Package ‘hpoPlot’

October 13, 2022

Type Package
Title Functions for Plotting HPO Terms
Version 2.4
Date 2015-12-10
Author Daniel Greene <dg333@cam.ac.uk>
Maintainer Daniel Greene <dg333@cam.ac.uk>
Description Collection of functions for manipulating sets of HPO terms and plotting them with a various options.
License GPL (>= 2)
Depends R (>= 3.0.0)
Imports methods, Rgraphviz, functional, magrittr
Suggests knitr
VignetteBuilder knitr
RoxygenNote 5.0.1
NeedsCompilation no
Repository CRAN
Date/Publication 2015-12-14 12:07:27

R topics documented:

apply.term.filters .. 2
calibrate.sizes ... 3
clean.terms .. 4
exclude.branch ... 4
get.ancestors ... 5
get.case_based.colours .. 5
get.case_based.labels ... 6
get.case_term.matrix ... 6
get.code.node.labels .. 7
get.descendants .. 8
get.frequency_based.colours 8
apply.term.filters

Apply a list of term filters to a given plotting context

Description

Apply a list of term filters to a given plotting context
Usage

```r
apply.term.filters(hpo.terms, plotting.context, term.filters,
                  starting.terms = NULL)
```

Arguments

- `hpo.terms`: R-Object representation of HPO
- `plotting.context`: List object with hpo.phenotypes slot for list of character vectors of terms
- `term.filters`: List of term filtering functions
- `starting.terms`: Character vector of HPO term codes to filter. Defaults to all terms in the `hpo.phenotypes` element of plotting.context, if it is present

Value

Character vector of terms

Examples

```r
data(hpo.terms)
apply.term.filters(hpo.terms=hpo.terms, plotting.context=list(
                   hpo.phenotypes=list(Case1="HP:0001873")), term.filters=list(remove.links))
```

calibrate.sizes

Function to scale sizes of terms between two given limits

Description

Function to scale sizes of terms between two given limits

Usage

```r
calibrate.sizes(x, high, low)
```

Arguments

- `x`: Numeric vector of term relative sizes named by term
- `high`: Numeric vector of largest size
- `low`: Numeric vector of smallest size

Value

Numeric vector

Examples

```r
calibrate.sizes(c("HP:0000001"=10, "HP:0000006"=5), high=3, low=1)
```
clean.terms

Remove redundant/implied terms

Description
Remove redundant/implied terms

Usage
clean.terms(hpo.terms, terms)

Arguments
hpo.terms R-Object representation of HPO
terms Character vector of HPO terms

Value
Character vector of HPO terms

Examples
data(hpo.terms)
clean.terms(hpo.terms, c("HP:0001873", "HP:0001872"))

exclude.branch

Exclude terms descending from particular term from a character vector of terms

Description
Exclude terms descending from particular term from a character vector of terms

Usage
exclude.branch(hpo.terms, branch.root, terms)

Arguments
hpo.terms R-Object representation of HPO
branch.root HPO term whose descendants should be excluded
terms Character vector of HPO terms

Value
Character vector of terms
get.ancestors

Get set of all ancestors of set of terms

Description
Get set of all ancestors of set of terms

Usage
get.ancestors(hpo.terms, terms)

Arguments

- **hpo.terms**: R-Object representation of HPO
- **terms**: Character vector of HPO terms

Value

Character vector of all HPO terms which are an ancestor of at least one term in terms, including the terms themselves

See Also

link{get.descendants}

Examples

```r
data(hpo.terms)
get.ancestors(hpo.terms, c("HP:0001873", "HP:0011877"))
```

get.case.based.colours

Function to set colours of HPO nodes in plot to distinguish terms belonging to different sets of phenotypes

Description
Function to set colours of HPO nodes in plot to distinguish terms belonging to different sets of phenotypes

Usage
get.case.based.colours(hpo.terms, terms, plotting.context)
get.case.term.matrix

Arguments

- hpo.terms: R-Object representation of HPO terms
- terms: Character vector of HPO terms
- plotting.context: List object with hpo.phenotypes slot for list of character vectors of terms

Value

Character vector of colours, named by term

get.case.based.labels

Function to label HPO nodes in plot to indicate to which phenotypes each of the terms belong

Usage

get.case.based.labels(hpo.terms, terms, plotting.context)

Arguments

- hpo.terms: R-Object representation of HPO terms
- terms: Character vector of HPO terms
- plotting.context: List object with hpo.phenotypes slot for list of character vectors of terms

Value

Character vector of colours, named by term

get.case.term.matrix

Get a matrix with columns of hpo terms and rows of patients.

