Package ‘htsr’

June 6, 2023

Type Package
Title Hydro-Meteorology Time-Series
Version 2.0.0
Date 2023-06-05
Author Pierre Chevallier [aut, cre]
Maintainer Pierre Chevallier <pierre.chevallier@mailo.com>
Description Functions for the management and treatment of hydrology and meteorology time-series stored in a 'Sqlite' data base.
License GPL-2
Depends R (>= 3.5.0)
Imports dplyr, tibble, ggplot2, readr, stringr, purrr, lubridate, RSQLite, DBI, RODBC, zoo, utils, stats, WriteXLS, readxl, RColorBrewer, grDevices, directlabels, openair, editData, shiny, Rcpp, raster
Suggests knitr, rmarkdown
Encoding UTF-8
RoxygenNote 7.2.3
VignetteBuilder knitr
LinkingTo Rcpp
NeedsCompilation yes
Repository CRAN
Date/Publication 2023-06-06 08:50:03 UTC

R topics documented:

- ds_dismeas ... 3
- ds_exp_hpts .. 4
- ds_inventory .. 4
- ds_sensor ... 5
- ds_station .. 6
R topics documented:

d_backup . 6
d_compact . 7
d_convert_hydraccess . 7
d_convert_weewx . 8
d_create . 9
d_exp_hcts . 10
d_imp_hcts . 11
d_inventory . 12
d_rem_hcts . 13
d_sensor . 13
d_station . 15
d_table . 18
d_wind . 19
dfc . 20
f_change_id . 20
f_convert . 21
f_csv_multivar . 22
f_month2day . 22
f_properties . 23
hs_tstep . 24
htsr . 24
h_addna . 25
h_avday . 25
h_common . 26
h_condition . 27
h_cumul . 28
h_gaperr . 28
h_gapfill . 29
h_gaprem_itv . 30
h_month . 30
h_nodata . 32
h_rainsnow . 33
h_rbond . 34
h_replace . 35
h_restrict . 35
h_rollav . 36
h_season . 37
h_stat_basic . 38
h_substitute . 38
h_timestep . 39
h_weightedsum . 40
h_wl_di . 41
h_year . 42
ps_plothts . 43
p_bar . 43
p_bar_app . 45
p_box_month . 46
p_clim . 47
ds_dismeas

Add, Modify or Remove discharge measurements (Shiny app)

Description

Add, Modify or Remove discharge measurements for a station/sensor

Usage

ds_dismeas(fsq, sta, sen)

Arguments

fsq htsr data base
sta Station Id.
sen Sensor Id.

Value

an actualized data base

Author(s)

P. Chevallier - Dec 2020
`ds_exp_hts`

Shiny app: export hts files from a sqlite data base

Description
Shiny application of the `d_exp_hts` function

Usage

```r
ds_exp_hts(fsq)
```

Arguments

- `fsq`
 File name of the Sqlite data base

Details

Complete the requested information in the left panel, then press the submit button in order to extract the file. If you want to display the plot of the extracted file, choose "line" or "bar" and press the plot button. When finished press "done".

If the data do not exist, the app crashes and error messages are displayed in the console window.

Value

a shiny session

Author(s)

P. Chevallier - Apr 2020 - Oct 2021

`ds_inventory`

Shiny app: inventory of htsr sqlite data base

Description
Shiny application of the `d_inventory` function

Usage

```r
ds_inventory(fsq)
```

Arguments

- `fsq`
 File name of the Sqlite data base
Details

Complete the requested information in the left panel, then press the submit button. If the station
field is empty, the function will return the list of the stations in the data base. If the station field is
filled, the function will return the list of the station sensors in the data base. When finished press
"done".

If the data do not exist, the app crashes and error messages are displayed in the console window.

Value

a shiny session

Author(s)

P. Chevallier - Sep-Nov 2020

\textbf{ds_sensor} \hspace{2cm} \textit{Shiny app: create, modify or remove a sensor from a data base}

Description

Shiny application of the \texttt{d_sensor} function

Usage

\texttt{ds_sensor(fsq)}

Arguments

\begin{center}
\begin{tabular}{ll}
\texttt{fsq} & File name of the Sqlite data base
\end{tabular}
\end{center}

Value

a shiny session

Author(s)

P. Chevallier - Nov 2020
ds_station

Shiny app: create, modify or remove a station from a data base

Description
Shiny application of the `d_station` function

Usage
```
d_station(fsq)
```

Arguments
- `fsq` File name of the Sqlite data base

Value
a shiny session

Author(s)
P. Chevallier - Apr-Nov 2020

d_backup

Backup a data base

Description
Back a htsr sqlite data base

Usage
```
d_backup(fsq)
```

Arguments
- `fsq` Full name of the data base

Value
A saved data base with extension .bak

Author(s)
P. Chevallier - Jan 2019 / Nov 2020
d_compact

Compact a data base

Description
Compact htsr sqlite data base

Usage
d_compact(fsq)

Arguments

fsq Full name of the data base

Value
New data base or overwritten data base. Note that the created data base is empty.

Author(s)
P. Chevallier - Jan 2019

d_convert_hydraccess Convert a full Hydraccess database into a new htsr sqlite database
(Windows only)

Description
Because the Hydraccess application only works into a Windows environment, this function cannot be applied on other platforms (Mas OS or Linux). Additionally, the R session must be configured in 32b (see the htsr-package vignette).

Usage
d_convert_hydraccess(fsq, db.hydaccess)

Arguments

fsq Full name of the sqlite data base
db.hydaccess Full name of the hydraccess data base
Details

If the specified sqlite data base already exists, a confirmation is requested to overwrite it.
An 32b ODBC Microsoft driver must be configured in the "administrative tools" and installed for the
hydraccess data base. The correct functioning can be verified using the sub-function u_test_rodbc(db.hydraccess),
which must be successful.

Value

A new or a replaced sqlite htsr data base.

Author(s)

P. Chevallier - Nov 2018-Nov 2020

See Also

d_inventory or ds_inventory for displaying the content of the sqlite data base; ds_exp_hts for
extracting a time-series.

Examples

Not run:

d_import_hydraccess("foo.sqlite","foo.mdb")

End(Not run)

d_convert_weewx

Convert a weewx data base into a htsr sqlite base

Description

Convert a weewx data base into a htsr sqlite base

Usage

d_convert_weewx(db.weewx, fsq, sta, name_st, tzo = "CET", bku = TRUE)

Arguments

db.weewx Full name of the weewx data base
fsq Full name of the htsr data base
sta Station id
name_st Station name
tzo Time zone of the weewx data (default = "CET")
bku Backup the data base (default = TRUE)
\textbf{\texttt{d_create}}

Author(s)

P. Chevallier - Feb 2018 - Dec 2022

See Also

\texttt{d_inventory} or \texttt{ds_inventory} list the content of the database; \texttt{d_exp_hts} to extract time-series.

Examples

```r
## Not run:

d_imp_weewx("weewx.sql", "foo.sqlite")

## End(Not run)
```

\texttt{d_create} \hspace{1cm} \textit{Create a database}

Description

Create htsr sqlite database

Usage

```r
d_create(fsq, cr_table = TRUE, bku = TRUE)
```

Arguments

- \texttt{fsq} Full name of the database
- \texttt{cr_table} Create the basis tables: TRUE (default), FALSE
- \texttt{bku} Operate a backup if \texttt{fsq} exists: TRUE (default) / FALSE

Details

If the database already exists and \texttt{bku} is TRUE, a backup is automatically generated.

If \texttt{cr_table} is TRUE, the following tables are also created: ST (stations), SS (sensors), WL (water levels), DI (discharges), PR (Precipitations), WE (weather) and QU (quality)

Value

a new database

Author(s)

P. Chevallier - Jan 2019
d_exp_hts
Extraction of a time-series from htsr data base

Description

The function extracts a time-series in the "hts" format. It products a "tibble" table with four columns: Date, Value, Station, Sensor. It is the default format of the package. The function *f_convert* converts it in Excel or csv format.

