Package ‘hot.deck’

March 28, 2020

Type Package

Title Multiple Hot-Deck Imputation

Version 1.1-2

Date 2020-03-27

Author Skyler Cranmer, Jeff Gill, Natalie Jackson, Andreas Murr, Dave Armstrong

Maintainer Dave Armstrong <dave@quantoid.net>

Description Performs multiple hot-deck imputation of categorical and continuous variables in a data frame.

License GPL (>= 2)

Depends R (>= 3.0)

Imports mice, stats

Suggests knitr, mitools, miceadds

NeedsCompilation no

Repository CRAN

Date/Publication 2020-03-28 05:50:10 UTC

R topics documented:

 hot.deck-package .. 2
 affinity ... 3
 D ... 4
 hd2amelia ... 5
 hot.deck .. 5
 is.discrete ... 7
 isq99 ... 8
 scaleContinuous ... 9

Index 10
Description

This package contains all of the functions necessary to perform multiple hot deck imputation on an input data frame with missing observations using either the “best cell” method (default) or the “probabilistic draw” method as described in Cranmer and Gill (2013). This technique is best suited for missingness in discrete variables, though it also works well for continuous missing observations.

Details

<table>
<thead>
<tr>
<th>Package:</th>
<th>hot.deck</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Package</td>
</tr>
<tr>
<td>Version:</td>
<td>1.0</td>
</tr>
<tr>
<td>Date:</td>
<td>2014-09-03</td>
</tr>
<tr>
<td>License:</td>
<td>What license is it under?</td>
</tr>
</tbody>
</table>

In multiple hot deck imputation, several observed values of the variable with missing observations are drawn conditional on the rest of the data and are used to impute each missing value. The advantage of this class of methods over multiple imputation is that the imputed values are actually draws from the observed data. As such, when discrete variables are imputed with a hot deck method, their discrete properties are maintained.

Two methods for weighting the imputations are provided in this package. The “best cell” [called as “best.cell”] technique uses the degree of affinity between the row with missing data and each potential donor row to generate weights such that rows more closely resembling the row with missingness are more likely to be drawn as donors. The probabilistic draw method is the default method. The “probabilistic draw” [called as “p.draw”] technique is also available. The best cell method draws randomly from the cell of best matches to the row with a missing observation.

Author(s)

Skyler Cranmer, Jeff Gill, Natalie Jackson, Andreas Murr and Dave Armstrong

Maintainer: Dave Armstrong <dave@quantoid.net>

References

affinity

Affinity Calculation

Description

Calculates affinity based on Cranmer and Gill (2013). The function performs the original method (as described in the article) and also a method that takes into account the correlation structure of the observed data that increases efficiency in making matches.

Usage

```r
affinity(data, index, column = NULL, R = NULL, weighted = FALSE)
```

Arguments

- **data**: A data frame or matrix of values for which affinity should be calculated
- **index**: A row number identifying the target observation. Affinity will be calculated between this observation and all others in the dataset.
- **column**: A column number identifying the variable with missing information. This is only needed for the optional correlation-weighted affinity score. The correlation that is used is the correlation of all variables with the focus variable (i.e., the column).
- **R**: A correlation matrix for `data`.
- **weighted**: Logical indicating whether or not the correlation-weighted affinity measure should be used.

Details

Affinity is calculated by first identifying whether two observations are sufficiently ‘close’ on each variable. Consider the target observation number 1. If observation \(i \) is close to the target observation on variable \(j \), then \(A[i, j] = 1 \) otherwise, it equals zero. Close for two discrete variables is defined by them taking on the same value. Close for continuous variables is taking on a distance no greater than 1 from each other. While this may seem restrictive and arbitrary, arguments exist in the main package function `hot.deck` that allows the user to set how many standard deviations equal a distance of 1 (with the `cutoffSD` argument).

Value

A number of missing observation-variable combinations-by-number of observations in data matrix of affinity scores.

Author(s)

Skyler Cranmer, Jeff Gill, Natalie Jackson, Andreas Murr and Dave Armstrong
References

See Also
hot.deck

Examples
```r
data(D)
out <- hot.deck(D)
```

D

Example data for multiple hot deck imputation.

Description
Simulated example data for multiple hot deck imputation.

Usage
```r
data(D)
```

Format
A data frame with 20 observations on the following 5 variables.

- x1 a numeric vector
- x2 a numeric vector
- x3 a numeric vector
- x4 a numeric vector
- x5 a numeric vector

Examples
```r
data(D)
out <- hot.deck(D)
```
hd2amelia

Convert hot.deck output to Amelia format

Description

Converts the output from hot.deck to the format used by Amelia for use with the Zelig package.

Usage

hd2amelia(object)

Arguments

- object: Output from a run of the hot.deck function.

Value

An object of class “amelia” that can be used with Zelig.

Author(s)

Skyler Cranmer, Jeff Gill, Natalie Jackson, Andreas Murr and Dave Armstrong

hot.deck

Multiple Hot Deck Imputation

Description

This function performs multiple hot deck imputation on an input data frame with missing observations using either the “best cell” method (default) or the “probabilistic draw” method as described in Cranmer and Gill (2013). This technique is best suited for missingness in discrete variables, though it also performs well on continuous missing data.

