Package ‘httk’

February 20, 2023

Version 2.2.2
Date 2023-02-14
Title High-Throughput Toxicokinetics

Description Pre-made models that can be rapidly tailored to various chemicals and species using chemical-specific in vitro data and physiological information. These tools allow incorporation of chemical toxicokinetics ("TK") and in vitro-in vivo extrapolation ("IVIVE") into bioinformatics, as described by Pearce et al. (2017) (<doi:10.18637/jss.v079.i04>). Chemical-specific in vitro data characterizing toxicokinetics have been obtained from relatively high-throughput experiments. The chemical-independent ("generic") physiologically-based ("PBTK") and empirical (for example, one compartment) "TK" models included here can be parameterized with in vitro data or in silico predictions which are provided for thousands of chemicals, multiple exposure routes, and various species. High throughput toxicokinetics ("HTTK") is the combination of in vitro data and generic models. We establish the expected accuracy of HTTK for chemicals without in vivo data through statistical evaluation of HTTK predictions for chemicals where in vivo data do exist. The models are systems of ordinary differential equations that are developed in MCSim and solved using compiled (C-based) code for speed. A Monte Carlo sampler is included for simulating human biological variability (Ring et al., 2017 <doi:10.1016/j.envint.2017.06.004>) and propagating parameter uncertainty (Wambaugh et al., 2019 <doi:10.1093/toxsci/kfz205>). Empirically calibrated methods are included for predicting tissue:plasma partition coefficients and volume of distribution (Pearce et al., 2017 <doi:10.1007/s10928-017-9548-7>). These functions and data provide a set of tools for using IVIVE to convert concentrations from high-throughput screening experiments (for example, Tox21, ToxCast) to real-world exposures via reverse dosimetry (also known as "RTK") (Wetmore et al., 2015 <doi:10.1093/toxsci/kfv171>).

Depends R (>= 2.10)
Imports deSolve, msm, data.table, survey, mvtnorm, truncnorm, stats, graphics, utils, magrittr, purrr, methods, Rdpack

RdMacros Rdpack
R topics documented:

httk-package ... 6
add_chemtable ... 7
age_draw_smooth ... 9
apply_clint_adjustment 10
apply_fup_adjustment 11
armitage_estimate_sarea 13
armitage_eval .. 14
R topics documented:

armitage_input .. 18
augment.table .. 19
available_rblood2plasma ... 20
aylward2014 .. 22
blood_mass_correct ... 22
blood_weight .. 23
bmiage ... 24
body_surface_area .. 25
bone_mass_age .. 25
brain_mass ... 26
cale_analytic_css .. 27
cale_analytic_css_1comp ... 30
cale_analytic_css_3comp ... 31
cale_analytic_css_3compss 33
cale_analytic_css_pbk ... 34
calc_css ... 36
calc_dow ... 38
calc_elimination_rate .. 40
calc_fetal_phys .. 41
calc_fup_correction .. 47
calc_half_life ... 49
calc_hepatic_clearance .. 50
calc_hep_bioavailability ... 52
calc_hep_clearance .. 53
calc_hep_fu ... 54
calc Ionization .. 56
calc_kair ... 58
calc_krbc2pu ... 59
calc_ma ... 60
calc_maternal_bw .. 61
calc_mc_css .. 62
calc_mc_oral_equiv ... 68
calc_mc_tk .. 72
calc_rblood2plasma .. 75
calc_stats .. 77
calc_tkstats ... 79
calc_total_clearance .. 81
calc_vdist ... 82
CAS.checksum .. 84
chem.invivo.PK.aggregate.data 84
chem.invivo.PK.data .. 85
chem.invivo.PK.summary.data 88
chem.physical_and_invitro.data 91
ckd_epi_eq .. 94
concentration_data_Linakis2020 95
convert_htkpop_1comp ... 96
convert_solve_x .. 96
convert_units .. 98
create_mc_samples .. 100
dawson2021 .. 103
EPA.ref ... 103
estimate_gfr .. 104
R topics documented:

- estimate_gfr_ped ... 105
- estimate_hematocrit .. 105
- example.seem .. 106
- example.toxcast ... 107
- export_pbtk_jarnac .. 107
- export_pbtk_sbml .. 108
- fetalpcs .. 109
- Frank2018invivo ... 110
- gen_age_height_weight .. 111
- gen_height_weight .. 112
- gen_serum_creatinine .. 113
- get_cheminfo .. 114
- get_chem_id .. 117
- get_clint .. 118
- get_fup .. 119
- get_gfr_category ... 120
- get_invitroPK_param ... 121
- get_lit_cheminfo ... 122
- get_lit_css ... 123
- get_lit_oral_equiv ... 124
- get_physchem_param .. 126
- get_rblood2plasma ... 127
- get_weight_class ... 128
- get_wetmore_cheminfo .. 129
- get_wetmore_css ... 130
- get_wetmore_oral_equiv ... 131
- hct_h .. 133
- hematocrit_infants .. 134
- honda.ivive .. 135
- howgate .. 136
- httkpop ... 136
- httkpop_biotophys_default .. 141
- httkpop_direct_resample .. 142
- httkpop_direct_resample_inner 143
- httkpop_generate ... 145
- httkpop_mc ... 149
- httkpop_virtual_indiv ... 150
- hw_H .. 151
- in.list .. 152
- invitro_mc ... 154
- is.htk ... 156
- is_in_inclusive ... 158
- johnson .. 159
- kapraun2019 .. 159
- kidney_mass_children .. 160
- liver_mass_children .. 161
- load_dawson2021 ... 161
- load_pradeep2020 .. 162
- load_sipes2017 ... 163
- lump_tissues .. 164
- lung_mass_children .. 167
- mcnally_dt .. 167
<table>
<thead>
<tr>
<th>R topics documented</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>mecdt</td>
<td>168</td>
</tr>
<tr>
<td>metabolism_data_Linakis2020</td>
<td>169</td>
</tr>
<tr>
<td>monte_carlo</td>
<td>170</td>
</tr>
<tr>
<td>Obach2008</td>
<td>171</td>
</tr>
<tr>
<td>onlyp</td>
<td>172</td>
</tr>
<tr>
<td>pancreas_mass_children</td>
<td>172</td>
</tr>
<tr>
<td>parameterize_1comp</td>
<td>173</td>
</tr>
<tr>
<td>parameterize_3comp</td>
<td>175</td>
</tr>
<tr>
<td>parameterize_fetal_pbtk</td>
<td>178</td>
</tr>
<tr>
<td>parameterize_gas_pbtk</td>
<td>181</td>
</tr>
<tr>
<td>parameterize_pbtk</td>
<td>185</td>
</tr>
<tr>
<td>parameterize_schmitt</td>
<td>188</td>
</tr>
<tr>
<td>parameterize_steadystate</td>
<td>190</td>
</tr>
<tr>
<td>pc.data</td>
<td>193</td>
</tr>
<tr>
<td>pearce2017regression</td>
<td>194</td>
</tr>
<tr>
<td>pharma</td>
<td>194</td>
</tr>
<tr>
<td>physiology.data</td>
<td>195</td>
</tr>
<tr>
<td>pksim.pcs</td>
<td>196</td>
</tr>
<tr>
<td>pradeep2020</td>
<td>196</td>
</tr>
<tr>
<td>predict_partitioning_schmitt</td>
<td>197</td>
</tr>
<tr>
<td>pregnonpregaucs</td>
<td>199</td>
</tr>
<tr>
<td>propagate_invitrouv_1comp</td>
<td>200</td>
</tr>
<tr>
<td>propagate_invitrouv_3comp</td>
<td>200</td>
</tr>
<tr>
<td>propagate_invitrouv_pbtk</td>
<td>201</td>
</tr>
<tr>
<td>reset_httk</td>
<td>201</td>
</tr>
<tr>
<td>rfun</td>
<td>202</td>
</tr>
<tr>
<td>rmed0non0u95</td>
<td>203</td>
</tr>
<tr>
<td>r_left_censored_norm</td>
<td>204</td>
</tr>
<tr>
<td>scale_dosing</td>
<td>204</td>
</tr>
<tr>
<td>scr_h</td>
<td>205</td>
</tr>
<tr>
<td>set_httk_precision</td>
<td>206</td>
</tr>
<tr>
<td>skeletal_muscle_mass</td>
<td>207</td>
</tr>
<tr>
<td>skeletal_muscle_mass_children</td>
<td>208</td>
</tr>
<tr>
<td>skin_mass_bosgra</td>
<td>208</td>
</tr>
<tr>
<td>solve_1comp</td>
<td>209</td>
</tr>
<tr>
<td>solve_3comp</td>
<td>213</td>
</tr>
<tr>
<td>solve_fetal_pbtk</td>
<td>217</td>
</tr>
<tr>
<td>solve_gas_pbtk</td>
<td>220</td>
</tr>
<tr>
<td>solve_model</td>
<td>226</td>
</tr>
<tr>
<td>solve_pbtk</td>
<td>229</td>
</tr>
<tr>
<td>spleen_mass_children</td>
<td>234</td>
</tr>
<tr>
<td>supptab1_Linakis2020</td>
<td>235</td>
</tr>
<tr>
<td>supptab2_Linakis2020</td>
<td>235</td>
</tr>
<tr>
<td>Tables.Rdata.stamp</td>
<td>236</td>
</tr>
<tr>
<td>tissue.data</td>
<td>236</td>
</tr>
<tr>
<td>tissue_masses_flows</td>
<td>237</td>
</tr>
<tr>
<td>tissue_scale</td>
<td>238</td>
</tr>
<tr>
<td>wambaugh2019</td>
<td>239</td>
</tr>
<tr>
<td>wambaugh2019.nhanes</td>
<td>240</td>
</tr>
<tr>
<td>wambaugh2019.raw</td>
<td>241</td>
</tr>
<tr>
<td>wambaugh2019.seem3</td>
<td>243</td>
</tr>
<tr>
<td>wambaugh2019.tox21</td>
<td>243</td>
</tr>
</tbody>
</table>
Pre-made models that can be rapidly tailored to various chemicals and species using chemical-specific in vitro data and physiological information. These tools allow incorporation of chemical toxicokinetics ("TK") and in vitro-in vivo extrapolation ("IVIVE") into bioinformatics, as described by Pearce et al. (2017) (<doi:10.18637/jss.v079.i04>). Chemical-specific in vitro data characterizing toxicokinetics have been obtained from relatively high-throughput experiments. The chemical-independent ("generic") physiologically-based ("PBTK") and empirical (for example, one compartment) "TK" models included here can be parameterized with in vitro data or in silico predictions which are provided for thousands of chemicals, multiple exposure routes, and various species. High throughput toxicokinetics ("HTTK") is the combination of in vitro data and generic models. We establish the expected accuracy of HTTK for chemicals without in vivo data through statistical evaluation of HTTK predictions for chemicals where in vivo data do exist. The models are systems of ordinary differential equations that are developed in MCSim and solved using compiled (C-based) code for speed. A Monte Carlo sampler is included for simulating human biological variability (Ring et al., 2017 <doi:10.1016/j.envint.2017.06.004>) and propagating parameter uncertainty (Wambaugh et al., 2019 <doi:10.1093/toxsci/kfz205>). Empirically calibrated methods are included for predicting tissue:plasma partition coefficients and volume of distribution (Pearce et al., 2017 <doi:10.1007/s10928-017-9548-7>). These functions and data provide a set of tools for using IVIVE to convert concentrations from high-throughput screening experiments (for example, Tox21, ToxCast) to real-world exposures via reverse dosimetry (also known as "RTK") (Wetmore et al., 2015 <doi:10.1093/toxsci/kfv171>).

Author(s)

John Wambaugh, Robert Pearce, Caroline Ring, Gregory Honda, Nisha Sipes, Jimena Davis, Barbara Wetmore, Woodrow Setzer, Mark Sfeir

See Also

PowerPoint Presentation: High-Throughput Toxicokinetics (HTTK) R package

Breen et al. (2021): High-throughput PBTK models for in vitro to in vivo extrapolation
doi: 10.18637/jss.v079.i04

Pearce et al. (2017): httk: R Package for High-Throughput Toxicokinetics
doi: 10.1021/es501955g

Armitage et al. (2014): Application of mass balance models and the chemical activity concept to facilitate the use of in vitro toxicity data for risk assessment
doi: 10.1093/toxsci/kfv171

Incorporating High-Throughput Exposure Predictions with Dosimetry-Adjusted In Vitro Bioactivity to Inform Chemical Toxicity Testing
doi: 10.1093/toxsci/kfv118

Wambaugh et al. (2015): Toxicokinetic Triage for Environmental Chemicals
add_chemtable

Add a table of chemical information for use in making httk predictions.

Description

This function adds chemical-specific information to the table chem.physical_and_invitro.data. This table is queried by the model parameterization functions when attempting to parameterize a model, so adding sufficient data to this table allows additional chemicals to be modeled.

Usage

```
add_chemtable(
  new.table,  
data.list,  
current.table = NULL,  
reference = NULL,  
species = NULL,  
overwrite = FALSE,  
sig.fig = 4,  
clint.pvalue.overwrite = TRUE,  
allow.na = FALSE
)
```

Arguments

- `new.table`: Object of class data.frame containing one row per chemical, with each chemical minimally described by a CAS number.
add_chemtable

- **current.table**: This is the table to which data are being added.
- **reference**: This is the reference for the data in the new table. This may be omitted if a column in `data.list` gives the reference value for each chemical.
- **species**: This is the species for the data in the new table. This may be omitted if a column in `data.list` gives the species value for each chemical or if the data are not species-specific (e.g., MW).
- **overwrite**: If `overwrite=TRUE` then data in `current.table` will be replaced by any data in `new.table` that is for the same chemical and property. If `overwrite=FALSE` (DEFAULT) then new data for the same chemical and property are ignored. Funbound.plasma values of 0 (below limit of detection) are overwritten either way.
- **sig.fig**: Sets the number of significant figures stored (defaults to 4)
- **clint.pvalue.overwrite**: If TRUE then the Cl_int p-value is set to NA when the Cl_int value is changed unless a new p-value is provided. (defaults to TRUE)
- **allow.na**: If TRUE (default is FALSE) then NA values are written to the table, otherwise they are ignored.

Value

data.frame A new data.frame containing the data in `current.table` augmented by `new.table`

Author(s)

John Wambaugh

Examples

```r
library(httk)
my.new.data <- as.data.frame(c("A","B","C"),stringsAsFactors=FALSE)
my.new.data <- cbind(my.new.data,as.data.frame(c("111-11-2","222-22-0","333-33-5"),
            stringsAsFactors=FALSE))
my.new.data <- cbind(my.new.data,as.data.frame(c("DTX1","DTX2","DTX3"),
            stringsAsFactors=FALSE))
my.new.data <- cbind(my.new.data,as.data.frame(c(200,200,200)))
my.new.data <- cbind(my.new.data,as.data.frame(c(2,3,4)))
my.new.data <- cbind(my.new.data,as.data.frame(c(0.01,0.02,0.3)))
my.new.data <- cbind(my.new.data,as.data.frame(c(0,10,100)))
colnames(my.new.data) <- c("Name","CASRN","DTXSID","MW","LogP","Fup","CLint")

chem.physical_and_invitro.data <- add_chemtable(my.new.data,
                                            current.table=
                                            chem.physical_and_invitro.data,
                                            data.list=list(
                                            Compound="Name",
                                            CAS="CASRN",
                                            DTXSID="DTXSID",
                                            MW="MW",
                                            logP="LogP",
                                            Funbound.plasma="Fup",
                                            Clint="CLint"),
                                            species="Human",
                                            reference="MyPaper 2015")

parameterize_steadystate(chem.name="C")
```
calc_css(chem.name="B")

Initialize a column describing proton donors ("acids")
my.new.data$pka.a <- NA
set chemical C to an acid (pKa_donor = 5):
my.new.data[my.new.data$Name=="C","pka.a"] <- "5"
chem.physical_and_invitro.data <- add_chemtable(my.new.data,
 current.table=chem.physical_and_invitro.data,
 data.list=list(
 Compound="Name",
 CAS="CASRN",
 DTXSID="DTXSID",
 pKa_Donor="pka.a"),
 species="Human",
 reference="MyPaper 2015")

Note Rblood2plasma and hepatic bioavailability change (relative to above):
parameterize_steadystate(chem.name="C")

Initialize a column describing proton acceptors ("bases")
my.new.data$pka.b <- NA
set chemical B to a base with multiple pka's (pKa_accept = 7 and 8):
my.new.data[my.new.data$Name=="B","pka.b"] <- "7;8"
chem.physical_and_invitro.data <- add_chemtable(my.new.data,
 current.table=chem.physical_and_invitro.data,
 data.list=list(
 Compound="Name",
 CAS="CASRN",
 DTXSID="DTXSID",
 pKa_Accept="pka.b"),
 species="Human",
 reference="MyPaper 2015")

Note that average and max change (relative to above):
calc_css(chem.name="B")

age_draw_smooth

Draws ages from a smoothed distribution for a given gender/race combination

Description

This function should usually not be called directly by the user. It is used by httkpop_generate() in "virtual-individuals" mode.

