Package ‘hsem’

November 12, 2021

Type Package

Title Hierarchical Structural Equation Model

Version 1.0

Date 2021-11-12

Author Rezzy Eko Caraka [aut, cre],
Maengseok Noh [aut],
Youngjo Lee [aut]

Maintainer Rezzy Eko Caraka <rezzyekocaraka@gmail.com>

Description We present this package for fitting structural equation models using the hierarchical likelihood method. This package allows extended structural equation model, including dynamic structural equation model. We illustrate the use of our packages with well-known data sets. Therefore, this package are able to handle two serious problems inadmissible solution and factor indeterminacy <doi:10.3390/sym13040657>.

Depends R (>= 3.6.0), methods, Matrix, numDeriv, boot, mvtnorm

License GPL-3

NeedsCompilation no

Repository CRAN

Date/Publication 2021-11-12 10:10:06 UTC

R topics documented:

 hsem-package . 2
 hsemfit . 2
 hsemmodeling . 4
 ml2 . 6

Index 7
hsem-package

Hierarchical Structural Equation Models

Description

This package allows different models for multivariate response variables with a hierarchical structural equation models (HSEMs).

Details

<table>
<thead>
<tr>
<th>Package:</th>
<th>hsem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Package</td>
</tr>
<tr>
<td>Version:</td>
<td>1.0</td>
</tr>
<tr>
<td>Date:</td>
<td>2021-08-25</td>
</tr>
<tr>
<td>License:</td>
<td>Unlimited</td>
</tr>
<tr>
<td>LazyLoad:</td>
<td>yes</td>
</tr>
</tbody>
</table>

This is version 1.0 of the hsem package.

Author(s)

Rezzy Eko Caraka, Maengseok Noh, Youngjo Lee

Maintainer: Rezzy Eko Caraka <rezzyekocaraka@gmail.com>

hsemfit

Fitting Hierarchical Structural Equation Models using h-likelihood Approach

Description

The hsemfit is used to fit a hierarchical structural equation models (HSEMs) allowing different models for multivariate response variables. A variety of distributions and link functions for both response and the random effects are allowed. To call the fitting function hsemfit, models for the mean and dispersion must be specified by hsemmodeling object preferably created by calling the hsemmodeling function.

Usage

```r
hsemfit(RespDist = "gaussian", BinomialDen = NULL, DataMain, MeanModel, DispersionModel = NULL, PhiFix = NULL, LamFix = NULL, structure = "correlated", mord = 0, dord = 1, convergence = 1e-05, Init_Corr = NULL, EstimateCorrelations = TRUE)
```
Arguments

- **RespDist**
 The distribution of the response is set by the option `RespDist`. The user can set it to: "gaussian" (default), "binomial", "poisson", or "gamma".

- **BinomialDen**
 When `RespDist="binomial"`, one should use the option `BinomialDen` to specify the denominator for the binomial distribution. This should be "NULL" (default) or a numeric vector of length equal to the length of `DataMain`. When specified as `BinomialDen=NULL` and `RespDist="binomial"`, the denominator is 1.

- **DataMain**
 The option `DataMain` determines the data frame to be used (non-optional).

- **MeanModel**
 For the mean model, this option requires `DGHLMMODELING` object which should be specified by the option `Model="mean"`.

- **DispersionModel**
 For the overdispersion model, this option requires `DGHLMMODELING` object which should be specified by the option `Model="dispersion"`.

- **PhiFix**
 The option for overdispersion parameters (phi) to be estimated or maintained constant. Specifying defaults such as `PhiFix=NULL` implies that phi is to be estimated. If not, phi is fixed at a value specified by `PhiFix`.

- **LamFix**
 The option for random-effect variance (lambda) to be estimated or maintained constant. Specifying defaults such as `LamFix=NULL` implies that lambda is to be estimated. If not, lambda is fixed at a value specified by `LamFix`.

- **structure**
 The option `structure` determines structure of random effects. When `structure="correlated"` (or "shared"), correlated (or shared) random-effects model is specified.

- **mord**
 The option `mord` specifies the order of Laplace approximation to the marginal likelihood for fitting the mean parameters. The choice is either 0 or 1 (default).

- **dord**
 The option `dord` specifies the order of adjusted profile likelihood for fitting the dispersion parameters. The choice is either 1 (default) or 2.

- **convergence**
 Setting this option determines the criterion for convergence, which is computed as the absolute difference between the values of all the estimated parameters in the previous and current iterations. The default criterion is 1e-06.

- **Init_Corr**
 Setting initial values of correlation (or shared parameters) between random effects.

- **EstimateCorrelations**
 Correlations are estimated or fixed when `EstimateCorrelations=TRUE` (default) or `EstimateCorrelations=FALSE`.

Value

- `res` the output class resulted from `jointfit_correlated`.

Examples

```r
data(ml2)

MM1<-hsemmodeling(Model="mean",Link="identity",
    LinPred=urge~urge1+dep1+(1|id)+(urge1|id)+(dep1|id),
    RandDist=c("gaussian","gaussian","gaussian"))
```
hsemmodeling

Defining the Fixed and Random Models for the Mean and Dispersion parameters in HSEMs

Description

The hsemmodeling specifies a GLM, HGLM, DHGLM model for the mean parameters (mu), and a GLM, HGLM model for the overdispersion parameters (phi). GLM for mu, and GLM for phi are specified by adding only fixed terms to the linear predictors for the mu and phi, respectively.

