Package ‘hsstan’

May 1, 2020

Type Package

Title Hierarchical Shrinkage Stan Models for Biomarker Selection

Version 0.7

Date 2020-05-01

Description Linear and logistic regression models penalized with hierarchical shrinkage priors for selection of biomarkers (or more general variable selection), which can be fitted using Stan (Carpenter et al. (2017) <doi:10.18637/jss.v076.i01>). It implements the horseshoe and regularized horseshoe priors (Piironen and Vehtari (2017) <doi:10.1214/17-EJS1337SI>), as well as the projection predictive selection approach to recover a sparse set of predictive biomarkers (Piironen, Paasiniemi and Vehtari (2018) <arXiv:1810.02406>).

License GPL-3

URL https://github.com/mcol/hsstan

BugReports https://github.com/mcol/hsstan/issues

LazyData yes

Biarch true

Depends R (>= 3.6)

Imports ggplot2, loo (>= 2.1.0), parallel, pROC, Rcpp, methods, rstan (>= 2.18.1), rstantools (>= 2.0.0), stats, utils

LinkingTo BH (>= 1.66.0.1), Rcpp (>= 0.12.15), RcppEigen (>= 0.3.3.4.0), StanHeaders (>= 2.17.2), rstan (>= 2.18.1)

Suggests testthat (>= 2.1.0)

ByteCompile yes

NeedsCompilation yes

Encoding UTF-8

RoxygenNote 7.1.0

Author Marco Colombo [aut, cre] (https://orcid.org/0000-0001-6672-0623), Paul McKeigue [aut] (https://orcid.org/0000-0002-5217-1034), Athina Spiliopoulou [ctb] (https://orcid.org/0000-0002-5929-6585)
hsstan-package

Maintainer Marco Colombo <mar.colombo13@gmail.com>
Repository CRAN
Date/Publication 2020-05-01 14:30:02 UTC

R topics documented:

hsstan-package .. 2
bayes_R2.hsstan .. 3
diabetes .. 4
hsstan ... 5
kfold.hsstan ... 7
log_lik.hsstan .. 8
loo.hsstan .. 9
nsamples.hsstan ... 10
plot.projsel ... 10
posterior_interval.hsstan 11
posterior_linpred.hsstan 12
posterior_performance .. 13
posterior_predict.hsstan 14
posterior_summary ... 15
print.hsstan .. 16
projsel .. 16
sampler.stats .. 17
summary.hsstan ... 18

Index 19

hsstan-package Hierarchical shrinkage Stan models for biomarker selection

Description

The hsstan package provides linear and logistic regression models penalized with hierarchical shrinkage priors for selection of biomarkers. Models are fitted with Stan (Carpenter et al. (2017)), which allows to perform full Bayesian inference.

Details

The package implements the horseshoe and regularized horseshoe priors (Piironen and Vehtari (2017)), and the projection predictive selection approach to recover a sparse set of predictive biomarkers (Piironen, Paasiniemi and Vehtari (2018)).

The approach is particularly suited to selection from high-dimensional panels of biomarkers, such as those that can be measured by MSMS or similar technologies (Colombo, Valo, McGurnaghan et al. (2019)).
References

B. Carpenter et al. (2017), Stan: a probabilistic programming language, *Journal of Statistical Software*, 76 (1). https://doi.org/10.18637/jss.v076.i01

M. Colombo, E. Valo, S.J. McGurnaghan et al. (2019), Biomarkers associated with progression of renal disease in type 1 diabetes, *Diabetologia*, 62 (9), 1616-1627. https://doi.org/10.1007/s00125-019-4915-0

bayes_R2.hsstan
Bayesian and LOO-adjusted R-squared

Description

Compute the Bayesian and the LOO-adjusted R-squared from the posterior samples. For Bayesian R-squared it uses the modelled residual variance (rather than the variance of the posterior distribution of the residuals). The LOO-adjusted R-squared uses Pareto smoothed importance sampling LOO residuals and Bayesian bootstrap.