Usage

`age_draw_smooth(gender, reth, nsamp, agelim_months, nhanes_mec_svy)`

Arguments

* gender
 Gender. Either 'Male' or 'Female'.
apply_clint_adjustment

rth
Race/ethnicity. One of 'Mexican American', 'Other Hispanic', 'Non-Hispanic Black', 'Non-Hispanic White', 'Other'.

nsamp
Number of ages to draw.

agelim_months
Two-element numeric vector giving the minimum and maximum ages in months to include.

nhanes_mec_svy
Surveydesign object created from *mecdt* using *svydesign* (this is done in *httkpop_generate*).

Value
A named list with members 'ages_months' and 'ages_years', each numeric of length nsamp, giving the sampled ages in months and years.

Author(s)
Caroline Ring

References

apply_clint_adjustment

Correct the measured intrinsic hepatic clearance for fraction free

Description
This function uses the free fraction estimated from Kilford et al. (2008) to increase the in vitro measure intrinsic hepatic clearance. The assumption that chemical that is bound in vitro is not available to be metabolized and therefore the actual rate of clearance is actually faster. Note that in most high throughput TK models included in the package this increase is offset by the assumption of "restrictive clearance" – that is, the rate of hepatic metabolism is slowed to account for the free fraction of chemical in plasma. This adjustment was made starting in Wetmore et al. (2015) in order to better predict plasma concentrations.

Usage

```r
apply_clint_adjustment(  
  Clint,  
  Fu_hep = NULL,  
  Pow = NULL,  
  pKa_Donor = NULL,  
  pKa_Acceptor = NULL,  
  suppress.messages = FALSE  
)
```
apply_fup_adjustment

Arguments

- **Clint**: In vitro measured intrinsic hepatic clearance in units of (ul/min/million hepatocytes).
- **Fu_hep**: Estimated fraction of chemical free for metabolism in the in vitro assay, estimated by default from the method of Kilford et al. (2008) using `calc_hep_fu`
- **Pow**: The octanal:water equilibrium partition coefficient
- **pKa_Donor**: A string containing hydrogen donor ionization equilibria, concatenated with commas. Can be "NA" if none exist.
- **pKa_Accept**: A string containing hydrogen acceptance ionization equilibria, concatenated with commas. Can be "NA" if none exist.
- **suppress.messages**: Whether or not the output message is suppressed.

Value

- Intrinsic hepatic clearance increased to take into account binding in the in vitro assay

Author(s)

- John Wambaugh

References

See Also

- `calc_hep_fu`

Description

This function uses the lipid binding correction estimated by Pearce et al. (2017) to decrease the fraction unbound in plasma (f_{up}). This correction assumes that there is additional in vivo binding to lipid, which has a greater impact on neutral lipophilic compounds.
apply_fup_adjustment

Usage

apply_fup_adjustment(
 fup,
 fup.correction = NULL,
 Pow = NULL,
 pKa_Donor = NULL,
 pKa_Accept = NULL,
 suppress.messages = FALSE,
 minimum.Funbound.plasma = 1e-04
)

Arguments

fup In vitro measured fraction unbound in plasma
fup.correction Estimated correction to account for additional lipid binding in vivo (Pearce et al., 2017) from calc_fup_correction
Pow The octanal:water equilibrium partition coefficient
pKa_Donor A string containing hydrogen donor ionization equilibria, concatenated with commas. Can be "NA" if none exist.
pKa_Accept A string containing hydrogen acceptance ionization equilibria, concatenated with commas. Can be "NA" if none exist.
suppress.messages Whether or not the output message is suppressed.
minimum.Funbound.plasma f_{up} is not allowed to drop below this value (default is 0.0001).

Value

Fraction unbound in plasma adjusted to take into account binding in the in vitro assay

Author(s)

John Wambaugh

References

See Also

calc_fup_correction
Estimate well surface area

Description
Estimate geometry surface area of plastic in well plate based on well plate format suggested values from Corning. option.plastic == TRUE (default) give nonzero surface area (sarea, m^2) option.bottom == TRUE (default) includes surface area of the bottom of the well in determining sarea. Optionally include user values for working volume (v_working, m^3) and surface area.

Usage
armitage_estimate_sarea(
 tcdata = NA,
 this.well_number = 384,
 this.cell_yield = NA,
 this.v_working = NA
)

Arguments
tcdata A data table with well_number corresponding to plate format, optionally include v_working, sarea, option.bottom, and option.plastic
this.well_number For single value, plate format default is 384, used if is.na(tcdata)==TRUE
this.cell_yield For single value, optionally supply cell_yield, otherwise estimated based on well number
this.v_working For single value, optionally supply working volume, otherwise estimated based on well number (m^3)

Value
A data table composed of any input data.table tcdata with only the following columns either created or altered by this function:

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>well_number</td>
<td>number of wells on plate</td>
<td></td>
</tr>
<tr>
<td>sarea</td>
<td>surface area</td>
<td>m^2</td>
</tr>
<tr>
<td>cell_yield</td>
<td>number of cells</td>
<td>cells</td>
</tr>
<tr>
<td>v_working</td>
<td>working (filled) volume of each well</td>
<td>uL</td>
</tr>
<tr>
<td>v_total</td>
<td>total volume of each well</td>
<td>uL</td>
</tr>
</tbody>
</table>

Author(s)
Greg Honda
Reference

armitage_eval

Evaluate the updated Armitage model

Description

Evaluate the Armitage model for chemical distribution in vitro. Takes input as data table or vectors of values. Outputs a data table. Updates over the model published in Armitage et al. 2014 include binding to plastic walls and lipid and protein compartments in cells.

Usage

```r
armitage_eval(
  casrn.vector = NA_character_,
  nomconc.vector = 1,
  this.well_number = 384,
  this.FBSf = NA_real_,
  tcdata = NA,
  this.sarea = NA_real_,
  this.v_total = NA_real_,
  this.v_working = NA_real_,
  this.cell_yield = NA_real_,
  this.Tsys = 37,
  this.Tref = 298.15,
  this.option.kbsa2 = FALSE,
  this.option.swat2 = FALSE,
  this.pseudooct = 0.01,
  this.memblip = 0.04,
  this.nlom = 0.2,
  this.P_nlom = 0.035,
  this.P_dom = 0.05,
  this.P_cells = 1,
  this.csalt = 0.15,
  this.celldensity = 1,
  this.cellmass = 3,
  this.f_oc = 1,
  this.conc_ser_alb = 24,
  this.conc_ser_lip = 1.9,
  this.Vdom = 0
)
```

Arguments

- **casrn.vector**: For vector or single value, CAS number
- **nomconc.vector**: For vector or single value, micromolar nominal concentration (e.g. AC50 value)
this.well_number

For single value, plate format default is 384, used if is.na(tcdata)== TRUE

tcdata

A data.table with casrn, nomconc, MP, gkow, gkaw, gswat, sarea, v_total, v_working. Otherwise supply single values to this.params.

this.sarea

Surface area per well (m^2)

this.v_total

Total volume per well (m^3)

this.v_working

Working volume per well (m^3)

this.cell_yield

Number of cells per well

this.Tsys

System temperature (degrees C)

this.Tref

Reference temperature (degrees K)

this.option.kbsa2

Use alternative bovine-serum-albumin partitioning model

this.option.swat2

Use alternative water solubility correction

this.pseudooct

Pseudo-octanol cell storage lipid content

this.memblip

Membrane lipid content of cells

this.nlom

Structural protein content of cells

this.P_nlom

Proportionality constant to octanol structural protein

this.P_dom

Proportionality constant to dissolve organic material

this.P_cells

Proportionality constant to octanol storage lipid

this.csalt

Ionic strength of buffer, mol/L

this.cellmass

Cell density kg/L, g/mL

this.f_oc

1, everything assumed to be like proteins

this.conc_ser_alb

24 g/L, mass concentration of albumin in serum.

this.conc_ser_lip

1.9 g/L, mass concentration of lipids in serum.

this.Vdom

0 ml, the volume of dissolved organic matter (DOM)

Value

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td>casrn</td>
<td>Chemical Abstracts Service Registry Number</td>
<td></td>
</tr>
<tr>
<td>nomconc</td>
<td>Nominal Concentration</td>
<td>mol/L</td>
</tr>
<tr>
<td>well_number</td>
<td>Number of wells in plate</td>
<td>unitless</td>
</tr>
<tr>
<td>sarea</td>
<td>Surface area of well</td>
<td>m^2</td>
</tr>
<tr>
<td>v_total</td>
<td>Total volume of well</td>
<td>m^3</td>
</tr>
<tr>
<td>v_working</td>
<td>Filled volume of well</td>
<td>m^3</td>
</tr>
<tr>
<td>cell_yield</td>
<td>Number of cells</td>
<td>cells</td>
</tr>
<tr>
<td>gkow</td>
<td>log10 octanol to water partition coefficient (PC)</td>
<td>log10</td>
</tr>
<tr>
<td>logHenry</td>
<td>log10 Henry’s law constant ‘</td>
<td>log10 atm-m3/mol</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
<td>Unit</td>
</tr>
<tr>
<td>--------</td>
<td>--------------------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>gswat</td>
<td>log10 Water solubility</td>
<td>log10 mol/L</td>
</tr>
<tr>
<td>MP</td>
<td>Melting Point</td>
<td>degrees Celsius</td>
</tr>
<tr>
<td>MW</td>
<td>Molecular Weight</td>
<td>g/mol</td>
</tr>
<tr>
<td>gkaw</td>
<td>air-water partition coefficient</td>
<td>(mol/m3)/(mol/m3)</td>
</tr>
<tr>
<td>dsm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>duow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>duaw</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dumw</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gkmw</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gkcw</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gkbsa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kGPL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tsys</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tref</td>
<td></td>
<td></td>
</tr>
<tr>
<td>option.kbsa2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>option.swat2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FBSf</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pseudooct</td>
<td></td>
<td></td>
</tr>
<tr>
<td>memblip</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nlom</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_nalom</td>
<td>dissolved organic matter to water PC</td>
<td>Dimensionless</td>
</tr>
<tr>
<td>P_dom</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_cells</td>
<td></td>
<td></td>
</tr>
<tr>
<td>csalt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>celldensity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cellmass</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_oc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cellwat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tcor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vm</td>
<td>Volume of media</td>
<td>L</td>
</tr>
<tr>
<td>Vwell</td>
<td>volume of medium (aqueous phase only)</td>
<td>L</td>
</tr>
<tr>
<td>Vair</td>
<td>volume of head space</td>
<td>L</td>
</tr>
<tr>
<td>Vcells</td>
<td>volume of cells/tissue</td>
<td></td>
</tr>
<tr>
<td>Valb</td>
<td>volume of serum albumin</td>
<td></td>
</tr>
<tr>
<td>Vslip</td>
<td>volume of serum lipids</td>
<td></td>
</tr>
<tr>
<td>Vdom</td>
<td>volume of dissolved organic matter</td>
<td></td>
</tr>
<tr>
<td>F_ratio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gs1.GSE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s1.GSE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gss.GSE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ss.GSE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kmw</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kow</td>
<td>octanol to water PC</td>
<td>dimensionless</td>
</tr>
<tr>
<td>kaw</td>
<td>the air to water PC</td>
<td>dimensionless</td>
</tr>
<tr>
<td>swat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kpl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kcw</td>
<td>cell/tissue to water PC</td>
<td>dimensionless</td>
</tr>
<tr>
<td>kbsa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>swat_L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>oct_L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>scell_L</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Author(s)

Greg Honda

References

Examples

library(httk)

Check to see if we have info on the chemical:
"80-05-7" %in% get_cheminfo()

#We do:
temp <- armitage_eval(casrn.vector = c("80-05-7", "81-81-2"), this.FBSf = 0.1,
this.well_number = 384, nomconc = 10)
print(temp$cfree.invitro)

Check to see if we have info on the chemical:
"793-24-8" %in% get_cheminfo()

Since we don't have any info, let's look up phys-chem from dashboard:
cheminfo <- data.frame(
 Compound="6-PPD",
 CASRN="793-24-8",
 DTXSID="DTXSID9025114",
 logP=4.27,
 logHenry=log10(7.69e-8),
 logWSol=log10(1.58e-4),
 MP=99.4,
 MW=268.404
)

Add the information to HTTK's database:
chem.physical_and_invitro.data <- add_chemtable(
 cheminfo,
 current.table=chem.physical_and_invitro.data,
 data.list=list(
 Compound="Compound",
 CAS="CASRN",
 DTXSID="DTXSID",
 MW="MW",
 logP="logP",
 logHenry="logHenry",
 logWSol="logWSol",
 MP="MP",
 species="Human",
 reference="CompTox Dashboard 31921"
),
 species="Human",
 reference="CompTox Dashboard 31921"
)

Run the Armitage et al. (2014) model:
out <- armitage_eval(
 casrn.vector = "793-24-8",
 this.FBSf = 0.1,
 this.well_number = 384,
 nomconc = 10
)

print(out)
Format

A data frame with 53940 rows and 10 variables:

- MP
- MW
- casrn
- compound_name
- gkaw
- gkow
- gswat

Author(s)

Greg Honda

Source

https://www.diamondse.info/

References

augment.table

Add a parameter value to the chem.physical_and_invitro.data table

Description

This internal function is used by add_chemtable to add a single new parameter to the table of chemical parameters. It should not be typically used from the command line.

Usage

```r
augment.table(
  this.table,
  this.CAS,
  compound.name = NULL,
  this.property,
  value,
  species = NULL,
  reference,
  overwrite = FALSE,
  sig.fig = 4,
  clint.pvalue.overwrite = TRUE,
  allow.na = FALSE
)
```
Arguments

this.table Object of class data.frame containing one row per chemical.
this.CAS The Chemical Abstracts Service registry number (CAS-RN) corresponding to the parameter value
compound.name A name associated with the chemical (defaults to NULL)
this.property The property being added/modified.
value The value being assigned to this.property.
species This is the species for the data in the new table. This may be omitted if a column in data.list gives the species value for each chemical or if the data are not species-specific (e.g., MW).
reference This is the reference for the data in the new table. This may be omitted if a column in data.list gives the reference value for each chemical.
overwrite If overwrite=TRUE then data in current.table will be replaced by any data in new.table that is for the same chemical and property. If overwrite=FALSE (DEFAULT) then new data for the same chemical and property are ignored. Fun-bound.plasma values of 0 (below limit of detection) are overwritten either way.
sig.fig Sets the number of significant figures stored (defaults to 4)
clint.pvalueoverwrite If TRUE then the Cl_int p-value is set to NA when the Cl_int value is changed unless a new p-value is provided. (defaults to TRUE)
allow.na If TRUE (default is FALSE) then NA values are written to the table, otherwise they are ignored.

Value
data.frame A new data.frame containing the data in current.table augmented by new.table

Author(s)
John Wambaugh

available_rblood2plasma

Find the best available ratio of the blood to plasma concentration constant.

Description

This function finds the best available constant ratio of the blood concentration to the plasma concentration, using get_rblood2plasma and calc_rblood2plasma.

Usage

available_rblood2plasma(
 chem.cas = NULL,
 chem.name = NULL,
 dtxsid = NULL,
 species = "Human",
 adjusted.Funbound.plasma = TRUE,
 suppress.messages = FALSE
)
Arguments

chem.cas Either the CAS number or the chemical name must be specified.
chem.name Either the chemical name or the CAS number must be specified.
dtxsid EPA's 'DSSTox Structure ID (https://comptox.epa.gov/dashboard) the chemical must be identified by either CAS, name, or DTXSIDs
species Species desired (either "Rat", "Rabbit", "Dog", "Mouse", or default "Human").
adjusted.Funbound.plasma Whether or not to use Funbound.plasma adjustment if calculating Rblood2plasma.
suppress.messages Whether or not to display relevant warning messages to user.

Details

Either retrieves a measured blood:plasma concentration ratio from the chem.physical_and_invitro.data table or calculates it using the red blood cell partition coefficient predicted with Schmitt's method.

If available, in vivo data (from chem.physical_and_invitro.data) for the given species is returned, substituting the human in vivo value when missing for other species. In the absence of in vivo data, the value is calculated with calc_rblood2plasma for the given species. If Funbound.plasma is unavailable for the given species, the human Funbound.plasma is substituted. If none of these are available, the mean human Rblood2plasma from chem.physical_and_invitro.data is returned. Details than the description above ~

Value

The blood to plasma chemical concentration ratio – measured if available, calculated if not.

Author(s)

Robert Pearce

See Also

calc_rblood2plasma
get_rblood2plasma

Examples

available_rblood2plasma(chem.name="Bisphenol A",adjusted.Funbound.plasma=FALSE)
available_rblood2plasma(chem.name="Bisphenol A",species="Rat")
Description

Aylward et al. (2014) compiled measurements of the ratio of maternal to fetal cord blood chemical concentrations at birth for a range of chemicals with environmental routes of exposure, including bromodiphenyl ethers, fluorinated compounds, organochlorine pesticides, polyaromatic hydrocarbons, tobacco smoke components, and vitamins.

Usage

`aylward2014`

Format

data.frame

Source

Kapraun et al. 2021 (submitted)

References

blood_mass_correct

Find average blood masses by age.

Description

If blood mass from `blood_weight` is negative or very small, then just default to the mean blood mass by age. (Geigy Scientific Tables, 7th ed.)