Description

Get a matrix with columns of hpo terms and rows of patients.

Usage

get.case.term.matrix(hpo.phenotypes, columns = NULL)
get.code.node.labels

Arguments

hpo.phenotypes List of character vectors of HPO terms. Result includes only terms which are explicitly present in the list items, so if you wish the result to include even terms which are implicitly present, lapply get.ancestors to the argument before passing it to this function

columns Force result to have these exact columns, entering F for terms which aren’t present

Value

Logical matrix - entry for a patient/hpo term = T if the patient has the term and F otherwise.

Examples

g.get.case.term.matrix(list(Patient1=c("HP:0001873")))

description

Function to label HPO nodes in plot with just HPO code

Usage

g.get.code.node.labels(hpo.terms, terms, plotting.context)

Arguments

hpo.terms R-Object representation of HPO

terms Character vector of HPO terms

plotting.context List object with hpo.phenotypes slot for list of character vectors of terms

Value

Character vector of labels, named by term
get.descendants
Get set of all descendants of single term

Description

Get set of all descendants of single term

Usage

```r
get.descendants(hpo.terms, ancestor, remove.ancestor = FALSE)
```

Arguments

- `hpo.terms`: R-Object representation of HPO
- `ancestor`: Character vector of length 1 - the HPO code of the term whose descendants you wish to retrieve
- `remove.ancestor`: Boolean indicating whether to remove the given ancestor or not

Value

Character vector of terms

See Also

`link{get.ancestors}`

Examples

```r
data(hpo.terms)
get.descendants(hpo.terms, ancestor=c("HP:0001873"))
```

get.frequency.based.colours
Function to colour HPO nodes in plot with colours based on frequency with which terms appear in phenotypes

Description

Function to colour HPO nodes in plot with colours based on frequency with which terms appear in phenotypes

Usage

```r
get.frequency.based.colours(hpo.terms, terms, plotting.context, colour.func = NULL)
```
get.frequency.based.labels

Arguments

- `hpo.terms`: R-Object representation of HPO terms
- `terms`: Character vector of HPO terms
- `plotting.context`: List object with hpo.phenotypes slot for list of character vectors of terms
- `colour.func`: Function capable of returning a set of colours, given the number of colours it needs to return

Value

Character vector of colours, named by term

Description

Function to label HPO nodes in plot based on frequency of occurrence in phenotypes

Usage

```r
get.frequency.based.labels(hpo.terms, terms, plotting.context)
```

Arguments

- `hpo.terms`: R-Object representation of HPO terms
- `terms`: Character vector of HPO terms
- `plotting.context`: List object with hpo.phenotypes slot for list of character vectors of terms

Value

Character vector of labels, named by term
get.frequency.based.sizes

Function to size HPO nodes in plot based on frequency of occurrence in phenotypes

Description

Function to size HPO nodes in plot based on frequency of occurrence in phenotypes

Usage

get.frequency.based.sizes(hpo.terms, terms, plotting.context)

Arguments

- `hpo.terms`: R-Object representation of HPO
- `terms`: Character vector of HPO terms
- `plotting.context`: List object with hpo.phenotypes slot for list of character vectors of terms

Value

Character vector of sizes, named by term

get.full.labels

Function to label HPO nodes in plot with full labels

Description

Function to label HPO nodes in plot with full labels

Usage

get.full.labels(hpo.terms, terms, plotting.context)

Arguments

- `hpo.terms`: R-Object representation of HPO
- `terms`: Character vector of HPO terms
- `plotting.context`: List object with hpo.phenotypes slot for list of character vectors of terms

