on several specific characteristics of the responses considered (e.g., health variables or happiness variables), and to account for variations in reporting across socio-demographic and cultural groups. More specifically, to build a latent, underlying measure, a generalized hierarchical ordered threshold model is fitted that regresses the reported status/attitude/feeling on two sets of independent variables (Boes and Winkelmann 2006; Greene et al. 2014). When the dependent reported ordered
variable is self-rated health status, then the first set of variables -- i.e., health variables -- assess specific aspects of individuals' health, such as measures of chronic conditions, mobility, difficulties with a range of daily activities, grip strength, anthropometric characteristics, and lifestyle behaviors. Using the second set of independent variables (threshold variables), the model also adjusts for differences across socio-demographic and cultural groups, such as differences in cultural background, gender, age, and education (King et al. 2004; Jurges 2007; Oksuzyan et al. 2019).

Ordered threshold models are used to fit ordered categorical dependent variables. The generalized ordered threshold models (Ierza 1985; Boes and Winkelmann 2006; Greene et al. 2014) are an extension of the ordered threshold models (McKelvey and Zavoina 1975). Whereas in the latter models, the thresholds are constant, in the generalized models the thresholds are allowed to be dependent on covariates. Greene and Hensher (2010); Greene et al. (2014) pointed out that for a model to make sense, the thresholds must also be ordered. This observation motivated Greene and coauthors to call these models HOPIT, which stands for hierarchical ordered probit models.

The fitted hopit model is used to analyze heterogeneity in reporting behavior. See standardizeCoef, latentIndex, getCutPoints, getLevels, and boot_hopit.

Usage

hopit(
 latent.formula,
 thresh.formula = ~1,
 data,
 decreasing.levels,
 start = NULL,
 fit.sigma = FALSE,
 design = list(),
 weights = NULL,
 link = c("probit", "logit"),
 control = list(),
 na.action = na.fail
)

Arguments

latent.formula a formula used to model the latent variable. It should not contain any threshold variable. To specify the interactions between the latent and the threshold variables, see details.

thresh.formula a formula used to model the threshold variable. It should not contain any latent variable. To specify interactions between the latent and the threshold variables, see details. Any dependent variable (left side of "~" in the formula) will be ignored.

data a data frame that includes all modeled variables.

decreasing.levels a logical indicating whether self-reported health classes are ordered in decreasing order.
start a vector with starting coefficient values in the form c(latent_parameters, threshold_lambdas, threshold_gammas) or c(latent_parameters, threshold_lambdas, threshold_gammas, logSigma) if the fit.sigma == TRUE.

fit.sigma a logical indicating whether to fit an additional parameter sigma, which models a standard deviation of the error term (e.g., the standard deviation of the cumulative normal distribution in the probit model).

design an optional survey design. Use the svydesign function to specify the design. The design cannot be specified together with parameter weights.

weights optional model weights. Use design parameter to construct survey weights.

link a link function. The possible values are "probit" (default) and "logit".

control a list with control parameters. See hopit.control.

na.action a function that indicates what should happen when the data contain NAs. The default is na.fail, which generates an error if any missing value is found. The alternative is na.omit (or na.exclude equivalently), which removes rows with missing values from the data. Using na.pass will lead to an error.

Details

The function fits generalized hierarchical ordered threshold models.

latent.formula models the latent variable. If the response variable is self-rated health, then the latent measure can depend on different health conditions and diseases (latent variables are called health variables). Latent variables are modeled with the parallel regression assumption. According to this assumption, the coefficients that describe the relationship between the lowest response category and all of the higher response categories, are the same as the coefficients that describe the relationship between another (e.g., adjacent) lowest response category and the remaining higher response categories. The predicted latent variable is modeled as a linear function of the health variables and the corresponding coefficients.

thresh.formula models the threshold variable. The thresholds (cut-points, alpha) are modeled by the threshold variables gamma and the intercepts lambda. It is assumed that they model the contextual characteristics of the respondent (e.g., country, gender, and age). The threshold variables are modeled without the parallel regression assumption; thus, each threshold is modeled by a variable independently (Boes and Winkelmann 2006; Greene et al. 2014). The hopit() function uses the parameterization of thresholds proposed by Jurges (2007).