Usage

`blood_mass_correct(blood_mass, age_months, age_years, gender, weight)`

Arguments

- `blood_mass`: A vector of blood masses in kg to be replaced with averages.
- `age_months`: A vector of ages in months.
- `age_years`: A vector of ages in years.
- `gender`: A vector of genders (either 'Male' or 'Female').
- `weight`: A vector of body weights in kg.
Value

A vector of blood masses in kg.

Author(s)

Caroline Ring

References

Description

Predict blood mass based on body surface area and gender, using equations from Bosgra et al. 2012

Usage

blood_weight(BSA, gender)

Arguments

BSA

Body surface area in m^2. May be a vector.

gender

Either 'Male' or 'Female'. May be a vector.

Value

A vector of blood masses in kg the same length as BSA and gender.

Author(s)

Caroline Ring

References

Description

Charts giving the BMI-for-age percentiles for boys and girls ages 2-18

Usage

bmiage

Format

A data.table with 434 rows and 5 variables:

- **Sex**: Female or Male
- **Ages**: Age in months
- **P5**: The 5th percentile BMI for the corresponding sex and age
- **P85**: The 85th percentile BMI for the corresponding sex and age
- **P95**: The 95th percentile BMI for the corresponding sex and age

Details

For children ages 2 to 18, weight class depends on the BMI-for-age percentile.

- **Underweight**: <5th percentile
- **Normal weight**: 5th-85th percentile
- **Overweight**: 85th-95th percentile
- **Obese**: >=95th percentile

Author(s)

Caroline Ring

Source

https://www.cdc.gov/growthcharts/data/zscore/bmiagerev.csv

References

body_surface_area

Predict body surface area.

Description

Predict body surface area from weight, height, and age, using Mosteller’s formula for age>18 and Haycock’s formula for age<18

Usage

```r
body_surface_area(BW, H, age_years)
```

Arguments

- **BW**: A vector of body weights in kg.
- **H**: A vector of heights in cm.
- **age_years**: A vector of ages in years.

Value

A vector of body surface areas in cm^2.

Author(s)

Caroline Ring

References

bone_mass_age

Predict bone mass

Description

Predict bone mass from age_years, height, weight, gender, using logistic equations fit to data from Baxter-Jones et al. 2011, or for infants < 1 year, using equation from Koo et al. 2000 (See Price et al. 2003)

Usage

```r
bone_mass_age(age_years, age_months, height, weight, gender)
```
brain_mass

Arguments

- age_years: Vector of ages in years.
- age_months: Vector of ages in months.
- height: Vector of heights in cm.
- weight: Vector of body weights in kg.
- gender: Vector of genders, either 'Male' or 'Female'.

Value

- Vector of bone masses.

Author(s)

Caroline Ring

References

Description

- Predict brain mass from gender and age.

Usage

brain_mass(gender, age_years)

Arguments

- gender: Vector of genders, either 'Male' or 'Female'
- age_years: Vector of ages in years.

Value

- A vector of brain masses in kg.

Author(s)

Caroline Ring
References

calc_analytic_css

Calculate the analytic steady state plasma concentration.

Description

This function calculates the analytic steady state plasma or venous blood concentrations as a result of infusion dosing for the three compartment and multiple compartment PBTK models.

Usage

```r
calc_analytic_css(
  chem.name = NULL,
  chem.cas = NULL,
  dtxsid = NULL,
  parameters = NULL,
  species = "human",
  daily.dose = 1,
  route = "oral",
  exp.conc = 1,
  period = 24,
  exp.duration = 24,
  output.units = "uM",
  model = "pbtk",
  concentration = "plasma",
  suppress.messages = FALSE,
  tissue = NULL,
  restrictive.clearance = TRUE,
  bioactive.free.invivo = FALSE,
  IVIVE = NULL,
  parameterize.args = list()
)
```

Arguments

- `chem.name`: Either the chemical name, CAS number, or the parameters must be specified.
- `chem.cas`: Either the chemical name, CAS number, or the parameters must be specified.
- `dtxsid`: EPA's DSSTox Structure ID (https://comptox.epa.gov/dashboard) the chemical must be identified by either CAS, name, or DTXSIDs.
- `parameters`: Chemical parameters from `parameterize_pbstk` (for model = 'pbtk'), `parameterize_3comp` (for model = '3compartment'), `parameterize_1comp` (for model = '1compartment') or `parameterize_steadystate` (for model = '3compartmentss'); overrides `chem.name` and `chem.cas`.
- `species`: Species desired (either "Rat", "Rabbit", "Dog", "Mouse", or default "Human").
- `daily.dose`: Total daily dose, mg/kg BW.
route

Route of exposure (either "oral", "iv", or "inhalation" default "oral").

exp.conc

Specified inhalation exposure concentration for use in assembling 'forcings' data series argument for integrator. Defaults to uM/L.

period

For use in assembling forcing function data series 'forcings' argument, specified in hours.

exp.duration

For use in assembling forcing function data series 'forcings' argument, specified in hours.

output.units

Units for returned concentrations, defaults to uM (specify units = "uM") but can also be mg/L.

model

Model used in calculation,'gas_pbtk' for the gas pbtk model, 'pbtk' for the multiple compartment model, '3compartment' for the three compartment model, '3compartmentss' for the three compartment steady state model, and '1compartment' for one compartment model.

concentration

Desired concentration type: 'blood', 'tissue', or default 'plasma'. In the case that the concentration is for plasma, selecting "blood" will use the blood:plasma ratio to estimate blood concentration. In the case that the argument 'tissue' specifies a particular tissue of the body, concentration defaults to 'tissue' – that is, the concentration in the IF concentration is set to 'blood' or 'plasma' and 'tissue' specifies a specific tissue then the value returned is for the plasma or blood in that specific tissue.

suppress.messages

Whether or not the output message is suppressed.

tissue

Desired steady state tissue concentration. Default is of NULL typically gives whole body plasma concentration.

restrictive.clearance

If TRUE (default), then only the fraction of chemical not bound to protein is available for metabolism in the liver. If FALSE, then all chemical in the liver is metabolized (faster metabolism due to rapid off-binding).

bioactive.free.invivo

If FALSE (default), then the total concentration is treated as bioactive in vivo. If TRUE, the the unbound (free) plasma concentration is treated as bioactive in vivo. Only works with tissue = NULL in current implementation.

IVIVE

Honda et al. (2019) identified four plausible sets of assumptions for in vitro-in vivo extrapolation (IVIVE) assumptions. Argument may be set to "Honda1" through "Honda4". If used, this function overwrites the tissue, restrictive.clearance, and bioactive.free.invivo arguments. See Details below for more information.

parameterize.args

List of arguments passed to model’s associated parameterization function, including default.to.human, adjusted.Funbound.plasma, regression, and minimum.Funbound.plasma. The default.to.human argument substitutes missing animal values with human values if true, adjusted.Funbound.plasma returns adjusted Funbound.plasma when set to TRUE along with partition coefficients calculated with this value, regression indicates whether or not to use the regressions in calculating partition coefficients, and minimum.Funbound.plasma is the value to which Monte Carlo draws less than this value are set (default is 0.0001 – half the lowest measured Fup in our dataset).

...
Details

Concentrations are calculated for the specified model with constant oral infusion dosing. All tissues other than gut, liver, and lung are the product of the steady state plasma concentration and the tissue to plasma partition coefficient.

<table>
<thead>
<tr>
<th>in vivo Conc.</th>
<th>Metabolic Clearance</th>
<th>Bioactive Chemical Conc.</th>
<th>TK Statistic Used*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Honda1 Veinous (Plasma)</td>
<td>Restrictive</td>
<td>Free</td>
<td>Mean Conc.</td>
</tr>
<tr>
<td>Honda2 Veinous</td>
<td>Restrictive</td>
<td>Free</td>
<td>Max Conc.</td>
</tr>
<tr>
<td>Honda3 Veinous</td>
<td>Non-restrictive</td>
<td>Total</td>
<td>Mean Conc.</td>
</tr>
<tr>
<td>Honda4 Veinous</td>
<td>Non-restrictive</td>
<td>Total</td>
<td>Max Conc.</td>
</tr>
<tr>
<td>Honda5 Target Tissue</td>
<td>Non-restrictive</td>
<td>Total</td>
<td>Mean Conc.</td>
</tr>
<tr>
<td>Honda6 Target Tissue</td>
<td>Non-restrictive</td>
<td>Total</td>
<td>Max Conc.</td>
</tr>
</tbody>
</table>

*Assumption is currently ignored because analytical steady-state solutions are currently used by this function.

Value

Steady state plasma concentration in specified units

Author(s)

Robert Pearce, John Wambaugh, Greg Honda, Miyuki Breen

References

See Also

calc_css

Examples

calc_analytic_css(chem.name='Bisphenol-A',output.units='mg/L', model='3compartment',concentration='blood')

calc_analytic_css(chem.name='Bisphenol-A',tissue='liver',species='rabbit',
parameterize.args = list(
 default.to.human=TRUE,
 adjusted.Funbound.plasma=TRUE,
 regression=TRUE,
 minimum.Funbound.plasma=1e-4),daily.dose=2)

calc_analytic_css(chem.name="bisphenol a",model="1compartment")

calc_analytic_css(chem.cas="80-05-7",model="3compartmentss")

params <- parameterize_pbtk(chem.cas="80-05-7")

calc_analytic_css(parameters=params,model="pbtk")
calc_analytic_css_1comp

Calculate the analytic steady state concentration for the one compartment model.

Description
This function calculates the analytic steady state plasma or venous blood concentrations as a result of infusion dosing.

Usage
calc_analytic_css_1comp(
 chem.name = NULL,
 chem.cas = NULL,
 dtxsid = NULL,
 parameters = NULL,
 hourly.dose = 1/24,
 concentration = "plasma",
 suppress.messages = FALSE,
 recalc.blood2plasma = FALSE,
 tissue = NULL,
 restrictive.clearance = TRUE,
 bioactive.free.invivo = FALSE,
 ...
)

Arguments
chem.name Either the chemical name, CAS number, or the parameters must be specified.
chem.cas Either the chemical name, CAS number, or the parameters must be specified.
dtxsid EPA's 'DSSTox Structure ID (https://comptox.epa.gov/dashboard) the chemical must be identified by either CAS, name, or DTXSIDs
parameters Chemical parameters from parameterize_pbtk (for model = 'pbtk'), parameterize_3comp (for model = '3compartment'), parameterize_1comp (for model = '1compartment') or parameterize_steadystate (for model = '3compartmentss'), overrides chem.name and chem.cas.
hourly.dose Hourly dose rate mg/kg BW/h.
concentration Desired concentration type, 'blood' or default 'plasma'.
suppress.messages Whether or not the output message is suppressed.
calc_analytic_css_3comp

recalc.blood2plasma
Recalculates the ratio of the amount of chemical in the blood to plasma using
the input parameters. Use this if you have altered hematocrit, Funbound.plasma,
or Krbc2pu.
tissue
Desired tissue concentration (defaults to whole body concentration.)
restrictive.clearance
If TRUE (default), then only the fraction of chemical not bound to protein is
available for metabolism in the liver. If FALSE, then all chemical in the liver is
metabolized (faster metabolism due to rapid off-binding).
bioactive.free.invivo
If FALSE (default), then the total concentration is treated as bioactive in vivo.
If TRUE, the the unbound (free) plasma concentration is treated as bioactive in
vivo. Only works with tissue = NULL in current implementation.
... Additional parameters passed to parameterize function if parameters is NULL.

Value
Steady state plasma concentration in mg/L units

Author(s)
Robert Pearce and John Wambaugh

See Also
calc_analytic_css
parameterize_1comp

calc_analytic_css_3comp

Calculate the analytic steady state concentration for model 3comp

Description
This function calculates the analytic steady state plasma or venous blood concentrations as a result
of infusion dosing.

Usage
calc_analytic_css_3comp(
 chem.name = NULL,
 chem.cas = NULL,
 dtxsid = NULL,
 parameters = NULL,
 hourly.dose = 1/24,
 concentration = "plasma",
 suppress.messages = FALSE,
 recalc.blood2plasma = FALSE,
 tissue = NULL,
 restrictive.clearance = TRUE,
bioactive.free.invivo = FALSE,
...)

Arguments

chem.name: Either the chemical name, CAS number, or the parameters must be specified.
chem.cas: Either the chemical name, CAS number, or the parameters must be specified.
dtxsid: EPA’s DSSTox Structure ID (https://comptox.epa.gov/dashboard) the chemical must be identified by either CAS, name, or DTXSIDs.
parameters: Chemical parameters from parameterize_pbtk (for model = 'pbtk'), parameterize_3comp (for model = '3compartment'), parameterize_1comp (for model = '1compartment') or parameterize_steadystate (for model = '3compartmentss'), overrides chem.name and chem.cas.
hourly.dose: Hourly dose rate mg/kg BW/h.
concentration: Desired concentration type, 'blood' or default 'plasma'.
suppress.messages: Whether or not the output message is suppressed.
recalc.blood2plasma: Recalculates the ratio of the amount of chemical in the blood to plasma using the input parameters. Use this if you have 'altered hematocrit, Funbound.plasma, or Krbc2pu.
tissue: Desired tissue concentration (defaults to whole body concentration.)
restrictive.clearance: If TRUE (default), then only the fraction of chemical not bound to protein is available for metabolism in the liver. If FALSE, then all chemical in the liver is metabolized (faster metabolism due to rapid off-binding).

bioactive.free.invivo: If FALSE (default), then the total concentration is treated as bioactive in vivo. If TRUE, the the unbound (free) plasma concentration is treated as bioactive in vivo. Only works with tissue = NULL in current implementation.

Value

Steady state plasma concentration in mg/L units

Author(s)

Robert Pearce and John Wambaugh

References

See Also

calc_analytic_css
parameterize_3comp
calc_analytic_css_3compss

Calculate the analytic steady state concentration for the three compartment steady-state model

Description

This function calculates the analytic steady state plasma or venous blood concentrations as a result of infusion dosing.

Usage

```r
calc_analytic_css_3compss(
  chem.name = NULL,
  chem.cas = NULL,
  dtxsid = NULL,
  parameters = NULL,
  hourly.dose = 1/24,
  concentration = "plasma",
  suppress.messages = FALSE,
  recalc.blood2plasma = FALSE,
  tissue = NULL,
  restrictive.clearance = TRUE,
  bioactive.free.invivo = FALSE,
  ...
)
```

Arguments

- `chem.name`: Either the chemical name, CAS number, or the parameters must be specified.
- `chem.cas`: Either the chemical name, CAS number, or the parameters must be specified.
- `dtxsid`: EPA's 'DSSTox Structure ID (https://comptox.epa.gov/dashboard) the chemical must be identified by either CAS, name, or DTXSIDs.
- `parameters`: Chemical parameters from parameterize_pbtk (for model = 'pbtk'), parameterize_3comp (for model = '3compartment), parameterize_1comp(for model = '1compartment') or parameterize_steadystate (for model = '3compartmentss'), overrides chem.name and chem.cas.
- `hourly.dose`: Hourly dose rate mg/kg BW/h.
- `concentration`: Desired concentration type, 'blood' or default 'plasma'.
- `suppress.messages`: Whether or not the output message is suppressed.
- `recalc.blood2plasma`: Recalculates the ratio of the amount of chemical in the blood to plasma using the input parameters. Use this if you have 'altered hematocrit, Funbound.plasma, or Krbc2pu.
- `tissue`: Desired tissue concentration (defaults to whole body concentration.)
- `restrictive.clearance`: If TRUE (default), then only the fraction of chemical not bound to protein is available for metabolism in the liver. If FALSE, then all chemical in the liver is metabolized (faster metabolism due to rapid off-binding).
bioactive.free.invivo

If FALSE (default), then the total concentration is treated as bioactive in vivo.
If TRUE, the unbound (free) plasma concentration is treated as bioactive in vivo. Only works with tissue = NULL in current implementation.

Additional parameters passed to parameterize function if parameters is NULL.

Value
Steady state plasma concentration in mg/L units

Author(s)
Robert Pearce and John Wambaugh

References

See Also
calc_analytic_css
parameterize_steadystate

calc_analytic_css_pbtk

Calculate the analytic steady state plasma concentration for model pbtk.

Description
This function calculates the analytic steady state concentration (mg/L) as a result of oral infusion dosing. Concentrations are returned for plasma by default, but various tissues or blood concentrations can also be given as specified.

Usage
calc_analytic_css_pbtk(
 chem.name = NULL,
 chem.cas = NULL,
 dtxsid = NULL,
 parameters = NULL,
 hourly.dose = 1/24,
 concentration = "plasma",
 suppress.messages = FALSE,
 recalc.blood2plasma = FALSE,
 tissue = NULL,
 restrictive.clearance = TRUE,
 bioactive.free.invivo = FALSE,
 ...
)
calc_analytic_css_pbtk

Arguments

- **chem.name**: Either the chemical name, CAS number, or the parameters must be specified.
- **chem.cas**: Either the chemical name, CAS number, or the parameters must be specified.
- **dtxsid**: EPA’s DSSTox Structure ID (https://comptox.epa.gov/dashboard) the chemical must be identified by either CAS, name, or DTXSIDs
- **parameters**: Chemical parameters from parameterize_pbtk (for model = 'pbtk'), parameterize_3comp (for model = '3compartment'), parameterize_1comp(for model = '1compartment') or parameterize_steadystate (for model = '3compartmentss’), overrides chem.name and chem.cas.
- **hourly.dose**: Hourly dose rate mg/kg BW/h.
- **concentration**: Desired concentration type, 'blood', 'tissue', or default 'plasma'.
- **suppress.messages**: Whether or not the output message is suppressed.
- **recalc.blood2plasma**: Recalculates the ratio of the amount of chemical in the blood to plasma using the input parameters. Use this if you have altered hematocrit, Funbound.plasma, or Krbc2pu.
- **tissue**: Desired tissue concentration (defaults to whole body concentration.)
- **restrictive.clearance**: If TRUE (default), then only the fraction of chemical not bound to protein is available for metabolism in the liver. If FALSE, then all chemical in the liver is metabolized (faster metabolism due to rapid off-binding).
- **bioactive.free.invivo**: If FALSE (default), then the total concentration is treated as bioactive in vivo. If TRUE, the the unbound (free) plasma concentration is treated as bioactive in vivo. Only works with tissue = NULL in current implementation.
- ... Additional parameters passed to parameterize function if parameters is NULL.