Value

Character vector of labels, named by term
get.hpo.graph

Get HPO graph object

Description

Get HPO graph object

Usage

```r
get.hpo.graph(hpo.terms, terms = apply.term.filters(hpo.terms = hpo.terms,
plotting.context = plotting.context, term.filters = list()),
plotting.context = NULL, colours = "white",
labels = get.simple.node.labels, borders = "#FFFFFF00", sizes = 0.75,
font.sizes = rep(30, length(terms)), shapes = rep("circle",
length(terms)), nodeAttrs = NULL, arrowAttrs = list(color = "#000000"))
```

Arguments

- `hpo.terms`: R-Object representation of HPO terms
- `terms`: Character vector of HPO terms
- `plotting.context`: List object with hpo.phenotypes slot for list of character vectors of terms
- `colours`: Function to set the colours of the HPO nodes in the graph based on the plotting context, or a character vector of colours
- `labels`: Function to set the labels of the HPO nodes in the graph based on the plotting context, or a character vector of node labels
- `borders`: Function to set the borders of the HPO nodes in the graph based on the plotting context, or a character vector of border colours
- `sizes`: Function to set the sizes of the HPO nodes in the graph based on the plotting context, or a numeric vector of node sizes
- `font.sizes`: Function to set the font sizes of the text to be placed in the HPO nodes in the graph based on the plotting context, or an integer vector of font sizes
- `shapes`: Function to set the shapes of the HPO nodes in the graph based on the plotting context, or a character vector of shape names (defaults to 'circle')
- `nodeAttrs`: Pass nodeAttrs directly to rgraphviz plotting function
- `arrowAttrs`: List of properties to set for arrows (note, these properties will be used for all arrow)

Value

graphAM S4 object

See Also

- `hpo.plot`
get.informative.node.labels

Function to label HPO nodes in plot with node description and information content

Description

Function to label HPO nodes in plot with node description and information content

Usage

get.informative.node.labels(hpo.terms, terms, plotting.context)

Arguments

hpo.terms R-Object representation of HPO terms

plotting.context List object with hpo.phenotypes slot for list of character vectors of terms

Value

Character vector of labels, named by term
get.mpo.to.hpo

Get MPO to HPO R-Object

Description

Get MPO to HPO R-Object

Usage

get.mpo.to.hpo(hpo.terms, cross.species.file)

Arguments

- **hpo.terms**: R-Object representation of HPO
- **cross.species.file**: cross species obo file, downloadable from http://compbio.charite.de/hudson/

Value

List of HPO terms per MPO term

get.node.friendly.long.names

Split up the HPO term descriptions so they fit in nodes for plot

Description

Split up the HPO term descriptions so they fit in nodes for plot

Usage

get.node.friendly.long.names(hpo.terms, terms)

Arguments

- **hpo.terms**: R-Object representation of HPO
- **terms**: Character vector of HPO terms

Value

Character vector

Examples

data(hpo.terms)
get.node.friendly.long.names(hpo.terms, c("HP:0001873", "HP:0011877"))
get.ontology

Get R-Object representation of ontology from obo file

Description

Get R-Object representation of ontology from obo file

Usage

get.ontology(file, qualifier = "HP")

Arguments

file File path of obo file
qualifier Character vector - "HP" for HPO, "MP" for MPO, etc.

Value

R-Object (list) representing ontology

get.pop.frequency.based.colours

Function to colour HPO nodes in plot with colours based on information content/frequency of terms with respect to population

Description

Function to colour HPO nodes in plot with colours based on information content/frequency of terms with respect to population

Usage

get.pop.frequency.based.colours(hpo.terms, terms, plotting.context, colourPalette = colorRampPalette(c("Yellow", "Green", "#0099FF"))(10), terms.freq = if (is.null(plotting.context$frequency)) exp(-plotting.context$information[terms]) else plotting.context$frequency, max.colour.freq = max(terms.freq), min.colour.freq = min(terms.freq))
get.shortened.names