Usage

```r
d_exp_hts(fsq, sta, sen, rtime = FALSE, dstart, dend, rplot = FALSE)
```

Arguments

- `fsq` Full name of the data base
- `sta` Station id.
- `sen` Sensor id.
- `rtime` Reduce time interval TRUE / FALSE (default)
- `dstart` Start date YYYY-MM-DD (default: start date of the ts)
- `dend` End date YYYY-MM-DD (default: end date of the ts)
- `rplot` Plot the extracted file TRUE / FALSE (default)

Details

For a step by step operation the function _ds_exp_hts_ is more convenient.

Value

The function returns:

- a tibble tstab with 4 columns Date, Value, Station, Sensor
- a file (nomfic) with the following name: `<sensor.id>_<station.id>.hts`

Author(s)

P. Chevallier - oct 2017 - dec 2019

See Also

(ds_exp_hts manual settings of the parameters)
d_imp_hts

Examples

Not run:

f <- d_exp_hts("foo.sqlite","M","station","sensor")

End(Not run)

d_imp_hts

Import a hts file into a data base

Description

Import a hts file into a tshm sqlite base

Usage

d_imp_hts(fsq, file, table, bku = TRUE)

Arguments

fsq Full name of the data base
file Full name of hts file to import
table Table
bku Automatic Backup TRUE (default) / FALSE

Details

The main table where the data have to be removed must be selected with one the following abbreviation: WL (water level), DI (discharge), WE (weather), PR (precipitation) or QU (quality) If records already exist during the same interval, they are removed and replaced.

Value

Actualized data base

Author(s)

P. Chevallier - jan 2019
d_inventory

Inventory of an htsr data base

Description

The function produces an inventory of the stations and of sensors of an htsr data base. If only a display is needed, the function `ds_inventory` is more convenient.

Usage

```r
d_inventory(fsq, sta_sen = NA, form.out = NA)
```

Arguments

- `fsq` : Data base file
- `sta_sen` : Station_id, with its list of sensors
- `form.out` : Display option: NA (console, default) or excel (xlsx) or text (csv; ou csv.)

Details

If `sta_sen` is NA (default), all stations and sensors are processed. If `sta_sen` is a Station_id, only the sensors of this station are processed.

- `form.out` can take the following values: NA, "csv," text file with "." as decimal separator and ",," as field separator / "csv;" text file with ",," as decimal separator and ";;" as field separator / "xlsx" Excel file.

Value

Two tables with the inventory of stations and sensors of a data base. If the output format is an excel file, they are displayed in two sheets of the same excel file.

Author(s)

P. Chevallier - Jan 2019 - Nov 2020

See Also

`ds_inventory`
d_rem_hpts

Remove hts records from a data base

Description
Remove hts records from a Sqlite base

Usage

d_rem_hpts(fsq, table, sta, sen, start, end)

Arguments

- **fsq**: Full name of the data base
- **table**: Table
- **sta**: Station id
- **sen**: Sensor id
- **start**: Start time of removed records
- **end**: End time of removed records

Details
The main table where the data have to be removed must be selected with one the following abbreviation: WL (water level), DI (discharge), WE (weather), PR (precipitation) or QU (quality)

Value
Actualized data base

Author(s)
P. Chevallier - jan 2019 - dec 2022

d_sensor

Create, Modify or Remove a sensor

Description
Create, Modify or Remove a sensor. A shiny version of this function is available: link(ds_sensor)
Usage

```r
d_sensor(
    fsq,
    op = "C",
    sta,
    sen,
    table,
    name_fld = NA,
    value_fld = NA,
    bku = TRUE
)
```

Arguments

- `fsq` Full name of the data base
- `op` Create (default), modify or remove C/M/R
- `sta` Station id
- `sen` Sensor id
- `table` Table of the sensor
- `name_fld` List of field names
- `value_fld` List of field values
- `bku` Automatic Backup TRUE (default) / FALSE

Details

If `op` is C, the fields `sta`, `table` and `sen` are compulsory and cannot be modified afterwards.

Allowed entries for `table` are: WL (water levels), DI (discharges), QU (Quality), PR (precipitations), WE (weather).

The field names are expressed in French for compatibility reason with Hydraccess. A translation is given in [].

If `op` is C or M, the following fields can be completed:

- [Nature] Nature = as.character(NA),
- [Description] Description = as.character(NA),
- [Comment] Commentaire = as.character(NA),
- [Limni id] Code_Limni = as.character(NA),
- [Principal] Principal = as.logical(NA),
- [Fictive] Fictif = as.logical(NA),
- [Daily update] Maj_Journaliers = as.logical(NA),
- [Translation update] Maj_Traduction = as.logical(NA),
- [Automatic acquisition] Acquisition_Auto = as.logical(NA),
- [Operationnal] Operationnel = as.logical(NA),
[Instantaneous list] Liste_Inst = as.character(NA),
[Daily list] Liste_Jour = as.character(NA),
[Monthly list] Liste_Mois = as.character(NA),
[Aggregation] Agregation = as.character(NA),
[Time shift] Decalage_Temps = as.numeric(NA),
[Min] Mini = as.numeric(NA),
[Max] Maxi = as.numeric(NA),
[Gradient] Gradient_Maxi = as.numeric(NA),
[Accuracy] Precision = as.numeric(NA),
[Decimals] Decimales = as.numeric(NA),
[Slope] Pente = as.numeric(NA))

If op is R, all data corresponding to the sensor of the selected station are removed.

Value
Sensor created, modified or removed from the data base

Author(s)
P. Chevallier - Feb 2018-Dec 2022

See Also
- d_inventory or ds_inventory to explore the database content;
- ds_exp_hts to extract a time-series;
- d_create, d_table to create a database and/or create/remove a table;
- d_station or ds_station for create/remove a station.

| d_station | Create, Modify or Remove a station |

Description
Create, Modify or Remove a station in a tshm database. A shiny version of this function is available: ds_station.
Usage

d_station(
 fsq,
 op = "C",
 sta,
 ty_st = NA,
 name_st = NA,
 name_fld = NA,
 value_fld = NA,
 bku = TRUE
)

Arguments

fsq Full name of the data base
op Create (default), Modify or Remove C/M/R
sta Station id
ty_st Station type: "H" hydro or "M" meteo
name_st Station name
name_fld List of field names
value_fld list of field values
bku Automatic Backup TRUE (default) / FALSE

Details

The field names are expressed in French for compatibility reason with Hydraccess. A translation is given in [].

If op is C, the fields Id_Station (sta), Type_Station and Nom (name_st) are compulsory. The field Nom (name_st) can be modified afterwards.

If op is C or M, the following fields can be completed :

• [Order] Ordre = as.character(NA),
• [Station type] Type_Station = as.character(type_st),
• [Station id] Id_Station = as.character(sta),
• [Second station Id] Id_Secondaire = as.character(NA),
• [Third station id] Id_Tertiaire = as.character(NA),
• [Meteo type] Type_Meteo = as.character(NA),
• [Name] Nom = as.character(name_st),
• [Country] Pays = as.character(NA),
• [Zone] Zone = as.character(NA),
• [Sub-zone] SousZone = as.character(NA),
• [Large basin] GrandBassin = as.character(NA),
d_station

- [Basin] Bassin = as.character(NA),
- [Small basin] PetitBassin = as.character(NA),
- [River] Riviere = as.character(NA),
- [Manager] Gestionnaire = as.character(NA),
- [Latitude] Latitude = as.numeric(NA),
- [Longitude] Longitude = as.numeric(NA),
- [Altitude] Altitude = as.integer(NA),
- [Basin area] Superficie_bv = as.numeric(NA),
- [Starting month of hydro year] Mois_Debut_Hydro = as.numeric(NA),
- [Starting activity date] Debut_Activite = as.numeric(NA),
- [Activity] Activite = as.logical(NA),
- [Yes/No criterion] Critere_OuiNon = as.logical(NA),
- [Yes/No second criterion] Critere_OuiNon2 = as.logical(NA),
- [Numeric criterion] Critere_Numerique = as.numeric(NA),
- [Text criterion] Critere_Texte = as.character(NA),
- [Observer name] Nom_Observateur = as.character(NA),
- [Address] Adresse = as.character(NA),
- [Teletransmission] Teletransmission = as.logical(NA),
- [Recorder] Enregistreur = as.logical(NA),
- [Fictive] Fictive = as.logical(NA),
- [Comment] Commentaire = as.character(NA),
- [Flag] Flag = as.logical(NA),
- [District] District = as.character(NA),
- [Place] Localite = as.character(NA)

If op is M, station type and station id cannot be modified. The sensor data corresponding to the station are conserved.
If op is R, all data and sensors of the station are removed.