Details

The PBTK model (Pearce et al., 2017) predicts the amount of chemical in various tissues of the body. A system of ordinary differential equations describes how the amounts in each tissue change as a function of time. The analytic steady-state equation was found by algebraically solving for the tissue concentrations that result in each equation being zero – thus determining the concentration at which there is no change over time as the result of a fixed infusion dose rate.

The analytical solution is:

\[
C_{\text{ven}}^{\text{ss}} = \frac{\text{doserate} \cdot \frac{Q_{\text{gut}}}{R_{b2p}} \cdot \frac{Q_{\text{liver}} + Q_{\text{gut}}}{(Q_{\text{liver}} + Q_{\text{gut}})^2}}{Q_{\text{cardiac}} \cdot \left(\frac{Q_{\text{liver}} + Q_{\text{gut}}}{R_{b2p} \cdot Cl_{\text{metabolism}} + (Q_{\text{liver}} + Q_{\text{gut}})^2}\right)} - \frac{Q_{\text{rest}}}{R_{b2p}}
\]

\[
C_{\text{plasma}}^{\text{ss}} = \frac{C_{\text{ven}}^{\text{ss}}}{R_{b2p}}
\]

\[
C_{\text{tissue}}^{\text{ss}} = \frac{K_{\text{tissue2fuplasma}} \cdot f_{\text{up}} \cdot C_{\text{ven}}^{\text{ss}}}{R_{b2p}}
\]

where \(Q_{\text{cardiac}}\) is the cardiac output, \(Q_{\text{gfr}}\) is the glomerular filtration rate in the kidney, other Q’s indicate blood flows to various tissues, \(Cl_{\text{metabolism}}\) is the chemical-specific whole liver metabolism clearance, \(f_{\text{up}}\) is the chemical-specific fraction unbound n plasma, \(R_{b2p}\) is the chemical specific ratio of concentrations in blood:plasma, \(K_{\text{tissue2fuplasma}}\) is the chemical- and tissue-specific equilibrium partition coefficient and dose rate has units of mg/kg/day.
Value

Steady state plasma concentration in mg/L units

Author(s)

Robert Pearce and John Wambaugh

References

See Also

calc_analytic_css
parameterize_pbtk

calc_css

Find the steady state concentration and the day it is reached.

Description

This function finds the day a chemical comes within the specified range of the analytical steady state venous blood or plasma concentration (from calc_analytic_css) for the multiple compartment, three compartment, and one compartment models, the fraction of the true steady state value reached on that day, the maximum concentration, and the average concentration at the end of the simulation.

Usage

calc_css(
 chem.name = NULL,
 chem.cas = NULL,
 dtxsid = NULL,
 parameters = NULL,
 species = "Human",
 f = 0.01,
 daily.dose = 1,
 doses.per.day = 3,
 days = 21,
 output.units = "uM",
 suppress.messages = FALSE,
 tissue = NULL,
 model = "pbtk",
 default.to.human = FALSE,
 f.change = 1e-05,
 adjusted.Funbound.plasma = TRUE,
 regression = TRUE,
 well.stirred.correction = TRUE,
 restrictive.clearance = TRUE,
 dosing = NULL,
 ...
)

Arguments

chem.name Either the chemical name, CAS number, or parameters must be specified.
chem.cas Either the chemical name, CAS number, or parameters must be specified.
dtxsid EPA's DSSTox Structure ID (https://comptox.epa.gov/dashboard) the chemical must be identified by either CAS, name, or DTXSIDs
parameters Chemical parameters from parameterize_pbtk function, overrides chem.name and chem.cas.
species Species desired (either "Rat", "Rabbit", "Dog", "Mouse", or default "Human").
f Fractional distance from the final steady state concentration that the average concentration must come within to be considered at steady state.
daily.dose Total daily dose, mg/kg BW.
doses.per.day Number of doses per day.
days Initial number of days to run simulation that is multiplied on each iteration.
output.units Units for returned concentrations, defaults to uM (specify units = "uM") but can also be mg/L.
suppress.messages Whether or not to suppress messages.
tissue Desired tissue concentration (default value is NULL, will depend on model – see steady.state.compartment in model.info file for further details.)
model Model used in calculation, 'pbtk' for the multiple compartment model,'3compartment' for the three compartment model, and '1compartment' for the one compartment model.
default.to.human Substitutes missing animal values with human values if true (hepatic intrinsic clearance or fraction of unbound plasma).
f.change Fractional change of daily steady state concentration reached to stop calculating.
adjusted.Funbound.plasma Uses adjusted Funbound.plasma when set to TRUE along with partition coefficients calculated with this value.
regression Whether or not to use the regressions in calculating partition coefficients.
well.stirred.correction Uses correction in calculation of hepatic clearance for well-stirred model if TRUE for model 1compartment elimination rate. This assumes clearance relative to amount unbound in whole blood instead of plasma, but converted to use with plasma concentration.
restrictive.clearance Protein binding not taken into account (set to 1) in liver clearance if FALSE.
dosing The dosing object for more complicated scenarios. Defaults to repeated daily.dose spread out over doses.per.day
... Additional arguments passed to model solver (default of solve_pbtk).

Value

frac Ratio of the mean concentration on the day steady state is reached (baed on doses.per.day) to the analytical Css (based on infusion dosing).
max The maximum concentration of the simulation.
avg The average concentration on the final day of the simulation.
the.day The day the average concentration comes within 100 * p percent of the true steady state concentration.
calc_dow

Calculate the distribution coefficient

Description

This function estimates the ratio of the equilibrium concentrations of a compound in octanol and water, taking into account the charge of the compound. Given the pH, we assume the neutral (uncharged) fraction of compound partitions according to the hydrophobicity (P_{ow}). We assume that only a fraction alpha (defaults to 0.001 – Schmitt (2008)) of the charged compound partitions into lipid (octanol):

\[
D_{ow} = P_{ow} \cdot (F_{neutral} + \alpha \cdot F_{charged})
\]

Fractions charged are calculated according to hydrogen ionization equilibria (pKa_Donor, pKa_Accept) using `calc_ionization`.

Usage

```r
calc_dow(
  Pow = NULL,
  chem.cas = NULL,
  chem.name = NULL,
  pKa_Donor = NULL,
  pKa_Accept = NULL
)
```

Author(s)

Robert Pearce, John Wambaugh

See Also

`calc_analytic_css`

Examples

```r
calc_css(chem.name = 'Bisphenol-A', doses.per.day = 5, f = .001, output.units = 'mg/L')

parms <- parameterize_3comp(chem.name = 'Bisphenol-A')
parms$Funbound.plasma <- .07
calc_css(chem.name = 'Bisphenol-A', parameters = parms, model = '3compartment')

out <- solve_pbtk(chem.name = "Bisphenol A",
  days = 50,
  daily.dose = 1,
  doses.per.day = 3)
plot.data <- as.data.frame(out)

css <- calc_analytic_css(chem.name = "Bisphenol A")
library("ggplot2")
c.v.s.t <- ggplot(plot.data, aes(time, Cplasma)) + geom_line() +
  geom_hline(yintercept = css) + ylab("Plasma Concentration (uM)") +
  xlab("Day") + theme(axis.text = element_text(size = 16), axis.title =
  element_text(size = 16), plot.title = element_text(size = 17)) +
  ggtitle("Bisphenol A")
print(c.v.s.t)
```
calc_dow

dtxsid = NULL,
parameters = NULL,
pH = NULL,
pKa_Donor = NULL,
pKa_Accept = NULL,
fraction_charged = NULL,
alpha = 0.001
)

Arguments

Pow Octanol:water partition coefficient (ratio of concentrations)
chem.cas Either the chemical name or the CAS number must be specified.
chem.name Either the chemical name or the CAS number must be specified.
dtxsid EPA’s DSSTox Structure ID (https://comptox.epa.gov/dashboard) the chemical must be identified by either CAS, name, or DTXSIDs
parameters Chemical parameters from a parameterize_MODEL function, overrides chem.name and chem.cas.
pH pH where ionization is evaluated.
pKa_Donor Compound H dissociation equilibirum constant(s). Overwrites chem.name and chem.cas.
pKa_Accept Compound H association equilibirum constant(s). Overwrites chem.name and chem.cas.
fraction_charged Fraction of chemical charged at the given pH
alpha Ratio of Distribution coefficient D of totally charged species and that of the neutral form

Value

Distribution coefficient (numeric)

Author(s)

Robert Pearce and John Wambaugh

References

See Also

calc_ionization
calc_elimination_rate
Calculate the elimination rate for a one compartment model

Description

This function calculates an elimination rate from the three compartment steady state model where elimination is entirely due to metabolism by the liver and glomerular filtration in the kidneys.

Usage

```r
calc_elimination_rate(
  chem.cas = NULL,
  chem.name = NULL,
  dtxsid = NULL,
  parameters = NULL,
  species = "Human",
  suppress.messages = FALSE,
  default.to.human = FALSE,
  restrictive.clearance = TRUE,
  adjusted.Funbound.plasma = TRUE,
  adjusted.Clint = TRUE,
  regression = TRUE,
  well.stirred.correction = TRUE,
  clint.pvalue.threshold = 0.05,
  minimum.Funbound.plasma = 1e-04
)
```

Arguments

- `chem.cas`: Either the cas number or the chemical name must be specified.
- `chem.name`: Either the chemical name or the cas number must be specified.
- `dtxsid`: EPA’s DSSTox Structure ID (https://comptox.epa.gov/dashboard) the chemical must be identified by either CAS, name, or DTXSIDs.
- `parameters`: Chemical parameters from parameterize_steadystate or 1compartment function, overrides chem.name and chem.cas.
- `species`: Species desired (either "Rat", "Rabbit", "Dog", "Mouse", or default "Human").
- `suppress.messages`: Whether or not the output message is suppressed.
- `default.to.human`: Substitutes missing animal values with human values if true.
- `restrictive.clearance`: In calculating elimination rate, protein binding is not taken into account (set to 1) in liver clearance if FALSE.
- `adjusted.Funbound.plasma`: Uses adjusted Funbound.plasma when set to TRUE along with partition coefficients calculated with this value.
- `regression`: Whether or not to use the regressions in calculating partition coefficients.
well.stirred.correction
Uses correction in calculation of hepatic clearance for -stirred model if TRUE. This assumes clearance relative to amount unbound in whole blood instead of plasma, but converted to use with plasma concentration.

clint.pvalue.threshold
Hepatic clearance for chemicals where the in vitro clearance assay result has a p-values greater than the threshold are set to zero.

minimum.Funbound.plasma
Monte Carlo draws less than this value are set equal to this value (default is 0.0001 – half the lowest measured Fup in our dataset).

Details
Elimination rate calculated by dividing the total clearance (using the default -stirred hepatic model) by the volume of distribution. When species is specified as rabbit, dog, or mouse, the function uses the appropriate physiological data(volumes and flows) but substitutes human fraction unbound, partition coefficients, and intrinsic hepatic clearance.

Value
Elimination rate
Units of 1/h.

Author(s)
John Wambaugh

References

Examples
calc_elimination_rate(chem.name="Bisphenol A")
calc_elimination_rate(chem.name="Bisphenol A",species="Rat")
calc_elimination_rate(chem.cas="80-05-7")

calc_fetal_phys Calculate maternal-fetal physiological parameters

Description
This function uses the equations from Kapraun (2019) to calculate chemical-independent physiological parameters as a function of gestational age in weeks.
calc_fetal_phys

Usage

calc_fetal_phys(week = 12, ...)

Arguments

- **week**
 Gestational week
- **...**
 Additional arguments to parameterize_fetal_pbstk

Details

\[
BW = \text{pregnant}_B W + BW_{\text{ubic},\text{theta}1} tw + BW_{\text{ubic},\text{theta}2} tw^2 + BW_{\text{ubic},\text{theta}3} tw^3
\]

\[
W_{\text{adipose}} = W_{\text{adipose, linear}, \text{theta}0} + W_{\text{adipose, linear}, \text{theta}1} tw;
\]

\[
W_{\text{kidney}} = 0.001 W_{\text{kidney,ompertz}, \text{theta}0} \exp(W_{\text{kidney,ompertz}, \text{theta}1}/W_{\text{kidney,ompertz}, \text{theta}2*}(1 - \text{tw}), \text{tw}, 3);
\]

\[
W_{\text{thyroid}} = 0.001 W_{\text{thyroid,ompertz}, \text{theta}0} \exp(W_{\text{thyroid,ompertz}, \text{theta}1}/W_{\text{thyroid,ompertz}, \text{theta}2}*(1 - \text{exp}(-W_{\text{gut}, \text{ompertz}, \text{theta}0})), \text{tw}, 3);
\]

\[
W_{\text{gut}} = 0.001 W_{\text{gut,ompertz}, \text{theta}0} \exp(W_{\text{gut,ompertz}, \text{theta}1}/W_{\text{gut,ompertz}, \text{theta}2}*(1 - \exp(-W_{\text{gut}, \text{ompertz}, \text{theta}0})), \text{tw}, 3);
\]

\[
W_{\text{brain}} = 0.001 W_{\text{brain,ompertz}, \text{theta}0} \exp(W_{\text{brain,ompertz}, \text{theta}1}/W_{\text{brain,ompertz}, \text{theta}2}*(1 - \exp(-W_{\text{gut}, \text{ompertz}, \text{theta}0})), \text{tw}, 3);
\]

\[
W_{\text{placenta}} = 0.001 \exp(W_{\text{placenta,ompertz}, \text{theta}0}/W_{\text{placenta,ompertz}, \text{theta}2}*(1 - \exp(-W_{\text{gut}, \text{ompertz}, \text{theta}0})), \text{tw}, 3);
\]

\[
W_{\text{flying}} = 0.001 W_{\text{flying,ompertz}, \text{theta}0} \exp(W_{\text{flying,ompertz}, \text{theta}1}/W_{\text{flying,ompertz}, \text{theta}2}*(1 - \exp(-W_{\text{gut}, \text{ompertz}, \text{theta}0})), \text{tw}, 3);
\]

\[
\text{hematocrit} = \left(\text{hematocrit, quadratic, theta0} + \text{hematocrit, quadratic, theta1} tw + \text{hematocrit, quadratic, theta2} pow(tw, 2)\right) / 100;
\]

\[
R_{\text{blood2plasma}} = 1 - \text{hematocrit} + \text{hematocrit} * K_{rbc2pu} * \text{Fraction, unbound, plasma};
\]

\[
f_{\text{hematocrit}} = \left(f_{\text{hematocrit,ubic}, \text{theta1} tw} + f_{\text{hematocrit,ubic}, \text{theta2} pow(tw, 2)} + f_{\text{hematocrit,ubic}, \text{theta3} pow(tw, 2)}\right) / 100;
\]

\[
R_{\text{blood2plasma}} = 1 - f_{\text{hematocrit}} + f_{\text{hematocrit}} * K_{rbc2pu} * \text{Fraction, unbound, plasma_fetus};
\]

\[
f_{BW} = 0.001 f_{BW,ompertz, \text{theta0}} \exp(f_{BW,ompertz, \text{theta1}}/f_{BW,ompertz, \text{theta2}}*(1 - \exp(-f_{BW,ompertz, \text{theta0}})), \text{tw}, 3);
\]

\[
V_{\text{placenta}} = 0.001 (V_{\text{placenta,ubic}, \text{theta1} tw} + V_{\text{placenta,ubic}, \text{theta2} pow(tw, 2)} + V_{\text{placenta,ubic}, \text{theta3} pow(tw, 2)});
\]
\[V_{amnf} = 0.001 \times V_{amnfiogistic,theta0}/(1 + \exp(-V_{amnfiogistic,theta1} \times (tw - V_{amnfiogistic,theta2}))); \]

\[V_{plasma} = V_{plasma,m,odlogistic,theta0}/(1 + \exp(-V_{plasma,m,odlogistic,theta1} \times (tw - V_{plasma,m,odlogistic,theta2}))); \]

\[V_{rbcs} = \text{hematocrit}/(1 - \text{hematocrit}) \times V_{plasma}; \]

\[V_{ven} = \text{venous,blood_fraction} \times (V_{rbcs} + V_{plasma}); \]

\[V_{art} = \text{arterial,blood_fraction} \times (V_{rbcs} + V_{plasma}); \]

\[V_{adipose} = 1/\text{adipose_density} \times W_{adipose}; \]