decreasing.levels it is the logical that determines the ordering of the levels of the categorical response variable. It is always advisable to first check the ordering of the levels before starting (see example 1)

It is possible to model the interactions, including interactions between the latent and the threshold variables. The interactions added to the latent formula only model the latent measure, and the interactions modeled in the threshold formula only model the thresholds. The general rule for modeling any kind of interaction is to use "*" to specify interactions within a latent (or threshold) formula and to use ':' to specify interactions between the latent and the threshold variables. In the latter case, the main effects of an interaction must also be specified; i.e., the main latent effects must be specified
in the latent formula, and the main threshold effect must be specified in the threshold formula. See also Example 3 below.

For more details, please see the package vignette, which is also available under this link: `vig_hopit.pdf`

Value

A `hopit` object used by other functions and methods. The object is a list with the following components:

- **control**: a list with control parameters. See `hopit.control`.
- **link**: a link function used.
- **hasdisp**: a logical indicating whether `fit.sigma` was modeled.
- **use.weights**: a logical indicating whether any weights were used.
- **weights**: a vector with model weights.
- **frame**: a model frame.
- **latent.formula**: a latent formula used to fit the model.
- **latent.mm**: a latent model matrix.
- **latent.terms**: latent variables used, and their interactions.
- **cross.inter.latent**: a part of the latent formula used for modeling cross-interactions in the latent model.
- **thresh.formula**: a threshold formula used to fit the model.
- **thresh.mm**: a threshold model matrix.
- **thresh.extd**: an extended threshold model matrix.
- **thresh.terms**: threshold variables used, and their interactions.
- **cross.inter.thresh**: a part of the threshold formula used for modeling cross-interactions in the threshold model.
- **thresh.no.cov**: a logical indicating whether gamma parameters are present.
- **parcount**: a 3-element vector with a number of parameters for the latent variables (beta), the threshold intercepts (lambda), and the threshold covariates (gamma).
- **coef**: a vector with model coefficients.
- **coef.ls**: model coefficients as a list.
- **start**: a vector with the starting values of the coefficients.
- **alpha**: estimated individual-specific thresholds.
- **y_i**: a vector with individual responses - the response variable.
- **y_latent_i**: a vector with predicted latent measures for each individual.
- **Ey_i**: a vector with predicted categorical responses for each individual.
- **J**: a number of response levels.
- **N**: a number of observations.
deviance a deviance.
LL a log likelihood.
AIC an AIC for models without a survey design.
vcov a variance-covariance matrix.
vcov.basic a variance-covariance matrix that ignores the survey design.
hessian a Hessian matrix.
estfun a gradient (a vector of partial derivatives) of the log likelihood function at the estimated coefficient values.

YYY1, YYY2, YYY3 an internal objects used for the calculation of gradient and Hessian functions.

Author(s)

Maciej J. Danko

References

Rebelo LP, Pereira NS (2014). “Assessing health endowment, access and choice determinants:

See Also

`coef.hopit, profile.hopit, hopit.control, anova.hopit, vcov.hopit, logLik.hopit, AIC.hopit, summary.hopit, svydesign`.

For heterogeneity in reporting behavior analysis see:

`standardizeCoef, latentIndex, getCutPoints, getLevels, boot_hopit`.

Examples

```r
# DATA
data(healthsurvey)

# first determine the order of the levels of the dependent variable
levels(healthsurvey$health)

# the order of response levels decreases from the best health to
# the worst health; hence the hopit() parameter decreasing.levels
# is set to TRUE

# Example 1 ---------------------
model1 <- hopit(latent.formula = health ~ hypertension + high_cholesterol +
                heart_attack_or_stroke + poor_mobility + very_poor_grip +
                depression + respiratory_problems +
                IADL_problems + obese + diabetes + other_diseases,
                thresh.formula = ~ sex + ageclass + country,
                decreasing.levels = TRUE,
                control = list(trace = FALSE),
                data = healthsurvey)

# summarize the fit:
summary(model1)

# extract parameters in the form of a list
cm1 <- coef(model1, aslist = TRUE)

# names of the returned coefficients
names(cm1)

# extract the latent health coefficients
cm1$latent.params

# check the fit
profile(model1)

# Example 2 ---------------------
```