Value
Station created, modified ou removed from the data base

Author(s)
P. Chevallier - Jan 2018-Dec 2022

See Also
- d_inventory or ds_inventory for exploring the data base content;
- ds_exp_hts for extracting a time-series;
- d_table for creating a data base and/or creating/removing a table;
- d_sensor for creating, modifying or removing a sensor.
d_table

Create or remove a table of a htsr sqlite base

Description
The function allows to create or remove of a tshm sqlite base. If the base doesn’t exist, it is created.

Usage

 d_table(fsq, table, op = "C", bku = TRUE)

Arguments

 fsq Full name of the database
 table Table name
 op Create (default) or Remove C/R
 bku Automatic Backup TRUE (default) / FALSE

Details
Possible table names : ST (Stations), SS (Sensors), WL (Water levels), DI (Discharges), WE, (Weather), PR (Precipitations), QU (Quality)

Value
Table created or removed

Author(s)
P. Chevallier - Jan-Feb 2018

See Also

 • d_inventory or ds_inventory to list the content of the base ;
 • ds_exp_hts to extract a time-series
Create a wind table

Description
Create a tibble with wind direction and speed

Usage
\[\text{d_wind}(\text{fsq}, \text{sta}, \text{swd}, \text{swv}) \]

Arguments
- \text{fsq}: Full name of the htsr data base
- \text{sta}: Station id
- \text{swd}: Id of wind direction sensor
- \text{swv}: Id of wind speed sensor

Value
A RData file containing a tibble named "data_wind" with 5 columns date, month, year, wind_dir, wind_spd

Author(s)
P. Chevallier - Dec 2019 - Jan 2023

See Also
\p_wind plots wind roses

Examples

```
## Not run:

h\_wind (fsq="VB", swd="WD", swv="WV")

## End(Not run)
```
fc
Short-cut for file.choose

Description

Short-cut for file.choose

Usage

fc()

Value

A filename

Author(s)

P. Chevallier

f_change_id
Change Station id or Sensor id in a hts file

Description

The function changes the station and/or the sensor id of a hts file. The new file is renamed with the new ids and a prefix n_: nw_<sensor.id>_<station.id>.hts, BUT the eventual prefixes or suffixes of the original name are not conserved. The original file is not removed.

Usage

f_change_id(file, sta = NA, sen = NA, overwrite = FALSE)

Arguments

- **file**: file to proceed
- **sta**: new station id (default: NA)
- **sen**: new sensor id (default: NA)
- **overwrite**: TRUE / FALSE (default) if the output file exists

Author(s)

P. Chevallier - Nov 2017-Jan 2019
Convert an hts file in another format (xls, xlsx or csv) and vice-versa

Description

Converter in formats hts, xls, xlsx and text (csv et csv2)

Usage

```r
f_convert(file, form_start = "hts", form_end = "xlsx")
```

Arguments

- `file`: Hts file
- `form_start`: Initial format ("hts" (default) or "xls" or "xlsx")
- `form_end`: Final format ("hts" or "xls" or "xlsx" (default) or "csv" (separator , & decimal .) or "csv2" (separator ; and decimal .))

Details

'form_start' = csv or csv2 is for instance not accepted. It could be converted previously in xls or xlsx format.

Value

A file in the requested format with 4 columns: Date, Value, Station, Sensor

Author(s)

P. Chevallier - October 2017 - May 2022

Examples

```r
## Not run:
f_convert(file, "xlsx", "hts")
## End(Not run)
```
f_csv_multivar

Build a multivariable table file in csv format

Description

Build a multivariable table file in csv format

Usage

```r
f_csv_multivar(files, daily = TRUE, fileo = "fileo")
```

Arguments

- `files`: list of hts files
- `daily`: default = TRUE
- `fileo`: name of the output file (without extension)

Details

The function builds a csv file with values extracted from several hts files at the same date. So, it’s better to run `h_common` before to apply `f_csv_multivar`.

If daily is TRUE, only the date is taken into account, not the time.

Value

A csv table, where the first field is a date and the next fields values

Author(s)

P. Chevallier - Jan-Feb 2022

f_month2day

Interpolation of daily records from a monthly time series

Description

Interpolation of daily records from a monthly time-series

Usage

```r
f_month2day(file)
```

Arguments

- `file`: monthly time series to process
Details
The function build and interpolated daily time-series from a monthly one. The daily values are linearly computed between two consecutive monthly values.

Value
a daily time series

Author(s)
P. Chevallier - dec 2022

Usage
f_properties(file, gaps = FALSE)

Arguments
file : file to be analyzed
gaps : produce a file with a table of the gaps: TRUE / FALSE (default)

Details
If gaps = TRUE, a file is produced, with the same name of file and the extension .gap. It contents a table with the gaps of the series and allows to build a plot with the function p_gaps.

Value
Basic infos on a hts time-series

Author(s)
P. Chevallier - Jan 2019 - Oct 2021

See Also
p_gaps.
hs_tstep

Description

Shiny app: convert f file with fixed time-step

Usage

hs_tstep(file)

Arguments

file File to process

Value

a shiny session

Author(s)

P. Chevallier - Dec 2020 - Oct 2021

htsr

Description

htsr: A package for managing sqlite data bases, which contain hydro-meteorology time-series.

The htsr package contains 6 types of functions: data base (d_<NAME>), file f_<NAME>, hydromet (h_<NAME>), plotting (p_<NAME>), shiny (s_<NAME>) and miscellaneous (z_<NAME>).
h_addna

Add NA values within a time series

Description

Add NA values within a time series

Usage

\[
\text{h_addna}(\text{file, add})
\]

Arguments

- `file`: File name to proceed
- `add`: List of dates with NA values to be added

Details

The function adds records with NA in a time series at given dates. If the date already exists, the value is replaced by NA.

The output file is named with a nap_ prefix.

Author(s)

P. Chevallier - November 2022

Examples

```r
## Not run:
f <- h_addna (f, add = c("2021-01-01 12:00:00 UTC", "2031-01-01 12:00:00 UTC"))
## End(Not run)
```

h_avday

Daily average over a sequence of several years

Description

Daily average over a sequence of several years

Usage

\[
\text{h_avday}(\text{file, start = NA, end = NA, mhy = 1, precip = FALSE, dig = 1})
\]
Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>file</td>
<td>File name to proceed</td>
</tr>
<tr>
<td>start</td>
<td>Starting date (default = NA)</td>
</tr>
<tr>
<td>end</td>
<td>Ending date (default = NA)</td>
</tr>
<tr>
<td>mhy</td>
<td>Starting month of the hydrological year (default = 1)</td>
</tr>
<tr>
<td>precip</td>
<td>Precipitation time series (default = FALSE)</td>
</tr>
<tr>
<td>dig</td>
<td>Number of significant digits for Value (default = 1)</td>
</tr>
</tbody>
</table>

Details

The function means the values of each calendar day over a period larger than 4 years (i.e. it includes at least one Feb 29 day). The result is transferred to the last possible hydrological year of the interval.

In the special case of precipitation, where the distribution is discontinuous over time, the original values of the last hydrological year are replaced by values corrected proportionately.

Author(s)

P. Chevallier - Nov 2022

Examples

```r
## Not run:

f <- h_avday(f, start=NA, end=NA, mhy=10, precip=TRUE, dig=1)

## End(Not run)
```

h_common

Extract 2 (or more) time-series on their common period

Description

The fonction extract the data of 2 (or more) hts time-series for the common date/time records (precision of the second).