Usage

hot.deck(data, m = 5, method = c("best.cell", "p.draw"), cutoff = 10, sdCutoff = 1, optimizeSD = FALSE, optimStep = 0.1, optimStop = 5, weightedAffinity = FALSE, impContinuous = c("HD", "mice"), IDvars = NULL, ...)

Arguments

data A data frame or matrix with missing values to be imputed using multiple hot
deck imputation.

m Number of imputed datasets required.

method Method used to draw donors based on affinity either “best.cell” (the default) or
“p.draw” for probabilistic draw.

cutoff A numeric scalar such that any variable with fewer than cutoff unique non-
missing values will be considered discrete and necessarily imputed with hot
deck imputation.

sdCutoff Number of standard deviations between observations such that observations
fewer than sdCutoff standard deviations away from each other are considered
sufficiently close to be a match, otherwise they are considered too far away to
be a match.

optimizeSD Logical indicating whether the sdCutoff parameter should be optimized such
that the smallest possible value is chosen that produces no thin cells from which
to draw donors. Thin cells are those where the number of donors is less than m.

optimStep The size of the steps in the optimization if optimizeSD is TRUE.

optimStop The value at which optimization should stop if it has not already found a value
that produces no thin cells. If this value is reached and thin cells still exist, a
warning will be returned, though the routine will continue using optimStop as
sdCutoff.

weightedAffinity Logical indicating whether a correlation-weighted affinity score should be used.

impContinuous Character string indicating how continuous missing data should be imputed.
Valid options are “HD” (the default) in which case hot-deck imputation will
be used, or “mice” in which case multiple imputation by chained equations will
be used.

IDvars A character vector of variable names not to be used in the imputation, but to be
included in the final imputed datasets.

... Optional additional arguments to be passed down to the mice routine.

Value

A list with the following elements:

data An object of class mi which contains m imputed datasets.

affinity A matrix of affinity scores see affinity.

donors A list of donors for each missing observation based on the affinity score.

draws The m observations drawn from donors that were used for the multiple imputa-
tions.

max.emp.aff Normalization constant for each row of affinity scores; the maximum possible
value of the affinity scores if correlation-weighting is used.

max.the.aff Normalization constant for each row of affinity scores; the number of columns
in the original data.
is.discrete

Author(s)
Skyler Cranmer, Jeff Gill, Natalie Jackson, Andreas Murr and Dave Armstrong

References

See Also
mice, affinity

Examples
```r
data(D)
hot.deck(D)
```

<table>
<thead>
<tr>
<th>is.discrete</th>
<th>Identify whether variables are discrete or continuous</th>
</tr>
</thead>
</table>

Description
Variables are considered discrete if they have fewer unique, non-missing values than `cutoff` or they are factors. Otherwise, variables are considered continuous.

Usage
```r
is.discrete(data, cutoff = 10)
```

Arguments
- `data`: A data frame, matrix or vector of values to be evaluated.
- `cutoff`: A numeric scalar identifying the cutoff relative to the number of unique, non-missing values for ‘discreteness’.

Value
A logical vector indicating whether variables are discrete (TRUE) or continuous FALSE.

Author(s)
Skyler Cranmer, Jeff Gill, Natalie Jackson, Andreas Murr and Dave Armstrong
Description

Data on Democracy, State Repression and other state-level characteristics

Usage

data(isq99)

Format

A data frame with 3222 observations on the following 13 variables.

- **IDORIGIN** Country Code
- **YEAR** Year
- **AI** Amnesty International PTS Coding
- **SD** State Department Country Report PTS Coding
- **POLRT** Freedom House Political Rights Variable
- **MIL2** Military Government
- **LEFT** Leftist Government
- **BRIT** British Colonial Influence
- **PCGNP** GNP/capita
- **LPOP** Log of population
- **DEMOC3** Polity III Democracy
- **CWARCOW** COW Civil War
- **IWARCOW2** COW Interstate War

References

Description

Standardizes (centers and scales) continuous variable in a dataset, leaving discrete variables untouched.

Usage

```r
scaleContinuous(data, discrete, sdx = 1)
```

Arguments

- `data`: A data frame or matrix of variables to be scaled.
- `discrete`: Either a logical vector which is TRUE for discrete variables and FALSE for continuous ones or a vector of column numbers of discrete variables.
- `sdx`: The standard deviation of the columns for the continuous variables.

Value

A data frame with the same dimensions as `data` where the continuous variables are centered and scaled.

Author(s)

Skyler Cranmer, Jeff Gill, Natalie Jackson, Andreas Murr and Dave Armstrong
Index

*Topic datasets
 D, 4
 isq99, 8
*Topic multiple imputation
 affinity, 3
 hot.deck, 5
 hot.deck-package, 2
*Topic package
 hot.deck-package, 2

 affinity, 3, 6, 7

D, 4

hd2 Amelia, 5
hot.deck, 4, 5
hot.deck-package, 2

is.discrete, 7
isq99, 8

mice, 7

scaleContinuous, 9