Usage

```r
## S3 method for class 'hsstan'
bayes_R2(object, prob = 0.95, summary = TRUE, ...)

## S3 method for class 'hsstan'
loo_R2(object, prob = 0.95, summary = TRUE, ...)
```

Arguments

- `object`
 An object of class `hsstan`.

- `prob`
 Width of the posterior interval (0.95, by default). It is ignored if `summary=FALSE`.

- `summary`
 Whether a summary of the distribution of the R-squared should be returned rather than the pointwise values (TRUE by default).

- `...`
 Currently ignored.

Value

The mean, standard deviation and posterior interval of R-squared if `summary=TRUE`, or a vector of R-squared values with length equal to the size of the posterior sample if `summary=FALSE`.

References

Aki Vehtari, Andrew Gelman, Ben Goodrich and Jonah Gabry (2019), Bayesian R2 and LOO-R2. https://avehtari.github.io/bayes_R2/bayes_R2.html

Examples

```r
# continued from ?hsstan
bayes_R2(hs.biom)
loo_R2(hs.biom)
```

diabetes

Diabetes data with interaction terms

Description

The dataset consists of observations on 442 individuals for which a quantitative measure of diabetes progression is recorded in variable Y. Predictors include 10 baseline measurements, 45 interactions and 9 quadratic terms, for a total of 64 variables for each individual. Each variable has been standardized by subtracting the mean and then dividing it by its standard deviation.

Format

A data frame with 442 rows and 65 columns (centred and scaled).

Source

The original dataset is available from https://www.stanford.edu/~hastie/Papers/LARS/data64.txt

Examples

```r
data(diabetes, package="hsstan")
```
Description

Run the No-U-Turn Sampler (NUTS) as implemented in Stan to fit a hierarchical shrinkage model.

Usage

hsstan(
 x, # Data frame containing outcome, covariates and penalized predictors. Continuous predictors and outcome variable should be standardized before fitting the models as priors assume them to have mean zero and unit variance.
 covs.model, # Formula containing the unpenalized covariates.
 penalized = NULL, # Names of the variables to be used as penalized predictors. If NULL or an empty vector, a model with only unpenalized covariates is fitted.
 family = gaussian, # Type of model fitted: either gaussian() for linear regression (default) or binomial() for logistic regression.
 iter = 2000, # Total number of iterations in each chain, including warmup (2000 by default).
 warmup = floor(iter/2), # Number of warmup iterations per chain (by default, half the total number of iterations).
 scale.u = 2, # Prior scale (standard deviation) for the unpenalised covariates.
 penalized = NULL, # Names of the variables to be used as penalized predictors. If NULL or an empty vector, a model with only unpenalized covariates is fitted.
 penalized
 regularized = TRUE, # Logical; if TRUE, a regularized model is fitted, otherwise an unregularized model is fitted.
 nu = ifelse(regularized, 1, 3), # Degree of freedom for the t-distribution.
 par.ratio = 0.05, # Parameter ratio for the t-distribution.
 global.df = 1, # Global degrees of freedom for the t-distribution.
 slab.scale = 2, # Slab scale for the t-distribution.
 slab.df = 4, # Slab degrees of freedom for the t-distribution.
 qr = TRUE, # Whether to use QR decomposition of the design matrix.
 seed = 123, # Seed for the random number generator.
 adapt.delta = NULL, # Target acceptance rate for the No-U-Turn Sampler.
 keep.hs.pars = FALSE, # Whether to keep the hierarchical shrinkage parameters.
 ... # Additional arguments.
)

Arguments

x # Data frame containing outcome, covariates and penalized predictors. Continuous predictors and outcome variable should be standardized before fitting the models as priors assume them to have mean zero and unit variance.
covs.model # Formula containing the unpenalized covariates.
penalized # Names of the variables to be used as penalized predictors. If NULL or an empty vector, a model with only unpenalized covariates is fitted.
family # Type of model fitted: either gaussian() for linear regression (default) or binomial() for logistic regression.
iter # Total number of iterations in each chain, including warmup (2000 by default).
warmup # Number of warmup iterations per chain (by default, half the total number of iterations).
scale.u # Prior scale (standard deviation) for the unpenalised covariates.
regularized If TRUE (default), the regularized horseshoe prior is used as opposed to the original horseshoe prior.