\[V_{ffmx} = 1/\text{ffmx_density} \times (BW - W_{adipose} - (fBW + \text{placenta_density} \times V_{placenta} + \text{amnf_density} \times V_{amnf})); \]

\[V_{allx} = V_{art} + V_{ven} + V_{thyroid} + V_{kidney} + V_{gut} + V_{liver} + V_{lung}; \]

\[V_{rest} = V_{ffmx} - V_{allx}; \]

\[V_{fart} = 0.001 \times \text{arterial_blood_fraction} \times \text{fblood_weight} \times fBW; \]

\[V_{fven} = 0.001 \times \text{venous_blood_fraction} \times \text{fblood_weight} \times fBW; \]

\[V_{fkidney} = 1/\text{kidney_density} \times W_{fkidney}; \]

\[V_{fthyroid} = 1/\text{thyroid_density} \times W_{fthyroid}; \]

\[V_{fliver} = 1/\text{liver_density} \times W_{fliver}; \]

\[V_{fbrain} = 1/\text{brain_density} \times W_{fbrain}; \]

\[V_{fgut} = 1/\text{gut_density} \times W_{fgut}; \]

\[V_{flung} = 1/\text{lung_density} \times W_{flung}; \]
\[V_{\text{rest}} = f_{BW} - (V_fart + V_fven + V_fbrain + V_fkidney + V_fthyroid + V_fliver + V_fgut + V_flung); \]

\[Q_{\text{cardiac}} = 24 \times (Q_{\text{cardiac,ubic},\text{theta}0} + Q_{\text{cardiac,ubic},\text{theta}1 \times \text{tw}} + Q_{\text{cardiac,ubic},\text{theta}2 \times \text{pow}(\text{tw}, 2)} + Q_{\text{cardiac,ubic},\text{theta}3 \times \text{pow}(\text{tw}, 3)}); \]

\[Q_{\text{gut}} = 0.01 \times (Q_{\text{gut,percent,initial}} + (Q_{\text{gut,percent,terminal}} - Q_{\text{gut,percent,initial}}) / \text{term} \times \text{tw}) \times Q_{\text{cardiac}}; \]

\[Q_{\text{kidney}} = 24 \times (Q_{\text{kidney,ubic},\text{theta}0} + Q_{\text{kidney,ubic},\text{theta}1 \times \text{tw}} + Q_{\text{kidney,ubic},\text{theta}2 \times \text{pow}(\text{tw}, 2)} + Q_{\text{kidney,ubic},\text{theta}3 \times \text{pow}(\text{tw}, 3)}); \]

\[Q_{\text{liver}} = 0.01 \times (Q_{\text{liver,percent,initial}} + (Q_{\text{liver,percent,terminal}} - Q_{\text{liver,percent,initial}}) / \text{term} \times \text{tw}) \times Q_{\text{cardiac}}; \]

\[Q_{\text{thyroid}} = 0.01 \times (Q_{\text{thyroid,percent,initial}} + (Q_{\text{thyroid,percent,terminal}} - Q_{\text{thyroid,percent,initial}}) / \text{term} \times \text{tw}) \times Q_{\text{cardiac}}; \]

\[Q_{\text{placenta}} = 24 \times Q_{\text{placenta,linear,theta}1} \times 1000 \times V_{\text{placenta}}; \]

\[Q_{\text{adipose}} = 0.01 \times (Q_{\text{adipose,percent,initial}} + (Q_{\text{adipose,percent,terminal}} - Q_{\text{adipose,percent,initial}}) / \text{term} \times \text{tw}) \times Q_{\text{cardiac}}; \]

\[Q_{\text{rest}} = Q_{\text{cardiac}} - (Q_{\text{gut}} + Q_{\text{kidney}} + Q_{\text{liver}} + Q_{\text{thyroid}} + Q_{\text{placenta}} + Q_{\text{adipose}}); \]

\[Q_{\text{gfr}} = 60 \times 24 \times 0.001 \times (Q_{\text{gfr,quadratic,theta}0} + Q_{\text{gfr,quadratic,theta}1 \times \text{tw}} + Q_{\text{gfr,quadratic,theta}2 \times \text{pow}(\text{tw}, 2)}); \]

\[Q_{\text{frvtl}} = 60 \times 24 \times 0.001 \times Q_{\text{frvtl,logistic,theta}0} / (1 + \exp(-Q_{\text{frvtl,logistic,theta}1 \times (\text{tw} - Q_{\text{frvtl,logistic,theta}2}))); \]

\[Q_{\text{flvtl}} = 60 \times 24 \times 0.001 \times Q_{\text{flvtl,logistic,theta}0} / (1 + \exp(-Q_{\text{flvtl,logistic,theta}1 \times (\text{tw} - Q_{\text{flvtl,logistic,theta}2}))); \]

\[Q_{\text{fda}} = 60 \times 24 \times 0.001 \times Q_{\text{fda,logistic,theta}0} / (1 + \exp(-Q_{\text{fda,logistic,theta}1 \times (\text{tw} - Q_{\text{fda,logistic,theta}2})}); \]

\[Q_{\text{fartb}} = Q_{\text{fletl}} + Q_{\text{fda}}; \]

\[Q_{\text{fcardiac}} = Q_{\text{fartb}}; \]

\[Q_{\text{flung}} = Q_{\text{frvtl}} - Q_{\text{fda}}; \]

\[Q_{\text{fplacenta}} = 60 \times 24 \times 0.001 \times Q_{\text{fplacenta,logistic,theta}0} / (1 + \exp(-Q_{\text{fplacenta,logistic,theta}1 \times (\text{tw} - Q_{\text{fplacenta,logistic,theta}2}); \]

\[V_{\text{rest}} = f_{BW} - (V_fart + V_fven + V_fbrain + V_fkidney + V_fthyroid + V_fliver + V_fgut + V_flung); \]
\[Q_{fdv} = 60 \times 24 \times 0.001 \times Q_{fdvompertz \theta 0} \times \exp(Q_{fdvompertz \theta 1}/Q_{fdvompertz \theta 2}) \times (1 - \exp(-Q_{fdv})) \]

\[Q_{fgut} = Q_{fgutpercent}/Q_{fnonplacentalpercent} \times (1 - Q_{fplacenta}/Q_{fartb}) \times Q_{fartb}; \]

\[Q_{fkidney} = Q_{fkidneypercent}/Q_{fnonplacentalpercent} \times (1 - Q_{fplacenta}/Q_{fartb}) \times Q_{fartb}; \]

\[Q_{fbrain} = Q_{fbrainpercent}/Q_{fnonplacentalpercent} \times (1 - Q_{fplacenta}/Q_{fartb}) \times Q_{fartb}; \]

\[Q_{fliver} = Q_{fliverpercent}/(100 - (Q_{brainpercent} + Q_{kidneypercent} + Q_{gutpercent})) \times (1 - (Q_{brainpercent} + Q_{kidneypercent} + Q_{gutpercent})) \times (1 - (Q_{brainpercent} + Q_{kidneypercent} + Q_{gutpercent})/Q_{fnonplacentalpercent}) \times (1 - Q_{fplacenta}/Q_{fartb}) \times Q_{fartb}; \]

\[Q_{fthyroid} = Q_{fthyroidpercent}/(100 - (Q_{brainpercent} + Q_{kidneypercent} + Q_{gutpercent})) \times (1 - (Q_{brainpercent} + Q_{kidneypercent} + Q_{gutpercent})/Q_{fnonplacentalpercent}) \times (1 - Q_{fplacenta}/Q_{fartb}) \times Q_{fartb}; \]

\[Q_{frest} = Q_{fcardiac} - (Q_{fplacenta} + Q_{fgut} + Q_{fliver} + Q_{fthyroid} + Q_{fkidney} + Q_{fbrain}); \]

\[Q_{fbypass} = Q_{fcardiac} - Q_{flung}; \]

Value

list containing:

- **BW** Maternal body weight, kg
- **Wadipose** Maternal adipose fraction of total weight
- **Wfkidney** Fetal kidney fraction of total weight
- **Wfthyroid** Fetal thyroid fraction of total weight
- **Wfliver** Fetal liver fraction of total weight
- **Wfbrain** Fetal brain fraction of total weight
- **Wfgut** Fetal gut fraction of total weight
- **Wflung** Fetal lung fraction of total weight
- **hematocrit** Maternal hematocrit fraction of blood
- **Rblood2plasma** Maternal Rblood2plasma
- **fhematocrit** Fetal hematocrit fraction of blood
- **Rfblood2plasma** Fetal Rfblood2plasma
- **fBW** Fetal body weight, kg
- **Vplacenta** Volume of Vplacenta, L
- **Vamnf** Volume of amniotic fluid, L
- **Vplasma** Maternal volume of plasma, L
- **Vrbc** Maternal volume of red blood cells, L
- **Vven** Maternal volume of venous blood, L
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vart</td>
<td>Maternal volume of arterial blood, L</td>
</tr>
<tr>
<td>Vadipose</td>
<td>Maternal volume of adipose, L</td>
</tr>
<tr>
<td>Vffmx</td>
<td>Fetal volume of Vffmx, L</td>
</tr>
<tr>
<td>Vallx</td>
<td>Vallx, L</td>
</tr>
<tr>
<td>Vrest</td>
<td>Maternal volume of rest of body, L</td>
</tr>
<tr>
<td>Vfart</td>
<td>Fetal volume of arterial blood, L</td>
</tr>
<tr>
<td>Vfven</td>
<td>Fetal volume of venous blood, L</td>
</tr>
<tr>
<td>Vfkidney</td>
<td>Fetal volume of kidney, L</td>
</tr>
<tr>
<td>Vfthyroid</td>
<td>Fetal volume of thyroid, L</td>
</tr>
<tr>
<td>Vfliver</td>
<td>Fetal volume of liver, L</td>
</tr>
<tr>
<td>Vfbrain</td>
<td>Fetal volume of brain, L</td>
</tr>
<tr>
<td>Vfgut</td>
<td>Fetal volume of gut, L</td>
</tr>
<tr>
<td>Vflung</td>
<td>Fetal volume of lung, L</td>
</tr>
<tr>
<td>Vfrest</td>
<td>Fetal volume of rest of body, L</td>
</tr>
<tr>
<td>Qcardiac</td>
<td>Maternal cardiac output blood flow, L/day</td>
</tr>
<tr>
<td>Qgut</td>
<td>Maternal blood flow to gut, L/day</td>
</tr>
<tr>
<td>Qkidney</td>
<td>Maternal blood flow to kidney, L/day</td>
</tr>
<tr>
<td>Qliver</td>
<td>Maternal blood flow to liver, L/day</td>
</tr>
<tr>
<td>Qthyroid</td>
<td>Maternal blood flow to thyroid, L/day</td>
</tr>
<tr>
<td>Qplacenta</td>
<td>Maternal blood flow to placenta, L/day</td>
</tr>
<tr>
<td>Qadipose</td>
<td>Maternal blood flow to adipose, L/day</td>
</tr>
<tr>
<td>Qrest</td>
<td>Maternal blood flow to rest, L/day</td>
</tr>
<tr>
<td>Qgfr</td>
<td>Maternal glomerular filtration rate in kidney, L/day</td>
</tr>
<tr>
<td>Qfrvtl</td>
<td>Fetal blood flow to right ventricle, L/day</td>
</tr>
<tr>
<td>Qf1vtl</td>
<td>Fetal blood flow to left ventricle, L/day</td>
</tr>
<tr>
<td>Qfda</td>
<td>Fetal blood flow to Qfda, L/day</td>
</tr>
<tr>
<td>Qfarthb</td>
<td>Fetal blood flow to Qfarth, L/day</td>
</tr>
<tr>
<td>Qfcardiac</td>
<td>Fetal cardiac output blood flow, L/day</td>
</tr>
<tr>
<td>Qflung</td>
<td>Fetal blood flow to lung, L/day</td>
</tr>
<tr>
<td>Qfplacenta</td>
<td>Fetal blood flow to placenta, L/day</td>
</tr>
<tr>
<td>Qfdv</td>
<td>Fetal blood flow to Qfdv, L/day</td>
</tr>
<tr>
<td>Qfartb</td>
<td>Fetal blood flow to Qfartb, L/day</td>
</tr>
<tr>
<td>Qfcardiac</td>
<td>Fetal cardiac output blood flow, L/day</td>
</tr>
<tr>
<td>Qflung</td>
<td>Fetal blood flow to lung, L/day</td>
</tr>
<tr>
<td>Qfplacenta</td>
<td>Fetal blood flow to placenta, L/day</td>
</tr>
<tr>
<td>Qfartb</td>
<td>Fetal blood flow to placenta, L/day</td>
</tr>
<tr>
<td>Qfarter</td>
<td>Fetal blood flow to rest, L/day</td>
</tr>
<tr>
<td>Qfarter</td>
<td>Fetal blood flow to Qfarter, L/day</td>
</tr>
<tr>
<td>Qfarter</td>
<td>Fetal blood flow to Qfarter, L/day</td>
</tr>
<tr>
<td>Qfarter</td>
<td>Fetal blood flow to Qfarter, L/day</td>
</tr>
<tr>
<td>Qfarter</td>
<td>Fetal blood flow to Qfarter, L/day</td>
</tr>
<tr>
<td>Qfarter</td>
<td>Fetal blood flow to Qfarter, L/day</td>
</tr>
<tr>
<td>Qfarter</td>
<td>Fetal blood flow to Qfarter, L/day</td>
</tr>
<tr>
<td>Qfarter</td>
<td>Fetal blood flow to Qfarter, L/day</td>
</tr>
</tbody>
</table>

Author(s)

John Wambaugh
References

calc_fup_correction

Calculate the correction for lipid binding in plasma binding assay

Description
Poulin and Haddad (2012) observed "...that for a highly lipophilic compound, the calculated f_{up} is by far [less than] the experimental values observed under in vitro conditions." Pearce et al. (2017) hypothesized that there was additional lipid binding in vivo that acted as a sink for lipophilic compounds, reducing the effective f_{up} in vivo. It is possible that this is due to the binding of lipophilic compounds on the non plasma-side of the rapid equilibrium dialysis plates (Waters et al., 2008). Pearce et al. (2017) compared predicted and observed tissue partition coefficients for a range of compounds. They showed that predictions were improved by adding additional binding proportional to the distribution coefficient D_{ow} (calc_dow) and the fractional volume of lipid in plasma (F_{lipid}). We calculate F_{lipid} as the sum of the physiological plasma neutral lipid fractional volume and 30 percent of the plasma neutral phospholipid fractional volume. We use values from Peyret et al. (2010) for rats and Poulin and Haddad (2012) for humans. The estimate of 30 percent of the neutral phospholipid volume as neutral lipid was used for simplicity’s sake in place of our membrane affinity predictor. To account for additional binding to lipid, plasma to water partitioning ($K_{plasma:water} = \frac{1}{f_{up}}$) is increased as such:

$$f_{corrected}^{up} = \frac{1}{f_{corrected}^{up}} = \frac{1}{K_{nl}^{pl} \cdot F_{lipid} + \frac{1}{f_{invitroup}}$$

Usage

calc_fup_correction(
 fup = NULL,
 chem.cas = NULL,
 chem.name = NULL,
 dtxsid = NULL,
 parameters = NULL,
 Flipid = NULL,
 plasma.pH = 7.4,
 dow74 = NULL,
 species = "Human",
 default.to.human = FALSE,
 force.human.fup = FALSE,
 suppress.messages = FALSE
)

Arguments

fup Fraction unbound in plasma, if provided this argument overrides values from argument parameters and chem.physical_and_invitro.data

chem.cas Chemical Abstract Services Registry Number (CAS-RN) – if parameters is not specified then the chemical must be identified by either CAS, name, or DTXISD
Parameters

- **chem.name**: Chemical name (spaces and capitalization ignored) – if parameters is not specified then the chemical must be identified by either CAS, name, or DTXISDs
- **dtxsid**: EPA's 'DSSTox Structure ID (https://comptox.epa.gov/dashboard) – if parameters is not specified then the chemical must be identified by either CAS, name, or DTXISDs
- **parameters**: Parameters from the appropriate parameterization function for the model indicated by argument model
- **Flipid**: The fractional volume of lipid in plasma (from physiology.data)
- **plasma.pH**: pH of plasma (default 7.4)
- **dow74**: The octanol-water distribution ratio (DOW).
- **species**: Species desired (either "Rat", "Rabbit", "Dog", "Mouse", or default "Human").
- **default.to.human**: Substitutes missing fraction of unbound plasma with human values if true.
- **force.human.fup**: Returns human fraction of unbound plasma in calculation for rats if true. When species is specified as rabbit, dog, or mouse, the human unbound fraction is substituted.
- **suppress.messages**: Whether or not the output message is suppressed.

Details

Note that octanal:water partitioning above 1:1,000,000 ($LogD_{ow} > 6$) are truncated at 1:1,000,000 because greater partitioning would likely take longer than protein binding assay itself.

Value

A numeric fraction unbound in plasma between zero and one

Author(s)

John Wambaugh

References

calc_half_life

See Also
apply_fup_adjustment
calc_dow

calc_half_life

Calculates the half-life for a one compartment model.

Description
This function calculates the half life from the three compartment steady state model where elimination is entirely due to metabolism by the liver and glomerular filtration in the kidneys.