Usage

```r
h_common(files)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>files</td>
<td>List of file names to process.</td>
</tr>
</tbody>
</table>

Value

hts files resulting of the operation; their names are composed as: co_<original filename>
h_condition

Author(s)

P. Chevallier - Oct 2017-Jan 2019

Examples

Not run:
f <- h_common(files = c("foo1.hts","foo2.hts"))

End(Not run)

h_condition Conditional extraction of a time-series regarding another one

Description

The series to proceed is the first of the list, the conditional series the second. Only the common record dates are kept.

Usage

h_condition(files, condition)

Arguments

files Liste de 2 file names
condition Liste 3 objects : oper ("sup" or "inf" or "between"), thrhd1 < thrhd2 ; default is c("inf",0,NA)

Details

If the condition on the file 2 value is not respected, the value of file 1 is changed as NA.

The condition has 3 options : x< ("inf"), x>= ("sup"), < x <= ("between"). In case of error or by default, "inf" is considered. In the cases "inf" and "sup", only one threshold is used (thrhd1) ; in the case "between", two thresholds are needed (thrhd1 < thrhd2).

The output file is the name of the first file with a cd_ prefix.

Author(s)

P. Chevallier - Oct 2017-Jan 2019

Examples

Not run:
f <- h_condition(c(f1,f2), c("between", 0, 2))

End(Not run)
h_cumul

Description

The function returns a time-series of cumulated values. If the value is negative, the absolute value is taken. It is possible to limit the computation time interval. NA values are ignored.

Usage

h_cumul(file, start = NA, end = NA)

Arguments

- file: File name to proceed
- start: Start date, default = NA
- end: End date, default NA

Details

The output file is named with a cu_prefix.

Author(s)

P. Chevallier - Oct 2017-Jan 2019

Examples

```r
## Not run:
f <- h_cumul(f, start="2012-1-1", end = "2013-1-1")
## End(Not run)
```

h_gaperr

Description

Replace errors with gaps in a time-series based on neighboring values

Usage

h_gaperr(file, nv = 1, itv0 = 43201, df)
Arguments

- **file**: File name to proceed
- **nv**: Number of below and above neighboring values to take into account, default = 1
- **itv0**: Threshold of minimum time gap (see function h_gaprem_itv)
- **df**: Deviation value factor for testing if a value is correct or not

Details

Replace errors with gaps in a time-series based on neighboring values

Value

a time-series file with the prefix eg_

Author(s)

P. Chevallier - Nov 2019

Description

Simple gapfilling in a time-series

Usage

h_gapfill(file, npdt)

Arguments

- **file**: File name to proceed
- **npdt**: Number of time-steps

Details

Replace the missing values with the linear interpolated value within the gap interval, when the time interval is less than a number of fixed time steps.

CAUTION! this operation is only possible when the time-series has a fixed time-step.

Value

a time-series file with the prefix gf_

Author(s)

P. Chevallier - Nov 2017 - Nov 2021
h_gaprem_itv

Remove gaps in a time-series with a time interval threshold

Description
Remove gaps in a time-series with a time interval threshold

Usage
h_gaprem_itv(file, itv0 = 43201)

Arguments
file File name to proceed
itv0 Time threshold in seconds, default = 43201 (i.e 12 hours)

Details
Remove the missing values when the time interval between the previous and the next record is less than a fixed threshold

Value
a time-series file with the prefix gr_

Author(s)
P. Chevallier - Nov 2019

h_month

Monthly operations, based on a daily time-series

Description
Monthly operations, based on a daily time-series

Usage
h_month(
 file,
 op = "M",
 ba = NA,
 rmna = FALSE,
 climedit = FALSE,
 caledit_j = FALSE,
 caledit_m = FALSE,
Arguments

- **file**: Full file name of the daily time-series.
- **op**: Operation: mean ("M") or sum ("S")
- **ba**: Basin area in km2 or NA (default)
- **rmna**: Remove NA values TRUE / FALSE (default)
- **climedit**: Write a climatology file TRUE / FALSE (default)
- **caledit_j**: Write an Excel file with daily calendar TRUE / FALSE (default)
- **caledit_m**: Write an Excel file with monthly calendar TRUE / FALSE (default)
- **gapfill**: Replace the missing months by the "climatology" value TRUE / FALSE (default)
- **hts_year**: Extract the mean, max & min yearly values in hts files TRUE / FALSE (default)

Details

Based on a daily time-series, the function returns a monthly time-series, and computes a mean monthly climatology. It allows to consider or not the missing daily values: option rmna.

The function can also produce Excel files: with a calendar presentation (days in rows, months in columns, years in sheets): option caledit_j ; with the monthly means (or sums): option caledit_m. In addition, the missing values can be replaced by the mean of the existing values for other years : option gapfill.

Climatology files are by convention awarded to year 2000.

Generally, the values of the monthly climatologies are mean values (op="M"), except if they are volumes (e.g.: precipitation, evaporation, etc.). In these cases, the parameter op="S" must be precised.

If rmna = TRUE , the NA values are not taken into consideration for computing the sum or the mean.

In the case of discharge values, it is possible to compute monthly volumes expressed in mm. For that purpose, the basin area ba must be given in km2.

By default, the reference name of the time-series is <sensor.id>_<station.id>. It is possible to change it giving a value to the parameter ref.

Value

A list of timeSeries class objects including: [1] raw monthly data; [2] 12 climatology means (January to December); [3] gapfilled monthly data, if the option gapfill is TRUE.

Three hts time series files: a monthly data file with the suffix _M, a climatology data file with the suffix _C and, optionally, a gapfilled monthly data file with the suffix _G.

Optionally, two Excel files with calendar presented values:, one with daily data and one with monthly data, the fist one with a ad_ prefix and the second one with the am_ prefix.
Examples

```r
## Not run:
res <- h_month("foo.ts", op="S", ba=135, caledit_m = TRUE)
## End(Not run)
```

h_nodata

Replace values with NA conditionally or in a time interval

Description

Replace values with NA conditionally or in a time interval

Usage

```r
h_nodata(file, threshold = NA, test = ", test = ", start = NA, end = NA)
```

Arguments

- `file`: File name to proceed
- `threshold`: Threshold value (default = NA)
- `test`: Test "," (default);"<";"<=";">";">
- `start`: Start date/time (included) of POSIXct class (default = NA)
- `end`: End date/time (excluded) of POSIXct class (default = NA)

Details

The function replace values with NA conditionally or introduce a gap for a given interval.

For the conditional option, the start parameter must be NA. A conditional test is applied on the values (<= ; > ; >= ; < ; <=) with a fixed threshold returning NA if the test is verified.

For the gap option, the threshold parameter must be NA. All the values of the records within the interval start end are replaces by NA.

CAUTION ! At least one of both parameters threshold or start must not be NA. NA.

The output file is named with a na_ prefix.

Author(s)

P. Chevallier - Oct 2017-Jan 2019
h_rainsnow

Examples

```r
## Not run:
f <- h_nodata(f, threshold=10., test= "<=", start=NA)
## End(Not run)
```

h_rainsnow
Share the solid and liquid precipitations with a temperature criteria

Description

The precipitations are shared with a linear bevel between two temperature values.

Usage

```r
h_rainsnow(fpr, fta, ta0, ta1, sta = NA)
```

Arguments

- `fpr`
 Precipitation file name
- `fta`
 Temperature file name
- `ta0`
 Low temperature threshold
- `ta1`
 High temperature threshold
- `sta`
 Station id. (default = NA)

Details

The two time-series must be previously restricted to the same interval of time.
The two temperature thresholds can be equal.
The temperature time-series must be complete with no gap. Gaps are allowed in the precipitation time-series.
Is the station id is NA, the station id of the file fta is used.

Value

2 hts files, one with the liquid precipitation (prefix rn_) and one with the solid precipitation (prefix sn_).

Author(s)

P. Chevallier - Oct 2017- Feb 2019
Description

The function binds the data of 2 hts time-series for consecutive date/time records (precision of the second) of the same station.

Usage

h_rbind(files, sensor = "NewS", gap = TRUE)

Arguments

files List of char. File names to process.
sensor New sensor name of the resulting hts file (default ="NewS")
gap Introduce or not a gap between both series (default = TRUE)

Details

In the list, the files must be ordered from the oldest to the newest. If gap is TRUE, a gap is introduced between both series.

Value

hts file resulting of the operation; its names are composed as: <sensor>_<station>.hts, with the prefix na, if a gap has been introduced.

Author(s)

P. Chevallier - Mar-Nov 2020

Examples

Not run:

f <- h_bind(files = c("foo1.hts","foo2.hts"), sensor = "NewOne")

End(Not run)
h_replace
Replace a value by another

Description
Replace a value by another

Usage