Arguments

hpo.terms R-Object representation of HPO terms

plotting.context List object with hpo.phenotypes slot for list of character vectors of terms

colourPalette Character vector of colours for the different information contents of the terms to be plotted, going from rare to common

terms.freq Numeric vector of frequencies of terms in plot, named by term

max.colour.freq Numeric value in [0, 1] giving the maximum frequency (to which the dullest color will be assigned)

min.colour.freq Numeric value in [0, 1] giving the minimum frequency (to which the brightest color will be assigned)

Value

Character vector of colours, named by term

Description

Get human readable, shortened (where possible) HPO term names

Usage

get.shortened.names(hpo.terms, terms)

Examples

data(hpo.terms)
get.shortened.names(hpo.terms, c("HP:0001873", "HP:0011877"))

get.significance.based.sizes

Function to size HPO nodes in plot with colours based on significance of seeing this many of each term in phenotypes

Description

Function to size HPO nodes in plot with colours based on significance of seeing this many of each term in phenotypes

Usage

```
get.significance.based.sizes(hpo.terms, terms, plotting.context)
```

Arguments

- `hpo.terms`: R-Object representation of HPO terms
- `terms`: Character vector of HPO terms
- `plotting.context`: List object with `hpo.phenotypes` slot for list of character vectors of terms

Value

Character vector of sizes, named by term

get.simple.node.labels

Function to label HPO nodes in plot with just node description

Description

Function to label HPO nodes in plot with just node description

Usage

```
get.simple.node.labels(hpo.terms, terms, plotting.context)
```

Arguments

- `hpo.terms`: R-Object representation of HPO terms
- `terms`: Character vector of HPO terms
- `plotting.context`: List object with `hpo.phenotypes` slot for list of character vectors of terms

Value

Character vector of labels, named by term
get.term.adjacency.matrix

Get an adjacency for set of HPO terms

Description

Get an adjacency for set of HPO terms

Usage

get.term.adjacency.matrix(hpo.terms, terms)

Arguments

hpo.terms R-Object representation of HPO
terms Character vector of HPO terms

Value

A logical matrix representing the directed adjacency matrix of terms based on DAG structure of HPO, whereby a TRUE entry signifies that the term corresponding to the column is a parent term of the term corresponding to the row.

See Also

generate.adjacency.matrix
generate.leadadjacency.matrix

e.g. term.adjacency.matrix

e.g. term.pseudo.adjacency.matrix

e.g. term.descendancy.matrix

e.g. term.descendancy.matrix

Examples

data(hpo.terms)
generate.adjacency.matrix(hpo.terms, c("HP:0000118", "HP:0001873", "HP:0011877"))

get.term.descendancy.matrix

Get logical descendancy matrix for set of terms

Description

Get logical descendancy matrix for set of terms

Usage

get.term.descendancy.matrix(hpo.terms, terms = NULL, rows = terms, cols = terms)
Arguments

- `hpo.terms`: R-Object representation of HPO terms
- `hpo.phenotypes`: List of HPO term character vectors
- `patch.missing`: Logical indicating whether to include all HPO even if they're not present in the `hpo.phenotypes` as if they had occurred once

Value

Numeric vector of information contents, named by corresponding HPO terms. Takes into account ancestors, in the sense that all ancestor terms implied by the phenotypes are considered ‘on’

See Also

- `get.term.info.content`

Examples

```r
data(hpo.terms)
get.term.frequencies(hpo.terms, list("HP:0001873"))
```
get.term.info.content Get information content of each term in a set of phenotypes

Description
Get information content of each term in a set of phenotypes

Usage
get.term.info.content(hpo.terms, hpo.phenotypes, patch.missing = FALSE)

Arguments
- hpo.terms: R-Object representation of HPO
- hpo.phenotypes: List of HPO term character vectors
- patch.missing: Logical indicating whether to include all HPO even if they’re not present in the hpo.phenotypes as if they had occurred once

Value
Numeric vector of information contents, named by corresponding HPO terms. Takes into account ancestors, in the sense that all ancestor terms implied by the phenotypes are considered ‘on’

Examples
data(hpo.terms)
get.term.info.content(hpo.terms, list("HP:0001873"))

g.get.pseudo.adjacency.matrix
Get an adjacency to MRCA matrix for set of HPO terms

Description
Get an adjacency to MRCA matrix for set of HPO terms

Usage
g.get.pseudo.adjacency.matrix(hpo.terms, terms)

Arguments
- hpo.terms: R-Object representation of HPO
- terms: Character vector of HPO terms
A logical matrix representing the directed adjacency matrix of terms based on DAG structure of HPO, whereby a TRUE entry signifies the term corresponding to the column is MRCA of the row term in terms.