Usage
calc_half_life(
 chem.cas = NULL,
 chem.name = NULL,
 dtxsid = NULL,
 parameters = NULL,
 species = "Human",
 suppress.messages = FALSE,
 default.to.human = FALSE,
 restrictive.clearance = TRUE,
 adjusted.Funbound.plasma = TRUE,
 regression = TRUE,
 well.stirred.correction = TRUE,
 clint.pvalue.threshold = 0.05,
 minimum.Funbound.plasma = 1e-04
)

Arguments

chem.cas
 Either the cas number or the chemical name must be specified.

chem.name
 Either the chemical name or the cas number must be specified.

dtxsid
 EPA's 'DSSTox Structure ID (https://comptox.epa.gov/dashboard) the chemical must be identified by either CAS, name, or DTXSIDs

tparams
 Chemical parameters from parameterize_steadystate or 1compartment function, overrides chem.name and chem.cas.

species
 Species desired (either "Rat", "Rabbit", "Dog", "Mouse", or default "Human").

suppress.messages
 Whether or not the output message is suppressed.

default.to.human
 Substitutes missing animal values with human values if true.

restrictive.clearance
 In calculating elimination rate, protein binding is not taken into account (set to 1) in liver clearance if FALSE.

adjusted.Funbound.plasma
 Uses adjusted Funbound.plasma when set to TRUE along with partition coefficients calculated with this value.
regression Whether or not to use the regressions in calculating partition coefficients.

well.stirred.correction
Uses correction in calculation of hepatic clearance for -stirred model if TRUE. This assumes clearance relative to amount unbound in whole blood instead of plasma, but converted to use with plasma concentration.

clint.pvalue.threshold
Hepatic clearance for chemicals where the in vitro clearance assay result has a p-values greater than the threshold are set to zero.

minimum.Funbound.plasma
Monte Carlo draws less than this value are set equal to this value (default is 0.0001 – half the lowest measured Fup in our dataset).

Details
Half life is calculated by dividing the natural-log of 2 by the elimination rate from the one compartment model.

Value

Half life Units of h.

Author(s)
Sarah E. Davidson

See Also
[calc_elimination_rate()] for the elimination rate calculation

Examples

calc_half_life(chem.name="Bisphenol A")
calc_half_life(chem.name="Bisphenol A",species="Rat")
calc_half_life(chem.cas="80-05-7")

calc_hepatic_clearance

Calculate the hepatic clearance (deprecated).

Description
This function is included for backward compatibility. It calls calc_hep_clearance which calculates the hepatic clearance in plasma for a well-stirred model or other type if specified. Based on Ito and Houston (2004)
calc_hepatic_clearance

Usage

calc_hepatic_clearance(
 chem.name = NULL,
 chem.cas = NULL,
 dtxsid = NULL,
 parameters = NULL,
 species = "Human",
 default.to.human = FALSE,
 hepatic.model = "well-stirred",
 suppress.messages = FALSE,
 well.stirred.correction = TRUE,
 restrictive.clearance = TRUE,
 adjusted.Funbound.plasma = TRUE,
 ...
)

Arguments

chem.name Either the chemical name, CAS number, or the parameters must be specified.
chem.cas Either the chemical name, CAS number, or the parameters must be specified.
dtxsid EPA's DSSTox Structure ID (https://comptox.epa.gov/dashboard) the chemical must be identified by either CAS, name, or DTXSIDs
parameters Chemical parameters from parameterize_steadystate function, overrides chem.name and chem.cas.
species Species desired (either "Rat", "Rabbit", "Dog", "Mouse", or default "Human").
default.to.human Substitutes missing animal values with human values if true.
hepatic.model Model used in calculating hepatic clearance, unscaled, parallel tube, dispersion, or default well-stirred.
suppress.messages Whether or not to suppress the output message.
well.stirred.correction Uses correction in calculation of hepatic clearance for well-stirred model if TRUE for hepatic.model well-stirred. This assumes clearance relative to amount unbound in whole blood instead of plasma, but converted to use with plasma concentration.
restrictive.clearance Protein binding not taken into account (set to 1) in liver clearance if FALSE.
adjusted.Funbound.plasma Whether or not to use Funbound.plasma adjustment if calculating Rblood2plasma.
... Additional parameters passed to parameterize_steadystate if parameters is NULL.

Value

Hepatic Clearance

Units of L/h/kg BW.

Author(s)

John Wambaugh and Robert Pearce
References

Examples

calc_hep_clearance(chem.name="Ibuprofen",hepatic.model='unscaled')
calc_hep_clearance(chem.name="Ibuprofen",well.stirred.correction=FALSE)

calc_hep_bioavailability

Calculate first pass metabolism

Description

For models that don’t described first pass blood flow from the gut, need to calculate a hepatic bioavailability, that is, the fraction of chemical systemically available after metabolism during the first pass through the liver (Rowland, 1973 Equation 29, where k_{21} is blood flow through the liver and k_{23} is clearance from the liver in Figure 1).

Usage

calc_hep_bioavailability(
 chem.cas = NULL,
 chem.name = NULL,
 dtxsid = NULL,
 parameters = NULL,
 restrictive.clearance = TRUE,
 flow.34 = TRUE
)

Arguments

- **chem.cas**: Chemical Abstract Services Registry Number (CAS-RN) – if parameters is not specified then the chemical must be identified by either CAS, name, or DTXISD
- **chem.name**: Chemical name (spaces and capitalization ignored) – if parameters is not specified then the chemical must be identified by either CAS, name, or DTXISD
- **dtxsid**: EPA's 'DSSTox Structure ID (https://comptox.epa.gov/dashboard) – if parameters is not specified then the chemical must be identified by either CAS, name, or DTXISDs
- **parameters**: Parameters from the appropriate parameterization function for the model indicated by argument model
- **restrictive.clearance**: Protein binding not taken into account (set to 1) in liver clearance if FALSE.
- **flow.34**: A logical constraint
Value
A data.table whose columns are the parameters of the HTTK model specified in model.

Author(s)
John Wambaugh

References

calc_hep_clearance

Calculate the hepatic clearance.

Description
This function calculates the hepatic clearance in plasma for using the Houston (2004) are also available. In vitro measured hepatic clearance is corrected for the free fraction in the assay using the model of Kilford et al. (2008).

Usage
calc_hep_clearance(
 chem.name = NULL,
 chem.cas = NULL,
 dtxsid = NULL,
 parameters = NULL,
 hepatic.model = "well-stirred",
 suppress.messages = FALSE,
 well.stirred.correction = TRUE,
 restrictive.clearance = TRUE,
 species = "Human",
 adjusted.Funbound.plasma = TRUE,
 ...
)

Arguments
chem.name: Either the chemical name, CAS number, or the parameters must be specified.
chem.cas: Either the chemical name, CAS number, or the parameters must be specified.
dtxsid: EPA’s DSSTox Structure ID (https://comptox.epa.gov/dashboard) the chemical must be identified by either CAS, name, or DTXSIDs
parameters: Chemical parameters from parameterize_steadystate function, overrides chem.name and chem.cas.
hepatic.model: Model used in calculating hepatic clearance, unscaled, parallel tube, dispersion, or default well-stirred.
suppress.messages: Whether or not to suppress the output message.
calc_hep_fu

well.stirred.correction
Uses correction in calculation of hepatic clearance for well-stirred model if TRUE for hepatic.model well-stirred. This assumes clearance relative to amount unbound in whole blood instead of plasma, but converted to use with plasma concentration.

restrictive.clearance
Protein binding not taken into account (set to 1) in liver clearance if FALSE.

species
Species desired (either "Rat", "Rabbit", "Dog", "Mouse", or default "Human").

adjusted.Funbound.plasma
Uses Pearce et al. (2017) lipid binding adjustment for Funbound.plasma (which impacts partition coefficients) when set to TRUE (Default).

Value
Hepatic Clearance
Units of L/h/kg BW.

Author(s)
John Wambaugh and Robert Pearce

References

Examples

calc_hep_clearance(chem.name="Ibuprofen",hepatic.model='unscaled')
calc_hep_clearance(chem.name="Ibuprofen",well.stirred.correction=FALSE)

calc_hep_fu

Calculate the free chemical in the hepatic clearance assay

Description

This function uses the method from Kilford et al. (2008) to calculate the fraction of unbound chemical in the hepatocyte intrinsic clearance assay. The bound chemical is presumed to be unavailable during the performance of the assay, so this fraction can be used to increase the apparent clearance rate to better estimate in vivo clearance. For bases, the fraction of chemical unbound in hepatocyte clearance assays ($f_{u_{hep}}$) is calculated in terms of $logP_{ow}$ but for neutral and acidic compounds we use $logD_{ow}$ (from calc_dow). Here we denote the appropriate partition coefficient as "logP/D". Kilford et al. (2008) calculates

$$f_{u_{hep}} = \frac{1}{1 + 125 \times V_R \times 10^{0.072+logP\times D^{0.067+logP/D}-1.126}}$$
Usage

calc_hep_fu(
 chem.cas = NULL,
 chem.name = NULL,
 dtxsid = NULL,
 parameters = NULL,
 Vr = 0.005,
 pH = 7.4
)

Arguments

chem.cas Chemical Abstract Services Registry Number (CAS-RN) – if parameters is not specified then the chemical must be identified by either CAS, name, or DTXISD.
chem.name Chemical name (spaces and capitalization ignored) – if parameters is not specified then the chemical must be identified by either CAS, name, or DTXISD.
dtxsid EPA’s DSSTox Structure ID (https://comptox.epa.gov/dashboard) – if parameters is not specified then the chemical must be identified by either CAS, name, or DTXISD.
parameters Parameters from the appropriate parameterization function for the model indicated by argument model.
Vr Ratio of cell volume to incubation volume. Default (0.005) is taken from
pH pH of the incubation medium.

Details

Note that octanal:water partitioning above 1:1,000,000 (LogP_{ow} > 6) are truncated at 1:1,000,000 because greater partitioning would likely take longer than hepatocyte assay itself.

Value

A numeric fraction between zero and one

Author(s)

John Wambaugh and Robert Pearce

References

See Also

apply_clint_adjustment
Description

This function calculates the ionization of a compound at a given pH. The pKa’s are either entered as parameters or taken from a specific compound in the package. The arguments pKa_Donor and pKa_Accept may be single numbers, characters, or vectors. We support characters because there are many instances with multiple predicted values and all those values can be included by concatenating with commas (for example, pKa_Donor = "8.1,8.6"). Finally, pka_Donor and pKa_Accept may be vectors of characters representing different chemicals or instances of chemical parameters to allow for uncertainty analysis. A null value for pKa_Donor or pKa_Accept is interpreted as no argument provided, while NA is taken as no equilibria.

Usage

```r
calc_ionization(
    chem.cas = NULL,
    chem.name = NULL,
    dtxsid = NULL,
    parameters = NULL,
    pH = NULL,
    pKa_Donor = NULL,
    pKa_Accept = NULL
)
```

Arguments

- **chem.cas** Either the chemical name or the CAS number must be specified.
- **chem.name** Either the chemical name or the CAS number must be specified.
- **dtxsid** EPA's 'DSSTox Structure ID (https://comptox.epa.gov/dashboard) the chemical must be identified by either CAS, name, or DTXSIDs.
- **parameters** Chemical parameters from a parameterize_MODEL function, overrides chem.name and chem.cas.
- **pH** pH where ionization is evaluated.
- **pKa_Donor** Compound H dissociation equilibrium constant(s). Overwrites chem.name and chem.cas.
- **pKa_Accept** Compound H association equilibrium constant(s). Overwrites chem.name and chem.cas.

Details

The fractions are calculated by determining the coefficients for each species and dividing the particular species by the sum of all three. The positive, negative and zwitterionic/neutral coefficients are given by:

\[
\text{zwitter/neutral} = 1 \\
\text{for}(i in 1:pkaabove)\text{negative} = \text{negative} + 10^{i \times pH - pKa1 - \ldots - pKai} \\
\text{for}(i in 1:pkbellow)\text{positive} = \text{positive} + 10^{pKa1 + \ldots + pKai - i \times pH}
\]
where \(i \) begins at 1 and ends at the number of points above(for negative) or below(for positive) the neutral/zwitterionic range. The neutral/zwitterionic range is either the pH range between 2 pKa's where the number of acceptors above is equal to the number of donors below, everything above the pKa acceptors if there are no donors, or everything below the pKa donors if there are no acceptors. Each of the terms in the sums represent a different ionization.

Value

- `fraction_neutral`: fraction of compound neutral
- `fraction_charged`: fraction of compound charged
- `fraction_negative`: fraction of compound negative
- `fraction_positive`: fraction of compound positive
- `fraction_zwitter`: fraction of compound zwitterionic

Author(s)

Robert Pearce and John Wambaugh

References

Examples

```
# Donor pKa's 9.78,10.39 -- Should be almost all neutral at plasma pH:
out <- calc_ionization(chem.name='bisphenola',pH=7.4)
print(out)
out[['fraction_neutral']]==max(unlist(out))

# Donor pKa's 9.78,10.39 -- Should be almost all negative (anion) at higher pH:
out <- calc_ionization(chem.name='bisphenola',pH=11)
print(out)
out[['fraction_negative']]==max(unlist(out))

# Fictitious compound, should be almost all negative (anion):
out <- calc_ionization(pKa_Donor=8,pKa_Accept='1,4',pH=9)
print(out)
out[['fraction_negative']]>0.9

# Donor pKa 6.54 -- Should be mostly negative (anion):
out <- calc_ionization(chem.name='Acephate',pH=7)
print(out)
out[['fraction_negative']]==max(unlist(out))

#Acceptor pKa's "9.04,6.04" -- Should be almost all positive (cation) at plasma pH:
out <- calc_ionization(chem.cas='145742-28-5',pH=7.4)
```
calc_kair

print(out)
out[['fraction_positive']] == max(unlist(out))

Fictitious Zwitteron:
out <- calc_ionization(pKa_Donor=6, pKa_Accept="8", pH=7.4)
print(out)
out[['fraction_zwitter']] == max(unlist(out))

calc_kair

Calculate air:matrix partition coefficients

Description

This function uses the methods collected by Linakis et al. (2020) to calculate air partition coefficients for blood, water, and mucus.

Usage

```r
calc_kair(
  chem.cas = NULL,
  chem.name = NULL,
  dtxsid = NULL,
  parameters = NULL,
  species = "Human",
  adjusted.Funbound.plasma = TRUE,
  default.to.human = FALSE,
  suppress.messages = FALSE
)
```

Arguments

- `chem.cas`: Chemical Abstract Services Registry Number (CAS-RN) – if parameters is not specified then the chemical must be identified by either CAS, name, or DTXISD.
- `chem.name`: Chemical name (spaces and capitalization ignored) – if parameters is not specified then the chemical must be identified by either CAS, name, or DTXISD.
- `dtxsid`: EPA’s DSSTox Structure ID (https://comptox.epa.gov/dashboard) – if parameters is not specified then the chemical must be identified by either CAS, name, or DTXISD.
- `parameters`: Parameters from the appropriate parameterization function for the model indicated by argument model. Can include parameters “logHenry” and “body_temp”, but if not included standard values are looked up from httk tables.
- `species`: Species used for body temperature, defaults to "Human".
- `adjusted.Funbound.plasma`: Uses Pearce et al. (2017) lipid binding adjustment for Funbound.plasma (which impacts partition coefficients) when set to TRUE (Default).
- `default.to.human`: Substitutes missing species-specific values with human values if TRUE (default is FALSE).
- `suppress.messages`: Whether or not the output messages are suppressed.
calc_krbc2pu

Details

The blood:air partition coefficient (PB:A) was calculated as

\[P_{B:A} = \frac{P_{B:A} \times R_{B:P}}{f_{up}} \]

where \(P_{B:A} \) is the blood:air partition, \(R_{B:P} \) is the blood:plasma partition ratio, \(f_{up} \) is the fraction unbound in the plasma, and \(P_{W:A} \) is the water:air partition coefficient:

\[R \times T_{body} \]

\[\frac{HLC}{P} \]

where \(R \) is the gas constant \((8.314 \text{ J/mol/K})\), \(T_{body} \) is the species-specific body temperature \((\text{K})\) from physiology.data, \(HLC \) is the Henry’s Law Constant \((\text{atm} \text{m}^3 / \text{mol})\), and \(P \) is conversion factor from atmospheres to Pascals \((1 \text{ atm} = 101325 \text{ Pa})\).

In the isopropanol PBTK model published by Clewell et al. (2001) it was noted that certain chemicals are likely to be absorbed into the mucus or otherwise trapped in the upper respiratory tract (URT). Following Scott (2014), the air:mucus partition coefficient (PA:M) calculated as

\[\log_{10} \left(\frac{1}{K_{water:2air}} \right) - \left(\log_{10}(P_{ow}) - 1 \right) * 0.524 \]

where \(P_{ow} \) is the octanol/water partition coefficient

Value

A named list containing the blood:air, water:air, and mucus:air partition coefficients

Author(s)

John Wambaugh and Matt Linakis

References

<table>
<thead>
<tr>
<th>calc_krbc2pu</th>
<th>Back-calculates the Red Blood Cell to Unbound Plasma Partition Coefficient</th>
</tr>
</thead>
</table>

Description

Given an observed ratio of chemical concentration in blood to plasma, this function calculates a Red Blood Cell to unbound plasma (Krbc2pu) partition coefficient that would be consistent with that observation.
Usage

calc_krbc2pu(
 Rb2p,
 Funbound.plasma,
 hematocrit = NULL,
 default.to.human = FALSE,
 species = "Human",
 suppress.messages = TRUE
)

Arguments

Rb2p | The chemical blood:plasma concentration ratio of chemical.
Funbound.plasma | The free fraction of chemical in the presence of plasma protein Rblood2plasma.
hematocrit | Overwrites default hematocrit value in calculating Rblood2plasma.
default.to.human | Substitutes missing animal values with human values if true.
species | Species desired (either "Rat", "Rabbit", "Dog", "Mouse", or default "Human").
suppress.messages | Determine whether to display certain usage feedback.