```r
h_replace(file, old.val, new.val)
```

Arguments
- `file`: File name to proceed
- `old.val`: Value to be replaced
- `new.val`: New value

Details

The output file is named with a re_ prefix.

Author(s)
P. Chevallier - Oct 2017- Nov 2020

Examples

```r
## Not run:
f <- ts_replace_ts(f, NA, 0)
## End(Not run)
```

h_restrict
Restrict a series between 2 dates

Description
Restrict a series between 2 dates

Usage

```r
h_restrict(file, start = NA, end = NA)
```
Arguments

- **file**: File name to proceed
- **start**: Start date/time (included) of POSIXct class (default = NA)
- **end**: End date/time (excluded) of POSIXct class (default = NA)

Details

The output file is named with a rs_ prefix.

Author(s)

P. Chevallier - Nov 2017-Jan 2019

h_rollav

Rolling average of a daily time-series

Description

The function computes a rolling average of daily time-series values. NA values are removed.

Usage

```r
h_rollav(file, ti = 7, position = "central")
```

Arguments

- **file**: File name to proceed
- **ti**: Time interval of computation in days (default = 7)
- **position**: Position "central" or "right"

Details

The output file is named with a ro_ prefix. The computation considers the values before and after the current time step (position = "central") or the values before the current time step. If the position is "central", the position must be an odd integer.

Author(s)

P. Chevallier - Apr 2020
Description

The function provides seasonal time-series.

Usage

h_season(file, monthstart)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>file</td>
<td>Full file name to proceed</td>
</tr>
<tr>
<td>monthstart</td>
<td>List of 2 to 4 integers (between 1 and 12) giving the starting month of each season.</td>
</tr>
</tbody>
</table>

Details

2 to 4 seasons can be selected. For each season, the prefix sx_ where x is the season is added to the file name.

Value

list of file names for each seasonal time-series.

Author(s)

P. Chevallier - Oct 2017 - Mar 2020

Examples

```r
## Not run:

files <- h_season("foo.hts", monthstart=c(3,6,9,12))

## End(Not run)
```
h_stat_basic

Basic statistics of a time-series

Description

Compute the main statistic parameters of a time-series

Usage

h_stat_basic(files)

Arguments

- **files**: vector of file names to process

Value

a tibble with the basic stats of the files.

Author(s)

P. Chevallier - Oct 2017 - Feb 2022

Examples

```r
## Not run:
simplestat <- h_stat_basic(c("foo1.hts", "foo2.hts")
## End(Not run)
```

h_substitute

Substitute the missing values in a series by existing values of another series

Description

The series to proceed (first in file list) contents missing values or gaps to be replaced by those of the second series (second in file list).

The function only works on the common dates of both series.

Usage

h_substitute(files)
Arguments

files List of two file names

Details

The output file is named with a sb_ prefix.

Author(s)

P. Chevallier - Feb 2017 - Mar 2020

Examples

```r
## Not run:
f <- h_substitute(c(f1, f2))
## End(Not run)
```

h_timestep

Infra-daily fixed timestep

Description

Computes a time-series with a fixed infra-daily timestep starting from an instantaneous time-series
- possible option: sum, mean, max or min

Usage

```
h_timestep(file, tst, op = "M", shift = 0)
```

Arguments

- **file**: Instantaneous time-series
- **tst**: Timestep in minutes - must be a divisor of 1440 between 10 and 1440
- **op**: "S", "M" (default), "Mn" ou "Mx"
- **shift**: time shift for computing daily data in hours (default = 0)

Details

The op parameter give precise the chosen computation method within the interval: sum ("S"), la mean ("M"), minimum ("Mn") or maximum ("Mx").

In the case of a daily timestep (tst = 1440), the parameter shift allows to shift the time interval. For example if shift = 6, the date is computed from 6am until 6am the following day. The result is dated in the middle of the interval, i.e. if shift = 6; the datetime is 18.
Value
A hts time-series file with a fixed timestep. The duration of the time-step in minutes is added to the file name.

Author(s)
P. Chevallier - Oct 2017 - June 2023

Examples
Not run:
f <- h_timestep(f, tst, op="S", shift = 6)
End(Not run)

h_weightedsum

Weighted sum of time-series

Description
The function only works on the common period of the files without NA values. It operates weighted sums on one or several time-series. It is also possible to add a constant.

Usage

```r
h_weightedsum(files, weights, constant = 0)
```

Arguments

- **files**: List of file names to proceed
- **weights**: List of weights (must have the same length as files)
- **constant**: Constant to add (default = 0)

Details
For averaging n time-series one can use n weights wit a value of 1/n and constant = 0.

Value
The function returns + n hts files with the extracted common period + 1 hts file named as the first file of the list with the prefix w_. The sensor id is automatically set to "weighted".

Author(s)
P. Chevallier - Oct 2017-Oct 2021
h_wl_di

Computation of the discharges from water-levels

Description

Computes a discharge time-series from water levels data and calibration curves

Usage

```r
h_wl_di(fsq, sta, seni, seno, dstart = NA, dend = NA, dbo = TRUE)
```

Arguments

- `fsq`: htsr data base
- `sta`: Station Id.
- `seni`: Input sensor Id (water levels)
- `seno`: Output sensor Id (discharges)
- `dstart`: Start date (NA by default)
- `dend`: End date (NA by default)
- `dbo`: Includes the result in the data base (TRUE by default)

Details

Calibration curves must exist in the data base.

If `dbo` is TRUE, a discharge table "DI" and the sensor 'seno' must exist in the data base. The new discharge time-series overwrites the already existing data; however, it is asked to confirm the operation. In any case the data base is previously backed up.

Value

Writes an hts file with the resulting discharges and optionally includes it in the data base.

Examples

```r
## Not run:

# choose time-series f1, f2, f3
f1 <- "foo1.hts" ; f2 <- "foo2.hts" ; f3 <- "foo3.hts"
# the new f time-series contains records f[i] = f1[i] - (0.5 * f2[i]) + (0.5 * f3[i]) + 5
f <- h_weightedsum(c(f1,f2,f3), c(1,-0.5,0.5)), 5)
# the new f time-series contains records f[i] = (1.12 * f1[i]) + 3
f <- h_weightedsum(f1, 1.12, 3)

## End(Not run)
```
Author(s)

P. Chevallier - Dec 2020

See Also

The functions `d_exp_hts` and `d_imp_hts` are used for export the water levels, respectively import the discharges within the data base. The function `u_exp_discalib` included in `p_discalib` is used for loading the calibration curves.

h_year

Annual time series

Description

Annual time series

Usage

```r
h_year(file, mhy = 1, op = "M", dig = 1)
```

Arguments

- **file**: File name to proceed
- **mhy**: Starting month of the hydrological year (default = 1)
- **op**: Sum (S) or Mean (M) (default = "M")
- **dig**: Number of significant digits for Value (default = 1)

Details

The function computes an annual time-series using the annual mean or the annual sum of daily values. It allows the use of hydrological years. The date corresponds to the middle of the year, i.e. the 182th day.

Value

The function returns a time-series of annual values.

Author(s)

P. Chevallier - Nov 2022
ps_plothts

Shiny app: plot hts files

Description

Shiny application of the \texttt{p_line_app} and \texttt{p_bar_app} functions

Usage

\texttt{ps_plothts(files)}

Arguments

\texttt{files} \hspace{1cm} \text{List of the time-series files to be plotted.}

Details

When launched, a shiny window is open. The setting tab must be first completed and saved. Then
go to the plot tab, complete the plotting settings and press Plot. If you want to modify the initial
settings, return to the setting tab. After setting changes press Save one more time, go to the plot tab
and press Plot!

When finished, press Done to exit from the shiny windows

Author(s)

P. Chevallier - May 2020

p_bar

Bar plot

Description

Bar plot based on htsr time-series. The parameters can be set by \texttt{p_bar_app}. For a step by step
operation the function \texttt{ps_plothts} is more convenient.

Usage

\texttt{p_bar(nbst, filei, serlab, title, type, rnorm, rtime,}
Arguments

nbst Number of files to process
filei List of the file names to process
serlab List of the series labels to process
title Title of the plot - default : "Title"
type Title of the y axis - default : "Y axis"
rnorm Normalized values - TRUE/FALSE(default)
rtime Reduce the plotting interval - TRUE/FALSE(default)
start Start date - "YYYY-MM-DD" or NA (default)
end End date - "YYYY-MM-DD" or NA(default)
rfixy Fix the y scale - TRUE/FALSE(default)
y.down Min y - value or NA(default)
y.up Max y - value or NA(default)
pal List of colors
fct Plot facets (TRUE / FALSE)

Details

For a full description of the settings, see p_bar_app
If the number of files existing in the setting file is higher than the number of processed series nbst, only the nbst first files are processed.

Value

a ggplot2 object

Author(s)

P. Chevallier - Apr 2015 - Mar 2020

See Also

p_line for plotting lines and/or points and p_line for setting the plot parameters
Examples