nu Number of degrees of freedom of the half-Student-t prior on the local shrinkage parameters (by default, 1 if regularized=TRUE and 3 otherwise).

par.ratio Expected ratio of non-zero to zero coefficients (ignored if regularized=FALSE). The scale of the global shrinkage parameter corresponds to par.ratio divided by the square root of the number of observations; for linear regression only, it’s further multiplied by the residual standard deviation sigma.

global.df Number of degrees of freedom for the global shrinkage parameter (ignored if regularized=FALSE).

slab.scale Scale of the regularization parameter (ignored if regularized=FALSE).

slab.df Number of degrees of freedom of the regularization parameter (ignored if regularized=FALSE).

qr Whether the thin QR decomposition should be used to decorrelate the predictors (TRUE by default). This is silently set to FALSE if there are more predictors than observations.

seed Optional integer defining the seed for the pseudo-random number generator.

adapt.delta Target average proposal acceptance probability for adaptation, a value between 0.8 and 1 (excluded). If unspecified, it’s set to 0.99 for hierarchical shrinkage models and to 0.95 for base models.

keep.hs.pars Whether the parameters for the horseshoe prior should be kept in the stanfit object returned (FALSE by default).

... Further arguments passed to sampling, such as chains (4 by default), cores (the value of options("mc.cores") by default), refresh (iter / 10 by default).

Value

An object of class hsstan containing the following fields:

stanfit an object of class stanfit containing the output produced by Stan, including posterior samples and diagnostic summaries. It can be manipulated using methods from the rstan package.

betas posterior means of the unpenalized and penalized regression parameters.

call the matched call.

data the dataset used in fitting the model.

model.terms a list of names for the outcome variable, the unpenalized covariates and the penalized predictors.

family the family object used.

qr Whether the QR factorization was performed.

See Also

kfold() for cross-validating a fitted object.
Examples

```r
data(diabetes)
# non-default settings for speed of the example
df <- diabetes[1:50,]
hs.biom <- hsstan(df, Y ~ age + sex, penalized=colnames(df)[5:10],
    chains=2, iter=250)
```

kfold.hsstan
K-fold cross-validation

Description

Perform K-fold cross-validation using the same settings used when fitting the model on the whole data.

Usage

```r
## S3 method for class 'hsstan'
kfold(
  x,
  folds,
  chains = 1,
  store.fits = TRUE,
  cores = getOption("mc.cores", 1),
  ...
)
```

Arguments

- **x**: An object of class `hsstan`.
- **folds**: Integer vector with one element per observation indicating the cross-validation fold in which the observation should be withdrawn.
- **chains**: Number of Markov chains to run. By default this is set to 1, independently of the number of chains used for `x`.
- **store.fits**: Whether the fitted models for each fold should be stored in the returned object (TRUE by default).
- **cores**: Number of cores to use for parallelization (the value of `options("mc.cores")` by default). The cross-validation folds will be distributed to the available cores, and the Markov chains for each model will be run sequentially.
- **...**: Further arguments passed to `sampling`.
Value

An object with classes kfold and loo that has a similar structure as the objects returned by \texttt{loo()} and \texttt{waic()} and is compatible with the \texttt{loo_compare} function for comparing models. The object contains the following fields:

- \texttt{estimates} - a matrix containing point estimates and standard errors of the expected log pointwise predictive density ("elpd_kfold"), the effective number of parameters ("p_kfold", always NA) and the K-fold information criterion "kfoldic" (which is \(-2 \times \text{elpd_kfold}\), i.e., converted to the deviance scale).
- \texttt{pointwise} - a matrix containing the pointwise contributions of "elpd_kfold", "p_kfold" and "kfoldic".
- \texttt{fits} - a matrix with two columns and number of rows equal to the number of cross-validation folds. Column \texttt{fit} contains the fitted \texttt{hsstan} objects for each fold, and column \texttt{test.idx} contains the indices of the withdrawn observations for each fold. This is not present if \texttt{store.fits=FALSE}.
- \texttt{data} - the dataset used in fitting the model (before withdrawing observations). This is not present if \texttt{store.fits=FALSE}.