Value

The red blood cell to unbound chemical in plasma partition coefficient.

Author(s)

John Wambaugh and Robert Pearce

References

Description

Membrane affinity (MA) is the membrane:water partition coefficient. MA characterizes chemical partitioning into membranes formed from neutral phospholipids (K_{nPL}). Pearce et al. (2017) compared five different methods for predicting membrane affinity using measured data for 59 compounds. The method of Yun and Edgington (2013) was identified as the best:

$$MA = 10^{1.294 + 0.304 \cdot \log_{10}(P_{ow})}$$
Usage

calc_ma(
 chem.cas = NULL,
 chem.name = NULL,
 dtxsid = NULL,
 parameters = NULL,
 suppress.messages = FALSE
)

Arguments

chem.cas Chemical Abstract Services Registry Number (CAS-RN) – if parameters is not specified then the chemical must be identified by either CAS, name, or DTXISD
chem.name Chemical name (spaces and capitalization ignored) – if parameters is not specified then the chemical must be identified by either CAS, name, or DTXISD
dtxsid EPA’s 'DSSTox Structure ID (https://comptox.epa.gov/dashboard) – if parameters is not specified then the chemical must be identified by either CAS, name, or DTXISDs
parameters Parameters from the appropriate parameterization function for the model indicated by argument model
suppress.messages Whether or not the output message is suppressed.

Value

A numeric fraction unbound in plasma between zero and one

Author(s)

John Wambaugh

References

calc_maternal_bw Calculate maternal body weight

Description

This function initializes the parameters needed in the functions solve_fetal_pbtk by calling solve_pbtk and adding additional parameters.

Usage

calc_maternal_bw(week = 12)
Arguments

week Gestational week

Details

BW <- params$pre_pregnant_BW + params$BW_cubic_theta1 * tw + params$BW_cubic_theta2 * tw^2 + params$BW_cubic_theta3 * tw^3

Value

BW Maternal Body Weight, kg.

Author(s)

John Wambaugh

References

calc_mc_css Distribution of chemical steady state concentration with uncertainty and variability

Description

For a given chemical and fixed dose rate this function determines a distribution of steady-state concentrations reflecting measurement uncertainty and population variability. Uncertainty and variability are simulated via the Monte Carlo method – many sets of model parameters are drawn according to probability distributions described in Ring et al. (2017) (doi: 10.1016/j.envint.2017.06.004) for human variability and Wambaugh et al. (2019) (doi: 10.1093/toxsci/kfz205) for measurement uncertainty. Monte Carlo samples are generated by the function create_mc_samples. To allow rapid application of the Monte Carlo method we make use of analytical solutions for the steady-state concentration for a particular model via a given route (when available) as opposed to solving the model numerically (that is, using differential equations). For each sample of the Monte Carlo method (as specified by argument samples) the parameters for the analytical solution are varied. An ensemble of steady-state predictions are produced, though by default only the quantiles specified by argument which.quantile are provided. If the full set of predicted values are desired use set the argument return.samples to TRUE.

Usage

calc_mc_css(
 chem.cas = NULL,
 chem.name = NULL,
 dtxsid = NULL,
 parameters = NULL,
 samples = 1000,
 which.quantile = 0.95,
 species = "Human",
)
calc_mc_css

daily.dose = 1,
suppress.messages = FALSE,
model = "3compartmentss",
httkpop = TRUE,
invitrouv = TRUE,
calcrb2p = TRUE,
censored.params = list(),
vary.params = list(),
return.samples = FALSE,
tissue = NULL,
concentration = "plasma",
output.units = "mg/L",
invitro.mc.arg.list = NULL,
httkpop.generate.arg.list = list(method = "direct resampling"),
convert.httkpop.arg.list = NULL,
parameterize.arg.list = NULL,
calc.analytic.css.arg.list = NULL
)

Arguments

chem.cas Chemical Abstract Services Registry Number (CAS-RN) – if parameters is not specified then the chemical must be identified by either CAS, name, or DTXISD
chem.name Chemical name (spaces and capitalization ignored) – if parameters is not specified then the chemical must be identified by either CAS, name, or DTXISD
dtxsid EPA’s DSSTox Structure ID (https://comptox.epa.gov/dashboard) – if parameters is not specified then the chemical must be identified by either CAS, name, or DTXISDs
parameters Parameters from the appropriate parameterization function for the model indicated by argument model
samples Number of samples generated in calculating quantiles.
which.quantile Which quantile from Monte Carlo simulation is requested. Can be a vector.
species Species desired (either "Rat", "Rabbit", "Dog", "Mouse", or default "Human"). Species must be set to "Human" to run httkpop model.
daily.dose Total daily dose, mg/kg BW.
suppress.messages Whether or not to suppress output message.
model Model used in calculation,’gas_pbtk’ for the gas pbtk model, ’pbtk’ for the multiple compartment model, ’3compartment’ for the three compartment model, ’3compartments’ for the three compartment steady state model, and ’1compartment’ for one compartment model. This only applies when httkpop=TRUE and species="Human", otherwise ’3compartments’ is used.
httkpop Whether or not to use population generator and sampler from httkpop. This is overwrites censored.params and vary.params and is only for human physiology. Species must also be set to 'Human'.
invitrouv Logical to indicate whether to include in vitro parameters in uncertainty and variability analysis
calcrb2p Logical determining whether or not to recalculate the chemical ratio of blood to plasma
The chemical-specific steady-state concentration for a dose rate of 1 mg/kg body weight/day can be used for in *in vitro-in vivo* extrapolation (IVIVE) of a bioactive *in vitro* concentration by dividing the *in vitro* concentration by the steady-state concentration to predict a dose rate (mg/kg/day) that would produce that concentration in plasma. Using quantiles of the distribution (such as the upper 95th percentile) allow incorporation of uncertainty and variability into IVIVE.

Reverse Dosimetry Toxicodynamic IVIVE
Figure from Breen et al. (2021) (doi: 10.1080/17425255.2021.1935867) shows reverse dosimetry toxicodynamic IVIVE. Equivalent external dose is determined by solving the TK model in reverse by deriving the external dose (that is, TK model input) that produces a specified internal concentration (that is, TK model output). Reverse dosimetry and IVIVE using HTTK relies on the linearity of the models. We calculate a scaling factor to relate \textit{in vitro} concentrations (µM) to administered equivalent doses (AED). The scaling factor is the inverse of the steady state plasma concentration (Css) predicted for a 1 mg/kg/day exposure dose rate. We use Monte Carlo to simulate variability and propagate uncertainty; for example, to calculate an upper 95th percentileCss,95 for individuals who get higher plasma concentrations from the same exposure.

The Monte Carlo methods used here were recently updated and described by Breen et al. (submitted).

httk-pop is used only for humans. For non-human species biological variability is simulated by drawing parameters from uncorrelated log-normal distributions.

Chemical-specific httk data are available primarily for human and for a few hundred chemicals in rat. All in silico predictions are for human. Thus, when species is specified as rabbit, dog, or mouse, the user can choose to set the argument \texttt{default.to.human} to \texttt{TRUE} so that this function uses the appropriate physiological data (volumes and flows) but substitutes human fraction unbound, partition coefficients, and intrinsic hepatic clearance.

If the argument \texttt{tissue} is used, the steady-state concentration in that tissue, if available, is provided. If that tissue is included in the model used (specified by argument \texttt{model}) then the actual tissue concentration is provided. Otherwise, the tissue-specific partition coefficient is used to estimate the concentration from the plasma.

The six sets of plausible IVIVE assumptions identified by Honda et al. (2019) (doi: 10.1371/journal.pone.0217564) are:

<table>
<thead>
<tr>
<th>Honda1</th>
<th>Veinous (Plasma)</th>
<th>Restrictive</th>
<th>Free</th>
<th>Mean Conc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Honda2</td>
<td>Veinous</td>
<td>Restrictive</td>
<td>Free</td>
<td>Max Conc.</td>
</tr>
</tbody>
</table>

\[
\text{AED}_{Css,95} = \frac{[X]}{C_{ss,95}}
\]
Honda3 Veinous Non-restrictive Total Mean Conc.
Honda4 Veinous Non-restrictive Total Max Conc.
Honda5 Target Tissue Non-restrictive Total Mean Conc.
Honda6 Target Tissue Non-restrictive Total Max Conc.

*Assumption is currently ignored because analytical steady-state solutions are currently used by this function.

Value
Quantiles (specified by which.quantile) of the distribution of plasma steady-state concentration (Css) from the Monte Carlo simulation

Author(s)
Caroline Ring, Robert Pearce, John Wambaugh, Miyuki Breen

References

See Also
calc_analytic_css
create_mc_samples

Examples
Set the number of samples (NSAMP) low for rapid testing, increase NSAMP
for more stable results. Default value is 1000:
NSAMP = 10

Basic in vitro - in vivo extrapolation with httk, convert 3 uM in vitro
concentration of chemical with CAS 2451-62-9 to mg/kg/day:
set.seed(1234)
3/calc_mc_css(chem.cas="2451-62-9", samples=NSAMP, output.units="uM")
The significant digits should give the same answer as:
set.seed(1234)
calc_mc_oral_equiv(chem.cas="2451-62-9", conc=3, samples=NSAMP)

set.seed(1234)
calc_mc_css(chem.name='Bisphenol A', output.units='uM',
samples=NSAMP, return.samples=TRUE)
```r
set.seed(1234)
calc_mc_css(chem.name='Bisphenol A', output.units='uM',
    samples=NSAMP,
    httkpop.generate.arg.list=list(method='vi'))

# The following example should result in an error since we do not
# estimate tissue partitioning with '3compartmentss'.
set.seed(1234)
try(calc_mc_css(chem.name='2,4-d', which.quantile=.9,
    samples=NSAMP,
    httkpop=FALSE, tissue='heart'))

# But heart will work with PBTK, even though it's lumped since we estimate
# a partition coefficient before lumping:
set.seed(1234)
calc_mc_css(chem.name='2,4-d', model='pbtk',
    samples=NSAMP,
    which.quantile=.9, httkpop=FALSE, tissue='heart')

set.seed(1234)
calc_mc_css(chem.cas = "80-05-7", which.quantile = 0.5,
    output.units = "uM", samples = NSAMP,
    httkpop.generate.arg.list=list(method='vi', gendernum=NULL,
        agelim_years=NULL, agelim_months=NULL,
        weight_category = c("Underweight","Normal","Overweight","Obese")))

params <- parameterize_pbtk(chem.cas="80-05-7")
set.seed(1234)
calc_mc_css(parameters=params,model="pbtk", samples=NSAMP)

set.seed(1234)
# Standard HTTK Monte Carlo
calc_mc_css(chem.cas="90-43-7", model="pbtk", samples=NSAMP)
set.seed(1234)
# HTTK Monte Carlo with no measurement uncertainty (pre v1.10.0):
calc_mc_css(chem.cas="90-43-7",
    model="pbtk",
    samples=NSAMP,
    invitro.mc.arg.list = list(
        adjusted.Funbound.plasma = TRUE,
        poormetab = TRUE,
        fup.censored.dist = FALSE,
        fup.lod = 0.01,
        fup.meas.cv = 0.0,
        clint.meas.cv = 0.0,
        fup.pop.cv = 0.3,
        clint.pop.cv = 0.3))

# HTTK Monte Carlo with no HTTK-Pop physiological variability):
set.seed(1234)
calc_mc_css(chem.cas="90-43-7",model="pbtk",samples=NSAMP,httkpop=FALSE)

# HTTK Monte Carlo with no in vitro uncertainty and variability):
set.seed(1234)
calc_mc_css(chem.cas="90-43-7",model="pbtk",samples=NSAMP,invitrouv=FALSE)
```
HTTK Monte Carlo with no HTTK-Pop and no in vitro uncertainty and variability:
set.seed(1234)
calc_mc_css(chem.cas="90-43-7", model="pbtk",
samples=NSAMP, httkpop=FALSE, invitrouv=FALSE)

Should be the same as the mean result:
calc_analytic Css(chem.cas="90-43-7", model="pbtk", output.units="mg/L")

HTTK Monte Carlo using basic Monte Carlo sampler:
set.seed(1234)
calc_mc_css(chem.cas="90-43-7",
model="pbtk",
samples=NSAMP,
httkpop=FALSE,
invitrouv=FALSE,
vary.params=list(Pow=0.3))

calc_mc_oral_equiv Calculate Monte Carlo Oral Equivalent Dose

Description

This function converts a chemical plasma concentration to an oral administered equivalent dose (AED) using a concentration obtained from `calc_mc_css`. This function uses reverse dosimetry-based ‘in vitro-in vivo’ extrapolation (IVIVE) for high throughput risk screening. The user can input the chemical and in vitro bioactive concentration, select the TK model, and then automatically predict the in vivo AED which would produce a body concentration equal to the in vitro bioactive concentration. This function relies on the Monte Carlo method (via function `create_mc_samples`) to simulate both uncertainty and variability so that the result is a distribution of equivalent doses, from which we provide specific quantiles (specified by `which.quantile`), though the full set of predictions can be obtained by setting `return.samples` to TRUE.

Usage

calc_mc_oral_equiv(
 conc,
 chem.name = NULL,
 chem.cas = NULL,
 dtxsid = NULL,
 which.quantile = 0.95,
 species = "Human",
 input.units = "uM",
 output.units = "mgpkgpday",
 suppress.messages = FALSE,
 return.samples = FALSE,
 restrictive.clearance = TRUE,
 bioactive.free.invivo = FALSE,
 tissue = NULL,
 concentration = "plasma",
 IVIVE = NULL,
 model = "3compartmentss",
 ...
)
Arguments

cconc | Bioactive in vitro concentration in units of uM.
chem.name | Either the chemical name or the CAS number must be specified.
chem.cas | Either the CAS number or the chemical name must be specified.
dtxsid | EPA's 'DSSTox Structure ID (https://comptox.epa.gov/dashboard) the chemical must be identified by either CAS, name, or DTXSIDs
which.quantile | Which quantile from Monte Carlo steady-state simulation (calc_mc_css) is requested. Can be a vector. Note that 95th concentration quantile is the same population as the 5th dose quantile.
species | Species desired (either "Rat", "Rabbit", "Dog", "Mouse", or default "Human").
input.units | Units of given concentration, default of uM but can also be mg/L.
output.units | Units of dose, default of 'mgpkgpday' for mg/kg BW/ day or 'umolkgpday' for umol/ kg BW/ day.
suppress.messages | Suppress text messages.
return.samples | Whether or not to return the vector containing the samples from the simulation instead of the selected quantile.
restrictive.clearance | Protein binding not taken into account (set to 1) in liver clearance if FALSE.
bioactive.free.invivo | If FALSE (default), then the total concentration is treated as bioactive in vivo. If TRUE, the unbound (free) plasma concentration is treated as bioactive in vivo. Only works with tissue = NULL in current implementation.
tissue | Desired steady state tissue concentration. Default is of NULL typically gives whole body plasma concentration.
concentration | Desired concentration type: 'blood', 'tissue', or default 'plasma'. In the case that the concentration is for plasma, selecting "blood" will use the blood:plasma ratio to estimate blood concentration. In the case that the argument 'tissue' specifies a particular tissue of the body, concentration defaults to 'tissue' – that is, the concentration in the If concentration is set to 'blood' or 'plasma' and 'tissue' specifies a specific tissue then the value returned is for the plasma or blood in that specific tissue.
IVIVE | Honda et al. (2019) identified six plausible sets of assumptions for in vitro-in vivo extrapolation (IVIVE) assumptions. Argument may be set to "Honda1" through "Honda6". If used, this function overwrites the tissue, restrictive.clearance, and plasma.binding arguments. See Details below for more information.
model | Model used in calculation,'gas_pbtk' for the gas pbtk model, 'pbtk' for the multiple compartment model, '3compartment' for the three compartment model, '3compartmentss' for the three compartment steady state model, and '1compartment' for one compartment model. This only applies when httkpop=TRUE and species="Human", otherwise '3compartmentss' is used.
... | Additional parameters passed to calc_mc_css for httkpop and variance of parameters.

Details

The chemical-specific steady-state concentration for a dose rate of 1 mg/kg body weight/day can be used for in IVIVE of a bioactive in vitro concentration by dividing the in vitro concentration by the
steady-state concentration to predict a dose rate (mg/kg/day) that would produce that concentration in plasma. Using quantiles of the distribution (such as the upper 95th percentile) allow incorporation of uncertainty and variability into IVIVE.