incorporate the survey design

design <- svydesign(ids = ~ country + psu, weights = healthsurvey$csw, data = healthsurvey)

model2 <- hopit(latent.formula = health ~ hypertension + high_cholesterol +
 heart_attack_or_stroke + poor_mobility +
 very_poor_grip + depression + respiratory_problems +
 IADL_problems + obese + diabetes + other_diseases, thresh.formula = ~ sex + ageclass + country,
design = design, control = list(trace = FALSE),
data = healthsurvey)

compare the latent variables

Example 3 ---------------------
defining the interactions between the threshold and the latent variables

correctly defined interactions:

model3 <- hopit(latent.formula = health ~ hypertension + high_cholesterol +
 heart_attack_or_stroke + poor_mobility * very_poor_grip +
 depression + respiratory_problems +
 IADL_problems + obese + diabetes + other_diseases +
 sex : depression + sex : diabetes + ageclass:obese,
thresh.formula = ~ sex * ageclass + country + sex : obese,
design = design, control = list(trace = FALSE),
data = healthsurvey)

Not run:
badly defined interactions:

1) lack of a main effect of "other_diseases" in any formula
it can be solved by adding " + other_diseases" to the latent formula

model3a <- hopit(latent.formula = health ~ hypertension + high_cholesterol +
 heart_attack_or_stroke + poor_mobility + very_poor_grip +
 depression + respiratory_problems +
 IADL_problems + obese + diabetes + other_diseases : sex, thresh.formula = ~ sex + ageclass + country,
design = design, control = list(trace = FALSE),
data = healthsurvey)

2) the main effect of sex is present in both formulas.
it can be solved by replacing "*" with "::" in "other_diseases * sex"

model3b <- hopit(latent.formula = health ~ hypertension + high_cholesterol +
heart_attack_or_stroke + poor_mobility + very_poor_grip + depression + respiratory_problems + IADL_problems + obese + diabetes + other_diseases * sex,
thresh.formula = ~ sex + ageclass + country,
decreasing.levels = TRUE,
control = list(trace = FALSE),
data = healthsurvey)

Example 4 ---------------------
construct a naive continuous variable:
hs <- healthsurvey
hs$cont_var <- sample(5000:5020,nrow(hs),replace=TRUE)
latent.formula = health ~ hypertension + high_cholesterol +
heart_attack_or_stroke + poor_mobility + very_poor_grip + depression + respiratory_problems +
IADL_problems + obese + diabetes + other_diseases

in some cases, when continuous variables are used, the hopit:::get.hopit.start() function
do not find starting parameters (R version 3.4.4 (2018-03-15)):
Not run:
model4 <- hopit(latent.formula = latent.formula,
thresh.formula = ~ sex + cont_var,
decreasing.levels = TRUE,
data = hs)

one of the solutions is to transform one or more continuous variables:
hs$cont_var_t <- hs$cont_var-min(hs$cont_var)
model4b <- hopit(latent.formula = latent.formula,
thresh.formula = ~ sex + cont_var_t,
decreasing.levels = TRUE,
data = hs)

this can also be done automatically using the the control parameter
model4c <- hopit(latent.formula = latent.formula,
thresh.formula = ~ sex + cont_var,
decreasing.levels = TRUE,
control = list(transform.thresh = 'min',
transform.latent = 'none'),
data = hs)
model4d <- hopit(latent.formula = latent.formula,
thresh.formula = ~ sex + cont_var,
decreasing.levels = TRUE,
control = list(transform.thresh = 'scale_01',
transform.latent = 'none'),
data = hs)
model4e <- hopit(latent.formula = latent.formula, thresh.formula = ~ sex + cont_var, decreasing.levels = TRUE, control = list(transform.thresh = 'standardize', transform.latent = 'none'), data = hs)

model4f <- hopit(latent.formula = latent.formula, thresh.formula = ~ sex + cont_var, decreasing.levels = TRUE, control = list(transform.thresh = 'standardize_trunc', transform.latent = 'none'), data = hs)

round(t(rbind(coef(model4b), coef(model4c), coef(model4d), coef(model4e), coef(model4f))),4)

hopit.control

hopit.control

Description

An auxiliary function for controlling the fitting of a hopit model. Use this function to set the control parameters of the `hopit` and other related functions.