```r
## Not run:

filei <- c("foo1.xlsx","foo2.xlsx")
serlab <- c("station1", "station2")
p_bar(filei, serlab)

## End(Not run)
```

Description

Application of the function `p_bar` for plotting points or bars. The resulting plot can be saved as `.png`, `.jpg` or `.pdf` files.

Usage

```r
p_bar_app(
  nbst,
  rpal = 0,
  savefig = FALSE,
  width = 8,
  height = 6,
  fileo = "plot.png"
)
```

Arguments

- **nbst**: Number of time-series to be plotted (default 1)
- **rpal**: Color palette settings 0 (default); 1 (mapalette) or 2 (manual)
- **savefig**: Save plot as png (default FALSE)
- **width**: Plot width (x100 pixels) (default = 8)
- **height**: Plot height (x100 pixels) (default = 6)
- **fileo**: Name of the plot file including extension (png, jpg or pdf) default = "plot.png"

Details

The number of time-series to be plotted is limited to 8, with option rpal = 0, 12 otherwise.

If savefig=TRUE, the plot is saved in the working directory. Following the chosen extension, the file is formatted as .png, .jpg or .pdf. The default is "plot.png".
Value

A ggplot2 object.

Author(s)

P. Chevallier - Oct 2017 - Mar 2020

See Also

p_line, p_bar

Examples

Not run:

p <- p_line_app(filelist = c(foo1, foo2), pset=TRUE, pfil=TRUE, rpal=1, fileo="plot23.pdf")

End(Not run)

p_box_month

Boxplot of the 12 months of a time-series.

Description

Boxplot of the 12 months of a time-series.

Usage

```r
p_box_month(
  file, 
  title = "Title", 
  axeY = "Y-axis", 
  savefig = FALSE, 
  fileo = "plot.png", 
  width = 8, 
  height = 6
)
```

Arguments

- **file**: File name of the time-series
- **title**: Title plot (default = Title)
- **axeY**: Title of y-axis (default Y-axis)
- **savefig**: Save plot file TRUE / FALSE (default)
- **fileo**: Name of the plot file with extension png, jpg or pdf
Plot climatologies in hydrological year

Description

This function processes climatology hts files created with \texttt{h_month}.

Usage

\begin{verbatim}
p_clim(
 files,
 type = "line",
 hydro.month = 1,
 title = "Title",
 yaxis = "Value",
 y.down = NA,
 y.up = NA,
 rpal = FALSE,
 pal = mapalette,
 legend.l = NA
)
\end{verbatim}

Arguments

\begin{itemize}
\item \texttt{files} \hspace{1cm} List of climatology file names
\item \texttt{type} \hspace{1cm} Type: "line" (default) or bar
\item \texttt{hydro.month} \hspace{1cm} Starting month or the hydrological year (default = 1)
\item \texttt{title} \hspace{1cm} Title of the plot (default = "Title")
\item \texttt{yaxis} \hspace{1cm} Title of y-axis (default = "Value")
\item \texttt{y.down} \hspace{1cm} Down limit of y-axis (default = NA)
\item \texttt{y.up} \hspace{1cm} Up limit of y-axis (default = NA)
\item \texttt{rpal} \hspace{1cm} Choice of a color palette TRUE/FALSE (default)
\item \texttt{pal} \hspace{1cm} Color choice or mapalette (default)
\item \texttt{legend.l} \hspace{1cm} List of text to be displayed in the plot legend (default = NA)
\end{itemize}
Details

The parameter type allows to display a line graph or a bar graph.
The parameter hydro.mont fixes the starting month of the hydrological year.
The y-axis scale can be fixed with y.down and y.up.
By default, the color palette is the R one. It can be change with a color list in the pal parameter or
choosing mapalette (default in pal)
For default station_sensor ids are displayed in the legend.l list. But it can be changed entering a list
of texts in legend.l,, which must have the same length as the file number.

Value

A ggplot2 object.

Author(s)

P. Chevallier - Feb 2017-Feb 2019

Description

Experimental function, which is for instance limited to only two calibration curves on the same plot.
The function plot the discharges measurements and the corresponding calibration curves starting.
Only the "active" discharge measurements are plotted. The parameter plotdism displays them or not.
One can zoom on a subpart of the plot using the limit values on the x and y axis.
The savefig (default = FALSE by default) parameter allows to save the result in a png, jpg or pdf file,
according to the extension of fout.

Usage

p_discalib(
 fsq,
 sta,
 sen = "IH",
 plotcalib = TRUE,
 plotdism = TRUE,
 title = "Title",
 savefig = FALSE,
 width = 8,
 height = 6,
 fout = "plot.png",
 limx = FALSE,
Arguments

- `fsq` (Data base file name)
- `sta` (Station Id.)
- `sen` (Sensor Id. (default = "IH")
- `plotcalib` (Plot calibrations TRUE (default) / FALSE)
- `plotdism` (Plot discharge measurements TRUE (default) / FALSE)
- `title` (Plot title (default: Title))
- `savefig` (Save plot in a png file TRUE (default) / FALSE)
- `width` (Plot width (x 100 pixels) (default = 8))
- `height` (Plot height (x 100 pixels) (default = 6))
- `fout` (Plot file name (default = "plot.png")
- `limx` (Limit x axis TRUE / FALSE (default)
- `limy` (Limit y axis TRUE / FALSE (default)
- `xinf` (Low value for x (default = NA))
- `xsup` (High value for x (default = NA))
- `yinf` (Low value for y (default = NA))
- `ysup` (High value for y (default = NA))

Author(s)

P. Chevallier - Sep 2017 - Dec 2020

p_gaps

Plot of data inventory

Description

This function plot an inventory of the data from one or several station(s)-sensor(s). It is based on the .gap files provided by the function `f_properties`. It allows to highlight the gaps in time-series.

Usage

```r
p_gaps(files, title = "Inventory", BW = FALSE, margin = 0.1)
```
Arguments

- **files**: List of series to plot
- **title**: Plot title, default is "Inventory"
- **BW**: Black & white plot TRUE / FALSE (default)
- **margin**: Reserved space for label writing - default is 0.1

Details

The inventories are represented with lines displayed bottom-up in the order of the files list. They are labeled with the station_sensor ids.

Colors are the default colors of ggplot2. For a black & white plot, precise BW = TRUE.

The margin value is a reserved space for writing the label at the end of each line. Default value is 0.1 of the difference between the minimum and the maximum date. It shall be adjusted following the length of the labels.

Value

A ggplot2 object

Author(s)

P. Chevallier - Nov 2017 - Jan 2019

See Also

- `f_properties`

p_hypso

Plot the hypsometry curve of one or more basins

Description

Plot the hypsometry curve of one or more basins

Usage

```r
p_hypso(
  file,
  abbrev,
  prop = FALSE,
  range = 50,
  fact = 5,
  title = "Title",
  savefig = FALSE,
  width = 8,
  height = 6,
  fileo = "plot.png"
)
```

Arguments

- **file**: Raster file list of elevation model of basin(s)
- **abbrev**: List of abbreviated basin name(s)
- **prop**: TRUE / FALSE (default) plot a proportion curve of altitude ranges
- **range**: Width of altitude range (default = 50m)
- **fact**: Exagerating factor of the areas (default=5)
- **title**: Title of the plot (default = Title)
- **savefig**: Save the plot in png (default FALSE)
- **width**: Plot width (x 100 pixels) (default = 8)
- **height**: Plot height (x 100 pixels) (default = 6)
- **fileo**: Name of plot file with extension (default = "plot.png")

Details

This function uses the "raster" library and the dependencies "sp" and "rgdal", which must be installed.

Value

An object of ggplot2 class

Author(s)

P. Chevallier - Sep 2017- Nov 2021

Description

Line plot based on htsr time-series. The parameters can be setted by **p_line_app**. For a step by step operation the function **ps_plohts** is more convenient.

Usage