See Also

`get.term.adjacency.matrix`

Examples

```r
data(hpo.terms)
get.term.pseudo.adjacency.matrix(hpo.terms, c("HP:0000118", "HP:0001873", "HP:0011877"))
```

Description

Plot HPO graph object

Usage

```r
hpo.plot(hpo.terms, terms = apply.term.filters(hpo.terms = hpo.terms,
plotting.context = plotting.context, term.filters = list()),
plotting.context = NULL, hpo.phenotypes = NULL, term.frequencies = NULL,
colours = "cyan", labels = get.simple.node.labels,
borders = ":#FFFFFF00", sizes = 0.75, font.sizes = rep(30,
length(terms)), shapes = rep("circle", length(terms)), nodeAttrs = NULL,
arrowAttrs = list(color = "#000000"), ...)
```

Arguments

- `hpo.terms`: R-Object representation of HPO terms
- `terms`: Character vector of HPO terms
- `plotting.context`: List object with hpo.phenotypes slot for list of character vectors of terms
- `hpo.phenotypes`: List of HPO term character vectors
- `term.frequencies`: Numeric vector of population frequencies of terms (named by term codes)
- `colours`: Function to set the colours of the HPO nodes in the graph based on the plotting context, or a character vector of colours
- `labels`: Function to set the labels of the HPO nodes in the graph based on the plotting context, or a character vector of node labels
- `borders`: Function to set the borders of the HPO nodes in the graph based on the plotting context, or a character vector of border colours
hpo.terms

sizes Function to set the sizes of the HPO nodes in the graph based on the plotting context, or a numeric vector of node sizes
font.sizes Function to set the font sizes of the text to be placed in the HPO nodes in the graph based on the plotting context, or an integer vector of font sizes
shapes Function to set the shapes of the HPO nodes in the graph based on the plotting context, or a character vector of shape names (defaults to ‘circle’)
nodeAttrs Pass nodeAttrs directly to rgraphviz plotting function
arrowAttrs List of properties to set for arrows (note, these properties will be used for all arrow)
... Extra arguments to pass to plot

Value

Plots graph

See Also

get.hpo.graph

Examples

data(hpo.terms)
hpo.plot(
 hpo.terms=hpo.terms,
 terms=get.ancestors(hpo.terms,
 c("HP:0001382","HP:0004272","HP:0007917","HP:0004912","HP:0001596"))
)

hpo.terms HPO Terms object (based on version 887 of the HPO)

Description

Object comprising list of properties of the HPO, indexed by term ID

Format

List of indices containing metadata and structure of HPO
hpoPlot

Functions for plotting HPO terms

Description

Functions for performing operations on sets of HPO terms (character vectors of HPO term IDs) in the context of the HPO structure, and plotting them with various options.

Details
The key function is `hpo.plot`, which plots a set of phenotype terms given their HPO IDs and their ontological relations given by the HPO.

Author(s)

Daniel Greene <dg333@cam.ac.uk>

Maintainer: Daniel Greene <dg333@cam.ac.uk>

References

intersection.with.branches

Intersect set of terms with branches of HPO

Description

Intersect set of terms with branches of HPO

Usage

`intersection.with.branches(hpo.terms, branch.roots, terms)`

Arguments

- `hpo.terms`: R-Object representation of HPO
- `branch.roots`: Character vector of roots of branches you wish to intersect with
- `terms`: Character vector of HPO terms

Value

Character vector of terms
n.most.frequent.terms

Examples

```r
data(hpo.terms)
intersection.with.branches(hpo.terms, "HP:0001872", c("HP:0001873", "HP:0011877"))
```

mpo.terms
MPO Terms object

Description

Object comprising list of properties of the MPO, indexed by term ID

Format

List of indices containing metadata and structure of MPO

mpo.to.hpo
Object containing data for mapping between MPO and HPO

Description

List containing cross-species ontology (MPO to HPO) information - character vectors of HPO terms indexed by associated MPO term IDs