Usage

```r
hopit.control(
  grad.eps = 3e-05,
  bgfs.maxit = 10000,
  cg.maxit = 10000,
  nlm.maxit = 150,
  bgfs.reltol = 5e-10,
  cg.reltol = 5e-10,
  nlm.gradtol = 1e-07,
  nlm.steptol = 1e-07,
  fit.methods = "BFGS",
  nlm.fit = FALSE,
  trace = TRUE,
  transform.latent = "none",
  transform.thresh = "none"
)
```
Arguments

grad.eps
an epsilon parameter ("a very small number") used to calculate the Hessian from the gradient function.

bgfs.maxit, cg.maxit, nlm.maxit
the maximum number of iterations. See optim and nlm for details.

bgfs.reltol, cg.reltol
the relative convergence tolerances for the BFGS and the CG methods. See optim for details.

nlm.gradtol, nlm.steptol
a tolerance at which the scaled gradient is considered close enough to zero and a minimum allowable relative step length for the nlm method. See nlm.

fit.methods
"CG", "BFGS", or both. If both, the CG is run first, followed by the BFGS. See optim.

nlm.fit
a logical; if FALSE (default) the nlm optimization method is omitted and only the BFGS and/or the CG methods are run.

trace
a logical for whether to trace the process of model fitting.

transform.latent, transform.thresh
a type of transformation applied to the all of the latent’s or all of the threshold’s numeric variables. Possible values:

- "none" - no transformation
- "min" - subtract the minimum from a variable
- "scale_01" - transform the variable to fit the range from 0 to 1
- "standardize" or "standardise" - subtract the mean from a variable then divide it by it’s standard deviation
- "standardize_trunc" or "standardise_trunc" - subtract the minimum from a variable then divide it by it’s standard deviation

Author(s)

Maciej J. Danko

See Also

hopit

latentIndex
Calculate the latent index

Description

Calculate the latent index from the fitted model. The latent index is a standardized latent measure that takes values from 0 to 1, where 0 refers to the worst predicted state (the maximal observed value for the latent measure) and 1 refers to the best predicted state (the minimal observed value for the latent measure).
Usage

latentIndex(model, subset = NULL)

healthIndex(model, subset = NULL)

Arguments

model an fitted hopit model.

subset an optional vector that specifies a subset of observations.

Value

a vector with a latent index for each individual.

Author(s)

Maciej J. Danko

References

See Also

standardizeCoef, getCutPoints, getLevels, hopit.

Examples

```r
# DATA
data(healthsurvey)

# the order of response levels decreases from the best health to
# the worst health; hence the hopit() parameter decreasing.levels
# is set to TRUE
levels(healthsurvey$health)

# Example 1 ---------------------

# fit a model
model1 <- hopit(latent.formula = health ~ hypertension + high_cholesterol +
                heart_attack_or_stroke + poor_mobility + very_poor_grip +
                depression + respiratory_problems +
                IADL_problems + obese + diabetes + other_diseases,
                thresh.formula = ~ sex + ageclass + country,
                decreasing.levels = TRUE,
```
control = list(trace = FALSE),
data = healthsurvey)

calculate the health index
hi <- latentIndex(model1)

summary(hi)

plot a simple histogram of the function output
hist(hi, col='deepskyblue3')

plot the reported health status versus the health index.
plot(hi, response = "data", ylab = 'Health index',
 col='deepskyblue3', main = 'Reported health levels')

plot the model-predicted health levels versus the health index.
plot(hi, response = "fitted", ylab = 'Health index',
 col='deepskyblue3', main = 'Model-predicted health levels')

percentile_CI

Calculating the confidence intervals of the bootstrapped function using the percentile method

Description
Calculate the confidence intervals of the bootstrapped function using the percentile method.

Usage
percentile_CI(boot, alpha = 0.05, bounds = c("both","lo","up"))

Arguments
 boot a matrix or a list of vectors with bootstrapped elements. If it is list, then each element of the list is one replication.
 alpha a significance level.
 bounds which bounds to return; one of "both","lo","up".