```r
p_line(
  nbst,
  filei,
  serlab,
  title,
  type,
  rnorm,
  rtime,
  start,
```
end,
rfixy,
y.down,
y.up,
pal,
linet,
linew,
rppt = FALSE,
pointt = NA,
points = NA,
smooth,
fct
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nbst</td>
<td>Number of files to process</td>
</tr>
<tr>
<td>filei</td>
<td>List of the file names to process</td>
</tr>
<tr>
<td>serlab</td>
<td>List of the time-series labels to process</td>
</tr>
<tr>
<td>title</td>
<td>Title of the plot</td>
</tr>
<tr>
<td>type</td>
<td>Title of the y axis</td>
</tr>
<tr>
<td>rnorm</td>
<td>Normalized values (TRUE / FALSE)</td>
</tr>
<tr>
<td>rtime</td>
<td>Reduce the plotting interval (TRUE / FALSE)</td>
</tr>
<tr>
<td>start</td>
<td>Start date - "YYYY-MM-DD"</td>
</tr>
<tr>
<td>end</td>
<td>End date - "YYYY-MM-DD"</td>
</tr>
<tr>
<td>rfixy</td>
<td>Fix the y scale (TRUE / FALSE)</td>
</tr>
<tr>
<td>y.down</td>
<td>Min y - value</td>
</tr>
<tr>
<td>y.up</td>
<td>Max y - value</td>
</tr>
<tr>
<td>pal</td>
<td>List of colors</td>
</tr>
<tr>
<td>linet</td>
<td>List of line type</td>
</tr>
<tr>
<td>linew</td>
<td>Line size</td>
</tr>
<tr>
<td>rppt</td>
<td>Plot the points (TRUE / FALSE)</td>
</tr>
<tr>
<td>pointt</td>
<td>List of point type</td>
</tr>
<tr>
<td>points</td>
<td>Point size</td>
</tr>
<tr>
<td>smooth</td>
<td>Trend fitting (TRUE / FALSE)</td>
</tr>
<tr>
<td>fct</td>
<td>Plot facets (TRUE / FALSE)</td>
</tr>
</tbody>
</table>

Details

For a full description of the settings, see `p_line_app`

If the number of files existing in the setting file is higher than the number of processed time-series `nbst`, only the `nbst` first files are processed.

If `fct` is TRUE, the plot is presented in facet shape, each facet corresponding to a file.
p_line_app

Value

a ggplot2 object

Author(s)

P. Chevallier - Apr 2015 - Mar 2020

See Also

p_bar for plotting bars and p_line_app for setting the plot parameters

Examples

Not run:

filei <- c("foo1.xlsx","foo2.xlsx")
serlab <- c("station1", "station2")
p_line(filei, serlab)

End(Not run)

p_line_app

Plot lines

Description

Application of the functions p_line p_line for plotting lines. The resulting plot can be saved as .png, .jpg or .pdf files.

Usage

p_line_app(
 nbst,
 rpal = 0,
 savefig = FALSE,
 width = 8,
 height = 6,
 fileo = "plot.png"
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nbst</td>
<td>Number of time-series to be plotted (default 1)</td>
</tr>
<tr>
<td>rpal</td>
<td>Color palette settings 0 (default); 1 (mapalette) or 2 (manual)</td>
</tr>
<tr>
<td>savefig</td>
<td>Save plot as png (default FALSE)</td>
</tr>
</tbody>
</table>

p_line_app

Plot lines

Description

Application of the functions p_line p_line for plotting lines. The resulting plot can be saved as .png, .jpg or .pdf files.

Usage

p_line_app(
 nbst,
 rpal = 0,
 savefig = FALSE,
 width = 8,
 height = 6,
 fileo = "plot.png"
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nbst</td>
<td>Number of time-series to be plotted (default 1)</td>
</tr>
<tr>
<td>rpal</td>
<td>Color palette settings 0 (default); 1 (mapalette) or 2 (manual)</td>
</tr>
<tr>
<td>savefig</td>
<td>Save plot as png (default FALSE)</td>
</tr>
</tbody>
</table>

width Plot width (x100 pixels) (default = 8)
height Plot height (x100 pixels) (default = 6)
fileo Name of the plot file including extension (png, jpg or pdf) default = "plot.png"

Details
The number of time-series to be plotted is limited to 8, with option rpal = 0, 12 otherwise.
If savefig=TRUE, the plot is saved in the working directory. Following the chosen extension, the file is formatted as .png, .jpg or .pdf. The default is "plot.png".

Value
A ggplot2 object.

Author(s)
P. Chevallier - Oct 2017 - Mar 2020

See Also
p_line, p_bar

Examples
Not run:
p <- p_line_app(filelist = c(foo1, foo2),pset=TRUE, pfil=TRUE, rpal=1, fileo="plot23.pdf")
End(Not run)

p_scatter

Scatter plot of 2 or more time-series

Description
The reference time-series is the first of the list. The scatter plot regards only the common dates of the series. In addition to the plot, a linear function is adjusted forcing or not the interception by the origin.

Usage
p_scatter(
 files,
 intercept.zero = FALSE,
 remove.zero = FALSE,
 lg.axis = c(NA, NA),
 title = "Title"
)
Arguments

- **files**
 - Description: List of file names to proceed

- **intercept.zero**
 - Description: TRUE/FALSE (default) force the interception by origin

- **remove.zero**
 - Description: TRUE / FALSE (default) remove the records with Value = 0 (e.g. precipitations)

- **lg.axis**
 - Description: Legend list for axis x & y (default = NA)

- **title**
 - Description: Title of the plot (default: Title)

Value

- a table named "result" with 5 columns: variable name, size of the sample, correlation coefficient, regression line slope, interception

Author(s)

- P. Chevallier - Oct 2017-Apr 2023

Examples

```r
## Not run:
result <- p_scatter(files = c("foo1.RData","foo2.RData"),
                    intercept.zero = TRUE)

## End(Not run)
```

Description

Plot wind roses using the "data_wind" tibble created with the function `d_wind`.

Usage

```r
p_wind(
  data_wind,
  ws.int = 0.5,
  angle = 45,
  grid.line = 10,
  type = "default",
  breaks = 5,
  offset = 5,
  paddle = FALSE,
  key.position = "right"
)
```
Arguments

- **data_wind**: Name of the tibble containing the wind data
- **ws.int**: Size of speed intervals
- **angle**: Value in percent of the range unit
- **grid.line**: Value in percent of the grid line frequency
- **type**: Type of plot: "default", "year" or "month"
- **breaks**: Number of speed intervals
- **offset**: Size in percent of the central hole
- **paddle**: Shape of the basic elements: if FALSE, polar, if TRUE, rectangular
- **key.position**: Position of the legend

Details

For a detailed description of all parameters see `windRose`

Value

A wind rose plot

Author(s)

P. Chevallier - Dec 2019

See Also

`d_wind`, `windRose`

Examples