Examples

```r
# continued from ?hsstan
# only 2 folds for speed of example
folds <- rep(1:2, length.out=length(df$Y))
cv.biom <- kfold(hs.biom, folds=folds, cores=2)
```

log_lik.hsstan

Pointwise log-likelihood

Description

Compute the pointwise log-likelihood.

Usage

```r
## S3 method for class 'hsstan'
log\_lik(object, newdata = NULL, ...)
```

Arguments

- \texttt{object} - An object of class \texttt{hsstan}.
- \texttt{newdata} - Optional data frame to use to evaluate the log-likelihood. If \texttt{NULL} (default), the model matrix is used.
- \texttt{...} - Currently ignored.
Value
A matrix of size S by N, where S is number of draws from the posterior distribution, and N is the number of data points.

Examples

```r
# continued from ?hsstan
log_lik(hs.biom)
```

loo.hsstan
Predictive information criteria for Bayesian models

Description
Compute an efficient approximate leave-one-out cross-validation using Pareto smoothed importance sampling (PSIS-LOO), or the widely applicable information criterion (WAIC), also known as the Watanabe-Akaike information criterion.

Usage
```r
## S3 method for class 'hsstan'
loo(x, cores = getOption("mc.cores"), ...)

## S3 method for class 'hsstan'
waic(x, cores = getOption("mc.cores"), ...)
```

Arguments
- `x`
 An object of class hsstan.
- `cores`
 Number of cores used for parallelisation (the value of `options("mc.cores")` by default).
- `...`
 Currently ignored.

Value
A loo object.

Examples

```r
# continued from ?hsstan
loo(hs.biom)
waic(hs.biom)
```
nsamples.hsstan Number of posterior samples

Description

Extracts the number of posterior samples stored in a fitted model.

Usage

```r
## S3 method for class 'hsstan'
nsamples(object, ...)
```

Arguments

- `object` An object of class `hsstan`.
- `...` Currently ignored.

Value

The total number of posterior samples across the chains after discarding the warmup iterations.

Examples

```r
# continued from ?hsstan
nsamples(hs.biom)
```

plot.projsel Plot of relative explanatory power of predictors

Description

The function plots the relative explanatory power of each predictor in order of selection. The relative explanatory power of predictors is computed according to the KL divergence from the full model to each submodel, scaled in such a way that the baseline model (either the null model or the model containing only unpenalized covariates) is at 0, while the full model is at 1.
Usage

S3 method for class 'projsel'
plot(
 x,
 title = NULL,
 max.points = NULL,
 max.labels = NULL,
 from.covariates = TRUE,
 font.size = 12,
 hadj = 0.05,
 vadj = 0,
 ...
)

Arguments

x A data frame created by `projsel()`.

title Title of the plot. If `NULL`, no title is displayed.

max.points Maximum number of predictors to be plotted. If `NULL` (default) or 0, all points are plotted.

max.labels Maximum number of predictors to be labelled. If `NULL` (default), all predictor labels present in `x` are displayed, which may result in overprinting.

from.covariates Whether the plotting should start from the unpenalized covariates (TRUE by default). If set to FALSE, the plot includes a point for the null (intercept-only) model.

font.size Size of the textual elements (labels and axes).

hadj, vadj Horizontal and vertical adjustment for the labels.

... Currently ignored.

Value

A `ggplot2` object showing the relative incremental contribution of each predictor starting from the initial set of unpenalized covariates.

Description

Compute posterior uncertainty intervals for `hsstan` objects.
Usage

S3 method for class 'hsstan'
posterior_interval(object, pars = NULL, prob = 0.95, ...)

Arguments

object An object of class hsstan.
pars Names of parameters for which posterior intervals should be returned, which can be specified as regular expressions. If NULL (default) then this refers to the set of predictors used in the model.
prob A value between 0 and 1 indicating the desired probability to be covered by the uncertainty intervals (0.95, by default).
... Currently ignored.