Author(s)
Maciej J. Danko

See Also
boot_hopit, getLevels, getCutPoints, latentIndex, standardiseCoef, hopit.

Examples
see examples in boot_hopit() function.
standardizeCoef
Standardization of the coefficients

Description

Calculate standardized the coefficients (e.g. disability weights for the health variables) using the predicted latent measure obtained from the model.

In the self-rated health example the standardized coefficients are called disability weights Jurges (2007) and are calculated for each health variable to provide information about the impact of a specific health measure on the latent index (see `latentIndex`). The disability weight for a health variable is equal to the ratio of the corresponding health coefficient and the difference between the lowest and the highest values of the predicted latent health. In other words, the disability weight reduces the latent index by some given amount or percentage (i.e., the latent index of every individual is reduced by the same amount if the person had a heart attack or other heart problems) (Jurges 2007).

Usage

```r
standardizeCoef(model, namesf = identity)
standardiseCoef(model, namesf = identity)
disabilityWeights(model, namesf = identity)
```

Arguments

- `model`: a fitted `hopit` model.
- `namesf`: a vector of the names of coefficients or one argument function that modifies the names of coefficients.

Value

A vector with standardized coefficients.

Author(s)

Maciej J. Danko

References

svy.varcoef_hopit

Calculation of the variance-covariance matrix for a specified survey design (experimental function)

Description

This function is an equivalent of survey:::svy.varcoef. In the original approach estfun is calculated from glm's working residuals: estfun <- model.matrix(glm.object) * resid(glm.object, "working") * glm.object$weights In the hopit package, estfun is directly calculated as a gradient (vector of partial derivatives) of the log likelihood function. Depending on detected design an appropriate survey function is called.

See Also

latentIndex, getCutPoints, getLevels, hopit.

Examples

DATA
data(healthsurvey)

the order of response levels decreases from the best health to
the worst health; hence the hopit() parameter decreasing.levels
is set to TRUE
levels(healthsurvey$health)

Example 1 ---------------------
modell <- hopit(latent.formula = health ~ hypertension + high_cholesterol +
 heart_attack_or_stroke + poor_mobility + very_poor_grip +
 depression + respiratory_problems +
 IADL_problems + obese + diabetes + other_diseases,
 thresh.formula = ~ sex + ageclass + country,
 decreasing.levels = TRUE,
 control = list(trace = FALSE),
 data = healthsurvey)

txtfun <- function(x) gsub('\', ',', substr(x,1,nchar(x)-3))

a function that modifies the coefficient names.
sc <- standardizeCoef(modell, namesf = txtfun)

summary(sc)

plot(sc)
svy.varcoef_hopit

Usage

svy.varcoef_hopit(vcovMat, estfun, design)

Arguments

vcovMat a variance-covariance matrix.
estfun a gradient function of the log-likelihood function.
design a survey.design object.

See Also

svydesign hopit
Index

* datasets
 - healthsurvey, 11

AIC.hopit, 18
anova.hopit, 2, 18

boot.hopit, 4, 14, 18, 24
coef.hopit, 5, 18
disabilityWeights (standardizeCoef), 25
getcutpoints, 6, 7, 10, 14, 18, 23, 24, 26
getlevels, 6, 8, 9, 14, 18, 23, 24, 26

healthindex (latentindex), 22
healthsurvey, 11
hopit, 3, 6, 8, 10, 13, 21–24, 26, 27
hopit.control, 15, 16, 18, 21

latentindex, 6, 8, 10, 14, 18, 22, 24–26
loglik.hopit, 18
lrt.hopit, 3

na.exclude, 15
na.fail, 15
na.omit, 15
na.pass, 15

nlm, 22

optim, 22

percentile_CI, 6, 24
print.lrt.hopit, 3
profile.hopit, 18

standardiseCoef, 6, 8, 10, 24
standardiseCoef (standardizeCoef), 25
standardizeCoef, 14, 18, 23, 25

summary.hopit, 18

svy.varcoefficient.hopit, 26
svydesign, 15, 18, 27

vcov.hopit, 5, 18