Format

List of HPO terms per MPO term

n.most.frequent.terms
Select most frequently annotated terms from a set of phenotypes

Description

Select most frequently annotated terms from a set of phenotypes

Usage

```r
n.most.frequent.terms(hpo.terms, terms, plotting.context, n)
```

Arguments

- `hpo.terms`: R-Object representation of HPO
- `terms`: Character vector of HPO terms
- `plotting.context`: List object with hpo.phenotypes slot for list of character vectors of terms
- `n`: Integer
p.values.for.occurrence.of.term.in.group

Value
Character vector of length at most n

See Also
remove.terms.with.less.than.n.occurrences, remove.uninformative.for.plot

Examples

data(hpo.terms)
n.most.frequent.terms(hpo.terms, c("HP:0001873"),
list(hpo.phenotypes=list("HP:0001873", "HP:0001902")), n=2)

Description
Get p-values for observing at least as many of each term as have been
in phenotypes given information content

Usage

p.values.for.occurrence.of.term.in.group(hpo.terms, hpo.phenotypes, terms.freq)

Arguments

hpo.terms R-Object representation of HPO
hpo.phenotypes List of HPO term character vectors
terms.freq Numeric vector of population frequencies of terms

Value
Numeric vector of log p-values named by corresponding term
prune.branch

Prune all terms descending from given term down to that term and ensure no degeneracy

Description
Prune all terms descending from given term down to that term and ensure no degeneracy

Usage
prune.branch(hpo.terms, prune.to.point, terms)

Arguments
hpo.terms: R-Object representation of HPO
prune.to.point: HPO term which can be included, but whose descendants should be excluded
terms: Character vector of HPO terms

Value
Character vector of terms

remove.links

Remove terms with exactly one parent and child from plot

Description
Remove terms with exactly one parent and child from plot

Usage
remove.links(hpo.terms, terms, plotting.context = NULL)

Arguments
hpo.terms: R-Object representation of HPO
terms: Character vector of HPO terms
plotting.context: List object with hpo.phenotypes slot for list of character vectors of terms

Value
Character vector
remove.non.pa.terms

See Also

remove.terms.with.less.than.n.occurrences, n.most.frequent.terms

Examples

```r
data(hpo.terms)
remove.links(hpo.terms, c("HP:0001873"), list(hpo.phenotypes=list("HP:0001873", "HP:0001902")))
```

remove.non.pa.terms
Remove terms not descending from phenotypic abnormality

Description

Remove terms not descending from phenotypic abnormality

Usage

```r
remove.non.pa.terms(hpo.terms, terms, plotting.context)
```

Arguments

- **hpo.terms**: R-Object representation of HPO
- **terms**: Character vector of HPO terms
- **plotting.context**: List object with hpo.phenotypes slot for list of character vectors of terms

Value

Character vector

See Also

remove.terms.with.less.than.n.occurrences, n.most.frequent.terms
remove.terms.with.less.than.n.occurrences

Remove terms with less than certain number of occurrences

Description

Remove terms with less than certain number of occurrences

Usage

```r
remove.terms.with.less.than.n.occurrences(hpo.terms, terms, plotting.context, n)
```

Arguments

- `hpo.terms`: R-Object representation of HPO
- `terms`: Character vector of HPO terms
- `plotting.context`: List object with hpo.phenotypes slot for list of character vectors of terms
- `n`: Integer

Value

Character vector

See Also

- `n.most.frequent.terms`
- `remove.uninformative.for.plot`

Examples

```r
data(hpo.terms)
remove.terms.with.less.than.n.occurrences(hpo.terms, c("HP:0001873"), list(hpo.phenotypes=list("HP:0001873", "HP:0001902")), 2)
```

remove.uninformative.for.plot

Remove uninformative terms (fitting plotting filter format)

Description

Remove uninformative terms (fitting plotting filter format)