Value

A matrix with lower and upper interval bounds as columns and as many rows as selected parameters.

Examples

continued from ?hsstan
posterior_interval(hs.biom)

posterior_linpred.hsstan

Posterior distribution of the linear predictor

Description

Extract the posterior draws of the linear predictor, possibly transformed by the inverse-link function.

Usage

S3 method for class 'hsstan'
posterior_linpred(object, transform = FALSE, newdata = NULL, ...)

Arguments

object An object of class hsstan.
transform Whether the linear predictor should be transformed using the inverse-link function (FALSE by default).
newdata Optional data frame containing the variables to use to predict. If NULL (default), the model matrix is used. If specified, its continuous variables should be standardized, since the model coefficients are learnt on standardized data.
... Currently ignored.
posterior_performance

Value

A matrix of size S by N, where S is the number of draws from the posterior distribution of the (transformed) linear predictor, and N is the number of data points.

Examples

continued from ?hsstan
posterior_linpred(hs.biom)

posterior_performance Posterior measures of performance

Description

Compute the log-likelihood and a relevant measure of performance (R-squared or AUC) from the posterior samples.

Usage

posterior_performance(
 obj,
 prob = 0.95,
 summary = TRUE,
 cores = getOption("mc.cores", 1)
)

Arguments

obj An object of class hsstan or kfold.
prob Width of the posterior interval (0.95, by default). It is ignored if summary=FALSE.
summary Whether a summary of the distribution of the performance measure should be returned rather than the pointwise values (TRUE by default).
cores Number of cores to use for parallelization (the value of options("mc.cores") by default).

Value

The mean, standard deviation and posterior interval of the performance measure (R-squared or AUC) if summary=TRUE, or a vector of values of the performance measure with length equal to the size of the posterior sample if summary=FALSE. Attribute type reports whether the performance measures are cross-validated or not.
Examples

continued from ?hsstan
posterior_performance(hs.biom, cores=1)

posterior_predict.hsstan

Posterior predictive distribution

Description

Draw from the posterior predictive distribution of the outcome.

Usage

S3 method for class 'hsstan'
posterior_predict(object, newdata = NULL, nsamples = NULL, seed = NULL, ...)

Arguments

object An object of class hsstan.
newdata Optional data frame containing the variables to use to predict. If NULL (default),
the model matrix is used. If specified, its continuous variables should be stan-
dardized, since the model coefficients are learnt on standardized data.
nsamples A positive integer indicating the number of posterior samples to use. If NULL
(default) all samples are used.
seed Optional integer defining the seed for the pseudo-random number generator.
... Currently ignored.

Value

A matrix of size S by N, where S is the number of simulations from the posterior predictive distri-
bution, and N is the number of data points.

Examples

continued from ?hsstan
posterior_predict(hs.biom)
posterior_summary

Posterior summary

Description

Produce a summary of the posterior samples for the quantities of interest.

Usage

posterior_summary(x, prob, ...)

Default S3 method:
posterior_summary(x, prob = 0.95, ...)

S3 method for class 'hsstan'
posterior_summary(x, prob = 0.95, pars = NULL, ...)

Arguments

- **x**: An object containing or representing posterior samples. If \(x \) is a matrix, it should have size \(S \times Q \), where \(S \) is the number of posterior samples, and \(Q \) is the number of quantities of interest.
- **prob**: Width of the posterior intervals (0.95, by default).
- **...**: Further arguments passed to or from other methods.
- **pars**: Vector of parameter names to be extracted. If NULL (default) then this refers to the set of predictors used in the model.

Value

A matrix with columns containing mean, standard deviation and posterior intervals for the given quantities.

See Also

* summary() to produce summaries of hsstan objects that include the number of effective samples and the split-Rhat diagnostic.