```r
## Not run:
p_wind (data_wind = data_wind)
## End(Not run)
```

`u_index`
Compute an index of community

Description

Compute an index of community

Arguments

- **nz**: length of the concatenated time-series
- **yd**: initial vector of datetimes (in sec)
u_timestep

Details
the function compute an index, which the number of apparition of the same datetime in a time-series

Value
vector of indexes

Author(s)
P. Chevallier - April 2023

u_timestep
Compute values in a time-series with a fixed timestep

Description
Compute values in a time-series with a fixed timestep

Arguments
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>te</td>
<td>time end (in sec)</td>
</tr>
<tr>
<td>yd</td>
<td>initial vector of datetimes (in sec)</td>
</tr>
<tr>
<td>yv</td>
<td>initial vector of values</td>
</tr>
<tr>
<td>tst</td>
<td>timestep (in mn)</td>
</tr>
<tr>
<td>iop</td>
<td>operation index</td>
</tr>
</tbody>
</table>

Details
iop = 1 for sum; 0 for mean; -2 for min and +2 for max

Value
vector of values with fixed timestep

Author(s)
P. Chevallier - June 2023
w_atmp_alt

Compute atmospheric pressure, function of altitude

Description

Compute atmospheric pressure, function of altitude

Usage

w_atmp_alt(f_atmp, f_temp, alt)

Arguments

- f_atmp: File name of the known atmospheric pressure ts (mb)
- f_temp: File name of the air temperature at the known altitude (°C)
- alt: Altitude of the computed air-temperature ts (m)

Details

The function computes an atmospheric pressure time-series at a given altitude, based on a known atmospheric pressure time-series at the sea level. It also needs the air temperature time-series at the sea level for the same times.

In order to verify that both time-series correspond, it is strongly recommended to run previously the function h_common.

Value

An hts file with the suffixe _<alt>

Author(s)

P. Chevallier - Nov 2021 / Nov 2022

w_etp

Compute the potential evapotranspiration with several methods

Description

ETP calculation
Usage

```r
w_etp(
              "Heargraves-Samani"),
  freq = c("day", "month"),
  f_temp,
  f_relh = NA,
  f_radg = NA,
  f_radn = NA,
  f_atmp = NA,
  f_wvel = NA,
  f_tmin = NA,
  f_tmax = NA,
  lat = NA,
  alt = NA,
  albedo = NA,
  z = NA
)
```

Arguments

- `freq`: Frequency "day", "month"
- `f_temp`: File of air temperature in degC, mandatory
- `f_relh`: File of relative humidity in percent, mandatory
- `f_radg`: File of global radiation in W/m²
- `f_radn`: File of net radiation in W/m²
- `f_atmp`: File of atmospheric pressure in hPa
- `f_wvel`: File of wind velocities in m/s
- `f_tmin`: File of air min temperature in degC
- `f_tmax`: File of air max temperature in degC
- `lat`: Latitude in deg
- `alt`: Altitude in m
- `albedo`: Albedo
- `z`: Anemometer high in m

Details

- `f_temp` and `f_relh` are mandatory in all cases.
- For the Turc method, `f_radg` is needed.
- For the Penman-Monteith method, `f_atmp`, `f_wvel`, `h` and `z` are needed. If `f_radn` is not available, `lat`, `f_tmin` and `f_tmax` are also needed.
- The Turc method only works with a monthly frequency.
Value

An hts files resulting of the operation with a name composed as:

- `<J or M><EtpTu><Station_id>.hts` for the Turc method,
- `<J or M><EtpPM><Station_id>.hts` for the Penman-Monteith method,
- `<J or M><EtpPT><Station_id>.hts` for the Priestley-Taylor method
- `<J or M><EtpMa><Station_id>.hts` for the Makkink method
- `<J or M><EtpHS><Station_id>.hts` for the Heargraves-Samani method

Author(s)

P. Chevallier - April 2020-Nov2022

Source

Hingray, B., Picouet, C., Musy A., Hydrologie, une science pour l’ingénieur, Presses Polytechniques et Universitaires Romandes, 2008,

Description

Convert specific humidity to relative humidity

Usage

```r
w_specchum2relhum(f_specchum, f_temp, f_atm)
```

Arguments

- `f_specchum`: file of specific humidity, dimensionless (e.g. kg/kg) ratio of water mass / total air mass
- `f_temp`: file of temperature degrees C
- `f_atm`: file of atmospheric pressure in mb

Details

Converting specific humidity into relative humidity. from Bolton 1980 The computation of Equivalent Potential Temperature
w_temp_alt

Value

a file of relative humidity, ratio of actual water mixing ratio to saturation mixing ratio

Author(s)

P. Chevallier - Nov 2022

Source

David LeBauer - 2014
from Bolton 1980 The computation of Equivalent Potential Temperature
https://earthscience.stackexchange.com/questions/2360/how-do-i-convert-specific-humidity-to-relative-humidity

```
____________________________
| w_temp_alt                  |
| Compute temperature, function of altitude |
____________________________
```

Description

Compute temperature, function of altitude

Usage

```
w_temp_alt(file, alt0 = 0, alt, grad = -0.0065)
```

Arguments

- `file`: File name of the known air temperature ts (°C)
- `alt0`: Altitude of the known air temperature ts - default = 0 (m)
- `alt`: Altitude of the computed air temperature ts (m)
- `grad`: Temperature gradient vs elevation - default = -0.0065 (°C/m)

Details

The function computes an air temperature time-series at a given altitude, based on a known air temperature time-series at a known altitude.

Value

An hts file with the suffix _<alt>

Author(s)

P. Chevallier - Nov 2021
Description

Convert numeric coordinates in character coordinates

Usage

```r
z_coord(ncoord = NA, ccoord = NA, type)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ncoord</td>
<td>Numeric coordinate</td>
</tr>
<tr>
<td>ccoord</td>
<td>Character coordinate</td>
</tr>
<tr>
<td>type</td>
<td>Lat / Lon</td>
</tr>
</tbody>
</table>

Details

Only one of both parameters ncoord (numeric) and ccoord (character) must be filled, the other one remaining NA. The type of coordinate (Lat or Lon) is compulsory.

The character coordinate must be organized in one string with 4 fields (degrees, minutes, seconds, direction) separated with blanks (space or tab). Within each field, no blanks are allowed to share the numeric value and the unit character. For the unit character, the only following letters are allowed: letter d/m/s. For direction, the only the following letters are allowed: N/n/W/w/S/s/E/e.

Example: "25d 18m 56.2s S"

Value

Coordinates in characters

Author(s)

P. Chevallier - Jan 2019 / Nov 2020
Description

Utility for editing the settings of the htsr package.

Usage

```
z_set(tz = FALSE, mapal = FALSE)
```

Arguments

- **tz**
 - Logical, setting time zone (default=FALSE)
- **mapal**
 - Logical, setting my palette (default=FALSE)

Details

The function allows to edit user settings for time zone and color palette.

The settings are stored in an external data file of the htsr package, named "settings.RData".

tz is the time zone coded following the Olson standard list.

my palette is a list of 12 colors from the R color name list.

Author(s)

P. Chevallier - nov 2018 - nov 2020
Index

d_backup, 6
d_compact, 7
d_convert_hydraccess, 7
d_convert_weewx, 8
d_create, 9, 15
d_exp_hts, 4, 9, 10, 42
d_imp_hts, 11, 42
d_inventory, 4, 8, 9, 12, 15, 17, 18
d_rem_hts, 13
d_sensor, 5, 13, 17
d_station, 6, 15, 15
d_wind, 19, 55, 56
ds_dismeas, 3
ds_exp_hts, 4, 8, 10, 15, 17, 18
ds_inventory, 4, 8, 9, 12, 15, 17, 18
ds_sensor, 5
ds_station, 6, 15

f_change_id, 20
f_convert, 10, 21
f_csv_multivar, 22
f_month2day, 22
f_properties, 23, 49, 50
fc, 20

h_addna, 25
h_avday, 25
h_common, 26, 58
h_condition, 27
h_cumul, 28
h_gaperr, 28
h_gapfill, 29
h_gaprem_itv, 30
h_month, 24, 30, 47
h_nodata, 32
h_rainsnow, 33
h_rbind, 34
h_replace, 35
h_restrict, 35

h_rollav, 36
h_season, 37
h_stat_basic, 38
h_substitute, 38
h_timestep, 24, 39
h_weightedsum, 40
h_wl_di, 41
h_year, 42
hs_tstep, 24
htsr, 24

p_bar, 43, 45, 46, 53, 54
p_bar_app, 43, 44, 45
p_box_month, 46
p_clim, 47
p_discalib, 42, 48
p_gaps, 23, 49
p_hypso, 50
p_line, 44, 46, 51, 53, 54
p_line_app, 43, 51–53, 53
p_scatter, 54
p_wind, 19, 55
ps_plothts, 43, 43, 51

u_index, 56
u_timestep, 57

w_atmp_alt, 58
w_etp, 58
w_spechum2relhum, 60
w_temp_alt, 61
windRose, 56

z_coord, 62
z_set, 63