Usage

hsemmodeling(Model="mean",Link=NULL,LinPred="constant",RandDist=NULL, Offset=NULL,LMatrix=NULL,LinkRandVariance=NULL,LinPredRandVariance=NULL, RandDistRandVariance="gaussian",LinkRandVariance2=NULL,LinPredRandVariance2=NULL)

Arguments

Model This option specifies a GLM, HGLM or DHGLM model for mu when Model="mean" (default), and a GLM or HGLM for phi when Model="dispersion".

Link The link function for the linear predictor is specified by the option Link. For Model="mean", Link can be "identity", "logit", "probit", "cloglog", "log", or "inverse". For Model="dispersion", the choice is either "log" or "inverse". The default, specified as NULL link, is "identity" for Model="mean" and "log" for Model="dispersion".

LinPred The option LinPred specifies the fixed and random terms for the linear predictor for mu when specified as Model="mean" or for phi when Model="dispersion". For Model="mean", LinPred=y~x1+x2+(1|id1)+(1|id2) specifies y as the main response, x1 and x2 as fixed covariates and id1 and id2 as random terms. For Model="dispersion", the main response should be phi, e.g. phi~x1+x2+(1|id1)+(1|id2). This option can specify the model without random effects, e.g., LinPred=phi~x1+x2. The default is "constant", which is set to intercept only the model for the corresponding linear predictors.
RandDist

The option `RandDist` specifies the distributions of the random terms represented in the option `LinPred`. It is set as a vector of distribution names from "gaussian" (default), "beta", "gamma", or "inverse-gamma" when `Model="mean". For `Model="dispersion"`, the choice is "gaussian" (default), "gamma", or "inverse-gamma". When more than one random terms are specified, e.g., \(y \sim x_1 + x_2 + (1|id1) + (1|id2) \) in the option `LinPred`, the different distributions for each random term can be specified, e.g., `c(\"gaussian\", \"gamma\")`, which assumes normal distribution for the random term "id1" and gamma distribution for the random term "id2", respectively.

Offset

The option `Offset` can be used to specify a known component to be included in the linear predictor specified by `LinPred` during fitting. This should be the default (NULL) or a numeric vector of length equal to that of the appropriate data.

LMatrix

The option `LMatrix` sets a matrix that is used as a post-multiplier for the model matrix of the corresponding random effects. This option allows correlation structures to be defined for random effects. For example, when specified as `Model="mean"` and `LMatrix=L1+L2`, the linear predictor for \(\mu \) takes \(X \beta + \begin{pmatrix} Z_1 \end{pmatrix} L_1 r_1 + \begin{pmatrix} Z_2 \end{pmatrix} L_2 r_2 \), where \(Z_1 \) and \(Z_2 \) are the model matrices for the random effects \(v_1=L_1 r_1 \) and \(v_2=L_2 r_2 \), specified in the option `LinPred`.

LinkRandVariance

The option `LinkRandVariance` specifies the link function for the linear predictor of the random-effect variances. The choice is either "log" (default) or "inverse". When more than two random terms are specified in the option `LinPred`, the user can set different link functions, e.g., `LinkRandVariance=c("log","inverse")` for each random term.

LinPredRandVariance

The option `LinPredRandVariance` specifies the fixed and random terms for the linear predictor of the random-effect variances for `Model="mean"`. When \(y \sim x_1 + x_2 + (1|id1) + (1|id2) \) is specified in the option `LinPred`,

\[
\text{LinPredRandVariance} = c(\text{lambda} \sim x_1 + (1|id1), \text{lambda} \sim x_2 + (1|id2))
\]

 specifies \(x_1 \) and \(x_2 \) as fixed covariates and \(id1 \) and \(id2 \) as random terms in the linear predictors for the variances of the random terms \(id1 \) and \(id2 \), respectively. For `Model="dispersion"`, the random term is not allowed in the linear predictor of the random-effect variance. The default (NULL) is set to intercept only model for the corresponding linear predictors.

RandDistRandVariance

The option `RandDistRandVariance` specifies the distributions for the random terms in the `LinPredRandVariance`. The choice is "gaussian" (default), "gamma", or "inverse-gamma".

LinkRandVariance2

This option specifies the link function for the linear predictor of the variance of random effects, which are specified in the option `LinPredRandVariance`. The choice is either "log" (default) or "inverse".

LinPredRandVariance2

This option specifies the fixed terms for the linear predictor of the variance of random effects, which is specified in the option `LinPredRandVariance`. For example, when `LinPredRandVariance=c(\text{lambda} \sim x_1 + (1|id1), \text{lambda} \sim x_1 + (1|id2))`
is specified, LinPredRandVariance2=c(~xxx1,-xxx2) specifies xxx1 and xxx2 as fixed covariates for the linear predictor of random-effect variances for id11 and id12, respectively. The default (NULL) is set to constant variance for the random effects in LinPredRandVariance.

ml2

simulated urge to smoke data

Description

By using an example for urge to smoke in the McNeish and Hamaker (2020), this data set is a simulated subset. It consists of 10 repetitions on regular time scales for 20 different individuals. For response variable, urge to Smoke is on a standardized scale average 0 and the standard deviation 1.

Usage

data("ml2")

Format

A data frame with 200 observations on the following 6 variables.

- **urge**: standardized urge to smoke
- **urge1**: previous urge to smoke
- **dep**: standardized depression
- **dep1**: previous depression
- **id**: individual indicator
- **time**: time indicator
Index

hsem-package, 2
hsemfit, 2
hsemmodeling, 4
ml2, 6