Examples

continued from ?hsstan
posterior_summary(hs.biom)
print.hsstan
Print a summary for the fitted model

Description
Print a summary for the fitted model

Usage
```r
## S3 method for class 'hsstan'
print(x, ...)
```

Arguments
- **x**
 An object of class `hsstan`.
- **...**
 Further arguments to `summary()`.

projsel
Forward selection minimizing KL-divergence in projection

Description
Forward selection minimizing KL-divergence in projection

Usage
```r
projsel(obj, max.iters = 30, out.csv = NULL)
```

Arguments
- **obj**
 Object of class `hsstan`.
- **max.iters**
 Maximum number of iterations (number of predictors selected) after which the selection procedure should stop.
- **out.csv**
 If not NULL, the name of a CSV file to save the output to.

Value
A data frame of class `projsel` where each row corresponds to a forward-selected submodel that contains all variables listed up to that row. The data frame contains the following columns:
- **var**
 names of the variables selected.
- **kl**
 KL-divergence from the full model to the submodel.
- **rel.kl.null**
 relative explanatory power of predictors starting from the intercept-only model.
- **rel.kl**
 relative explanatory power of predictors starting from the model containing unpenalized covariates.
- **elpd**
 the expected log predictive density of the submodels.
- **delta.elpd**
 the difference in elpd from the full model.
Examples

```r
# continued from ?hsstan
sel <- projsel(hs.biom, max.iters=3)
plot(sel)
```

Description

Report statistics on the parameters used in the sampler, the sampler behaviour and the sampling time.

Usage

```r
sampler.stats(object)
```

Arguments

- `object`
 An object of class `hsstan`.

Value

A matrix with $C + 1$ rows, where C is the number of Markov chains, reporting average acceptance probability, average stepsize, number of divergent transitions, maximum tree depth, total number of gradient evaluations, warmup and sampling times in seconds.

Examples

```r
# continued from ?hsstan
sampler.stats(hs.biom)
```
Description

Summary for the fitted model

Usage

```r
## S3 method for class 'hsstan'
summary(
  object,
  pars = NULL,
  prob = 0.95,
  digits = 2,
  sort = NULL,
  decreasing = TRUE,
  max.rows = NULL,
  ...
)
```

Arguments

- **object**: An object of class `hsstan`.
- **pars**: Vector of parameter names to be extracted. If `NULL` (default) then this refers to the set of predictors used in the model.
- **prob**: Width of the posterior intervals (0.95, by default).
- **digits**: Number of decimal places to be reported (2 by default).
- **sort**: Column name used to sort the results according to the absolute value of the column. If `NULL` (default) or the column name cannot be found, no sorting occurs.
- **decreasing**: Whether the results should be sorted in decreasing order when a valid column name is specified in `sort` (TRUE by default).
- **max.rows**: Maximum number of rows to be returned. If `NULL` (default) or 0, all results are returned.
- **...**: Currently ignored.

Value

A matrix with summaries from the posterior distribution of the parameters of interest.

Examples

```r
# continued from ?hsstan
summary(hs.biom)
```
Index

*Topic **datasets**
 - diabetes, 4
 - bayes_R2 (bayes_R2.hsstan), 3
 - bayes_R2.hsstan, 3
 - diabetes, 4
 - hssstan, 5
 - hssstan-package, 2
 - kfold (kfold.hsstan), 7
 - kfold(), 6
 - kfold.hsstan, 7
 - log_lik (log_lik.hsstan), 8
 - log_lik.hsstan, 8
 - loo (loo.hsstan), 9
 - loo(), 8
 - loo.hsstan, 9
 - loo_compare, 8
 - loo_R2 (bayes_R2.hsstan), 3
 - nsamples (nsamples.hsstan), 10
 - nsamples.hsstan, 10
 - plot.projsel, 10
 - posterior_interval
 - (posterior_interval.hsstan), 11
 - posterior_interval.hsstan, 11
 - posterior_linpred
 - (posterior_linpred.hsstan), 12
 - posterior_linpred.hsstan, 12
 - posterior_performance, 13
 - posterior_predict
 - (posterior_predict.hsstan), 14
 - posterior_predict.hsstan, 14
 - posterior_summary, 15
 - print.hsstan, 16
 - projsel, 16
 - projsel(), 11

 sampler.stats, 17
 sampling, 6, 7
 summary(), 15, 16
 summary.hsstan, 18
 waic (loo.hsstan), 9
 waic(), 8