Usage

```r
remove.uninformative.for.plot(hpo.terms, terms = get.ancestors(hpo.terms, unlist(plotting.context$hpo.phenotypes)), plotting.context)
```
remove.uninformative.terms

Get a minimal set of terms which can be used to partition a set of phenotypes

Arguments

- **hpo.terms**: R-Object representation of HPO terms
- **hpo.phenotypes**: List object with hpo.phenotypes slot for list of character vectors of terms

Value

Character vector

See Also

- remove.terms.with.less.than.n.occurrences, n.most.frequent.terms

Examples

```r
data(hpo.terms)
remove.uninformative.terms(hpo.terms, list(hpo.phenotypes=list("HP:0001873", "HP:0001902")))
```
setDimNames setNames for arrays...

Description
setNames for arrays...

Usage
setDimNames(array.object, list.of.dimension.names)

Arguments
array.object Array
list.of.dimension.names List of character vectors with which to name each dimension of the array

Value
Named array

Examples
setDimNames(matrix(1:4,2,2), list(c("Cat", "Dog"), c("Name", "Weight")))

simpleCap Capitalise words in character vector

Description
Capitalise words in character vector

Usage
simpleCap(x)

Arguments
x Character vector

Value
Character vector

Examples
simpleCap(c("a simple test", "Another-test"))
swap.out.alt.ids
Remove alternate/deprecated HPO term IDs and swap for new ones

Description

Remove alternate/deprecated HPO term IDs and swap for new ones

Usage

```r
swap.out.alt.ids(hpo.terms, terms, remove.dead = FALSE)
```

Arguments

- `hpo.terms`: R-Object representation of HPO
- `terms`: Character vector of HPO terms
- `remove.dead`: Boolean to indicate whether to strip out terms which can’t be found in the given `hpo.terms` database argument

Value

A directed adjacency matrix of `terms` based on DAG structure of HPO, whereby each term is considered adjacent to it’s MRCA in `terms`

Examples

```r
data(hpo.terms)
swap.out.alt.ids(hpo.terms, c("HP:0001873"))
```

term.set.list.from.character
Get list of character vector of HPO terms, given character vector of comma separated terms

Description

Get list of character vector of HPO terms, given character vector of comma separated terms

Usage

```r
term.set.list.from.character(character.vector)
```

Arguments

- `character.vector`: Character vector of comma separated terms
Value

List of character vectors of HPO terms

Examples

term.set.list.from.character(c("HP:0001873", "HP:0001902"))
Index

* HPO
 hpoPlot, 22
 apply.term.filters, 2
 calibrate.sizes, 3
 clean.terms, 4
 exclude.branch, 4
 get.ancestors, 5, 7
 get.case_based.colours, 5
 get.case_based.labels, 6
 get.case.term.matrix, 6
 get.code.node.labels, 7
 get.descendants, 8
 get.frequency_based.colours, 8
 get.frequency_based.labels, 9
 get.frequency_based.sizes, 10
 get.full.labels, 10
 get.hpo.graph, 11, 21
 get.informative.node.labels, 12
 get.mpo.to.hpo, 13
 get.node.friendly.long.names, 13
 get.ontology, 14
 get.pop.frequency_based.colours, 14
 get.shortened.names, 15
 get.significance_based.sizes, 16
 get.simple.node.labels, 16
 get.term.adjacency.matrix, 17, 20
 get.term.descendancy.matrix, 17
 get.term.frequencies, 18
 get.term.info.content, 18, 19
 get.term.pseudo.adjacency.matrix, 17, 19

 hpo.plot, 11, 20, 23
 hpo.terms, 21
 hpoPlot, 22

 intersection.with.branches, 23

 mpo.terms, 24
 mpo.to.hpo, 24

 n.most.frequent.terms, 24, 27–29
 p.values.for.occurrence.of.term.in.group, 25
 prune.branch, 26
 remove.links, 26
 remove.non.pa.terms, 27
 remove.terms.with.less.than.n.occurrences, 25, 27, 28, 29
 remove.uninformative.for.plot, 25, 28, 28
 remove.uninformative.terms, 29

 setDimNames, 30
 simpleCap, 30
 swap.out.alt.ids, 31

 term.set.list.from.character, 31