This approach relies on the linearity of the models to calculate a scaling factor to relate in vitro concentrations (μM) with AED. The scaling factor is the inverse of the steady-state plasma concentration (Css) predicted for a 1 mg/kg/day exposure dose rate where in vitro concentration [X] and Css must be in the same units. Note that it is typical for in vitro concentrations to be reported in units of μM and Css in units of mg/L, in which case one must be converted to the other.

Reverse Dosimetry Toxicodynamic IVIVE

$$AED_{Css,95} = \frac{[X]}{C_{ss,95}}$$

Figure from Breen et al. (2021) (doi: 10.1080/17425255.2021.1935867) shows reverse dosimetry toxicodynamic IVIVE. Equivalent external dose is determined by solving the TK model in reverse by deriving the external dose (that is, TK model input) that produces a specified internal concentration (that is, TK model output). Reverse dosimetry and IVIVE using HTTK relies on the linearity of the models. We calculate a scaling factor to relate in vitro concentrations (μM) to AEDs. The scaling factor is the inverse of the Css predicted for a 1 mg/kg/day exposure dose rate. We use Monte Carlo to simulate variability and propagate uncertainty; for example, to calculate an upper 95th percentileCss,95 for individuals who get higher plasma concentrations from the same exposure.

The Monte Carlo methods used here were recently updated and described by Breen et al. (submitted).

All arguments after httkpop only apply if httkpop is set to TRUE and species to "Human".

When species is specified as rabbit, dog, or mouse, the function uses the appropriate physiological data (volumes and flows) but substitutes human fraction unbound, partition coefficients, and intrinsic hepatic clearance.

Tissue concentrations are calculated for the pbtk model with oral infusion dosing. All tissues other than gut, liver, and lung are the product of the steady state plasma concentration and the tissue to plasma partition coefficient.

The six sets of plausible IVIVE assumptions identified by Honda et al. (2019) (doi: 10.1371/journal.pone.0217564) are:
calc_mc_oral_equiv

<table>
<thead>
<tr>
<th></th>
<th>in vivo Conc.</th>
<th>Metabolic Clearance</th>
<th>Bioactive Chemical Conc.</th>
<th>TK Statistic Used*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Honda1</td>
<td>Veinous (Plasma)</td>
<td>Restrictive</td>
<td>Free</td>
<td>Mean Conc.</td>
</tr>
<tr>
<td>Honda2</td>
<td>Veinous</td>
<td>Restrictive</td>
<td>Free</td>
<td>Max Conc.</td>
</tr>
<tr>
<td>Honda3</td>
<td>Veinous</td>
<td>Non-restrictive</td>
<td>Total</td>
<td>Mean Conc.</td>
</tr>
<tr>
<td>Honda4</td>
<td>Veinous</td>
<td>Non-restrictive</td>
<td>Total</td>
<td>Max Conc.</td>
</tr>
<tr>
<td>Honda5</td>
<td>Target Tissue</td>
<td>Non-restrictive</td>
<td>Total</td>
<td>Mean Conc.</td>
</tr>
<tr>
<td>Honda6</td>
<td>Target Tissue</td>
<td>Non-restrictive</td>
<td>Total</td>
<td>Max Conc.</td>
</tr>
</tbody>
</table>

*Assumption is currently ignored because analytical steady-state solutions are currently used by this function.

Value

Equivalent dose in specified units, default of mg/kg BW/day.

Author(s)

John Wambaugh

References

See Also

`calc_mc_css`

`create_mc_samples`

Examples

Set the number of samples (NSAMP) low for rapid testing, increase NSAMP
for more stable results. Default value is 1000:
NSAMP = 10

Basic in vitro - in vivo extrapolation with httk, convert 0.5 uM in vitro
concentration of chemical Surinabant to mg/kg/day:
set.seed(1234)
0.5/calc_mc_css(chem.name="Surinabant", samples=NSAMP, output.units="uM")

The significant digits should give the same answer as:
set.seed(1234)
calc_mc_oral_equiv(chem.name="Surinabant",conc=0.5,samples=NSAMP)

Note that we use set.seed to get the same sequence of random numbers for
the two different function calls (calc_mc_css and calc_mc_oral_equiv)

The following example should result in an error since we do not
estimate tissue partitioning with '3compartmentss'.
set.seed(1234)
try(calc_mc_oral_equiv(0.1, chem.cas="34256-82-1",
 which.quantile=c(0.05,0.5,0.95),
 samples=NSAMP,
 tissue='brain'))

set.seed(1234)
calc_mc_oral_equiv(0.1,chem.cas="34256-82-1", model='pbtk',
 samples=NSAMP,
 which.quantile=c(0.05,0.5,0.95), tissue='brain')

calc_mc_tk

Conduct multiple TK simulations using Monte Carlo

Description

This function finds the analytical steady state plasma concentration (from `calc_analytic_css`) using a monte carlo simulation (`monte_carlo`).

Usage

calc_mc_tk(
 chem.cas = NULL,
 chem.name = NULL,
 dtxsid = NULL,
 parameters = NULL,
 samples = 1000,
 species = "Human",
 suppress.messages = FALSE,
 model = "pbtk",
 httkpop = TRUE,
 invitrouv = TRUE,
 calcrb2p = TRUE,
 censored.params = list(),
 vary.params = list(),
 return.samples = FALSE,
 tissue = NULL,
 output.units = "mg/L",
 solvemodel.arg.list = list(times = c(0, 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, 3, 4, 5)),
 invitro.mc.arg.list = NULL,
 httkpop.generate.arg.list = list(method = "direct resampling"),
 convert.httkpop.arg.list = NULL,
 parameterize.arg.list = NULL,
 return.all.sims = FALSE
)
Arguments

chem.cas
Either the CAS number, parameters, or the chemical name must be specified.

chem.name
Either the chemical parameters, name, or the CAS number must be specified.

dtxsid
EPA's DSSTox Structure ID (https://comptox.epa.gov/dashboard) the chemical must be identified by either CAS, name, or DTXSIDs.

parameters
Parameters from parameterize_steadystate. Not used with httkpop model.

samples
Number of samples generated in calculating quantiles.

species
Species desired (either "Rat", "Rabbit", "Dog", "Mouse", or default "Human"). Species must be set to "Human" to run httkpop model.

suppress.messages
Whether or not to suppress output message.

model
Model used in calculation: 'pbtk' for the multiple compartment model, '3compartment' for the three compartment model, '3compartmentss' for the three compartment steady state model, and '1compartment' for one compartment model. This only applies when httkpop=TRUE and species="Human", otherwise '3compartmentss' is used.

httkpop
Whether or not to use population generator and sampler from httkpop. This is overwrites censored.params and vary.params and is only for human physiology. Species must also be set to 'Human'.

invitrouv
Logical to indicate whether to include in vitro parameters in uncertainty and variability analysis.

calcrb2p
Logical determining whether or not to recalculate the chemical ratio of blood to plasma.

censored.params
The parameters listed in censored.params are sampled from a normal distribution that is censored for values less than the limit of detection (specified separately for each parameter). This argument should be a list of sub-lists. Each sub-list is named for a parameter in "parameters" and contains two elements: "CV" (coefficient of variation) and "LOD" (limit of detection, below which parameter values are censored). New values are sampled with mean equal to the value in "parameters" and standard deviation equal to the mean times the CV. Censored values are sampled on a uniform distribution between 0 and the limit of detection. Not used with httkpop model.

vary.params
The parameters listed in vary.params are sampled from a normal distribution that is truncated at zero. This argument should be a list of coefficients of variation (CV) for the normal distribution. Each entry in the list is named for a parameter in "parameters". New values are sampled with mean equal to the value in "parameters" and standard deviation equal to the mean times the CV. Not used with httkpop model.

return.samples
Whether or not to return the vector containing the samples from the simulation instead of the selected quantile.

tissue
Desired steady state tissue concentration.

output.units
Plasma concentration units, either uM or default mg/L.

solvemodel.arg.list
Additional arguments ultimately passed to `solve_model`

invitro.mc.arg.list
List of additional parameters passed to `invitro_mc`
httkpop.generate.arg.list
 Additional parameters passed to htkpop_generate.
convert.httkpop.arg.list
 Additional parameters passed to the convert_httkpop_* function for the model.
parameterize.arg.list
 Additional parameters passed to the parameterize_* function for the model.
return.all.sims
 Logical indicating whether to return the results of all simulations, in addition to the default toxicokinetic statistics

Details

The Monte Carlo methods used here were recently updated and described by Breen et al. (submitted).

All arguments after htkpop only apply if htkpop is set to TRUE and species to "Human".

When species is specified as rabbit, dog, or mouse, the function uses the appropriate physiological data (volumes and flows) but substitutes human fraction unbound, partition coefficients, and intrinsic hepatic clearance.

Tissue concentrations are calculated for the pbtk model with oral infusion dosing. All tissues other than gut, liver, and lung are the product of the steady state plasma concentration and the tissue to plasma partition coefficient.

The six sets of plausible in vitro-in vivo extrapolation (IVIVE) assumptions identified by Honda et al. (2019) (doi: 10.1371/journal.pone.0217564) are:

<table>
<thead>
<tr>
<th>Honda1</th>
<th>in vivo Conc.</th>
<th>Metabolic Clearance</th>
<th>Bioactive Chemical Conc.</th>
<th>TK Statistic Used*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Veinous (Plasma)</td>
<td>Restrictive</td>
<td>Free</td>
<td>Mean Conc.</td>
<td></td>
</tr>
<tr>
<td>Honda2</td>
<td>Veinous</td>
<td>Restrictive</td>
<td>Free</td>
<td>Max Conc.</td>
</tr>
<tr>
<td>Honda3</td>
<td>Veinous</td>
<td>Non-restrictive</td>
<td>Total</td>
<td>Mean Conc.</td>
</tr>
<tr>
<td>Honda4</td>
<td>Veinous</td>
<td>Non-restrictive</td>
<td>Total</td>
<td>Max Conc.</td>
</tr>
<tr>
<td>Honda5</td>
<td>Target Tissue</td>
<td>Non-restrictive</td>
<td>Total</td>
<td>Mean Conc.</td>
</tr>
<tr>
<td>Honda6</td>
<td>Target Tissue</td>
<td>Non-restrictive</td>
<td>Total</td>
<td>Max Conc.</td>
</tr>
</tbody>
</table>

* Assumption is currently ignored because analytical steady-state solutions are currently used by this function.

Value

If return.all.sims == FALSE (default) a list with:

<table>
<thead>
<tr>
<th>means</th>
<th>The mean concentration for each model compartment as a function of time across the Monte Carlo simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>sds</td>
<td>The standard deviation for each model compartment as a function of time across the Monte Carlo simulation</td>
</tr>
</tbody>
</table>

If return.all.sums == TRUE then a list is returned with:

<table>
<thead>
<tr>
<th>stats</th>
<th>The list of means and sds from return.all.sums=FALSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>sims</td>
<td>The concentration vs. time results for each compartment for every (samples) set of parameters in the Monte Carlo simulation</td>
</tr>
</tbody>
</table>
calc_rblood2plasma

Calculate the constant ratio of the blood concentration to the plasma concentration.

This function calculates the constant ratio of the blood concentration to the plasma concentration.

Usage

```r
calc_rblood2plasma(
  chem.cas = NULL,
  chem.name = NULL,
  dtxsid = NULL,
  parameters = NULL,
  hematocrit = NULL,
  Krbc2pu = NULL,
  Funbound.plasma = NULL,
  default.to.human = FALSE,
  species = "Human",
  adjusted.Funbound.plasma = TRUE,
  suppress.messages = TRUE
)
```

Author(s)

John Wambaugh

See Also

create_mc_samples

Examples

```r
NSAMP <- 50
chemname="Abamectin"
times< c(0,0.25,0.5,0.75,1,1.5,2,2.5,3,4,5)
age.ranges <- seq(6,80,by=10)
forward <- NULL
for (age.lower in age.ranges)
{
  label <- paste("Ages ",age.lower,"-",age.lower+4,sep"")
  set.seed(1234)
  forward[[label]] <- calc_mc_tk(
    chem.name=chemname,
    samples=NSAMP,
    httkpop.generate.arg.list=list(
      method="d",
      agelim_years = c(age.lower, age.lower+9)),
    solvemodel.arg.list = list(
      times=times))
}
```
Arguments

calc_rblood2plasma

chem.cas Either the CAS number or the chemical name must be specified.

chem.name Either the chemical name or the CAS number must be specified.

dtxsid EPA's DSSTox Structure ID (https://comptox.epa.gov/dashboard) the chemical must be identified by either CAS, name, or DTXSIDs

parameters Parameters from parameterize_schmitt

hematocrit Overwrites default hematocrit value in calculating Rblood2plasma.

Krbc2pu The red blood cell to unbound plasma chemical partition coefficient, typically from predict_partitioning_schmitt

Funbound.plasma The fraction of chemical unbound (free) in the presence of plasma protein

default.to.human Substitutes missing animal values with human values if true.

species Species desired (either "Rat", "Rabbit", "Dog", "Mouse", or default "Human").

adjusted.Funbound.plasma Whether or not to use Funbound.plasma adjustment.

suppress.messages Determine whether to display certain usage feedback.

Details

The red blood cell (RBC) partition coefficient as predicted by the Schmitt (2008) method is used in the calculation. The value is calculated with the equation: 1 - hematocrit + hematocrit * Krbc2pu * Funbound.plasma, summing the red blood cell to plasma and plasma:plasma (equal to 1) partition coefficients multiplied by their respective fractional volumes. When species is specified as rabbit, dog, or mouse, the function uses the appropriate physiological data (hematocrit and temperature), but substitutes human fraction unbound and tissue volumes.

Value

The blood to plasma chemical concentration ratio

Author(s)

John Wambaugh and Robert Pearce

References

Schmitt W. "General approach for the calculation of tissue to plasma partition coefficients." Toxicology In Vitro, 22, 457-467 (2008).

Examples

calc_rblood2plasma(chem.name="Bisphenol A")
calc_rblood2plasma(chem.name="Bisphenol A",species="Rat")
calc_stats

Calculate toxicokinetic summary statistics (deprecated).

Description

This function is included for backward compatibility. It calls calc_tkstats which calculates the area under the curve, the mean, and the peak values for the venous blood or plasma concentration of a specified chemical or all chemicals if none is specified for the multiple compartment model with a given number of days, dose, and number of doses per day.

Usage

calc_stats(
 chem.name = NULL,
 chem.cas = NULL,
 dtxsid = NULL,
 parameters = NULL,
 route = "oral",
 stats = c("AUC", "peak", "mean"),
 species = "Human",
 days = 28,
 daily.dose = 1,
 dose = NULL,
 doses.per.day = 1,
 output.units = "uM",
 concentration = "plasma",
 tissue = "plasma",
 model = "pbtk",
 default.to.human = FALSE,
 adjusted.Funbound.plasma = TRUE,
 regression = TRUE,
 restrictive.clearance = TRUE,
 suppress.messages = FALSE,
 ...
)

Arguments

chem.name
Name of desired chemical.
chem.cas
CAS number of desired chemical.
dtxsid
EPA's DSSTox Structure ID (https://comptox.epa.gov/dashboard) the chemical must be identified by either CAS, name, or DTXSIDs
parameters
Chemical parameters from parameterize_pbtk function, overrides chem.name and chem.cas.
route
String specification of route of exposure for simulation: "oral", "iv", "inhalation", ...
stats
Desired values (either 'AUC', 'mean', 'peak', or a vector containing any combination).
species
Species desired (either "Rat", "Rabbit", "Dog", "Mouse", or default "Human").
days Length of the simulation.
daily.dose Total daily dose, mg/kg BW.
dose Amount of a single dose at time zero, mg/kg BW.
doses.per.day Number of doses per day.
output.units Desired units (either "mg/L", "mg", "umol", or default "uM")).
concentration Desired concentration type, 'blood' or default 'plasma'.
tissue Desired steady state tissue concentration.
model Model used in calculation, 'pbtk' for the multiple compartment model, '3compartment' for the three compartment model, '3compartmentss' for the three compartment steady state model, and '1compartment' for one compartment model.
default.to.human Substitutes missing animal values with human values if true (hepatic intrinsic clearance or fraction of unbound plasma).
adjusted.Funbound.plasma Uses adjusted Funbound.plasma when set to TRUE along with partition coefficients calculated with this value.
regression Whether or not to use the regressions in calculating partition coefficients.
restrictive.clearance Protein binding not taken into account (set to 1) in liver clearance if FALSE.
suppress.messages Whether to suppress output message.
... Arguments passed to solve function.

Details

Default value of 0 for doses.per.day solves for a single dose.

When species is specified as rabbit, dog, or mouse, the function uses the appropriate physiological data (volumes and flows) but substitutes human fraction unbound, partition coefficients, and intrinsic hepatic clearance.

Value

AUC Area under the plasma concentration curve.
mean.conc The area under the curve divided by the number of days.
peak.conc The highest concentration.

Author(s)

Robert Pearce and John Wambaugh
calc_tkstats

Calculate toxicokinetic summary statistics.

Description

This function calculates the area under the curve, the mean, and the peak values for the venous blood or plasma concentration of a specified chemical or all chemicals if none is specified for the multiple compartment model with a given number of days, dose, and number of doses per day.

Usage

calc_tkstats(
 chem.name = NULL,
 chem.cas = NULL,
 dtxsid = NULL,
 parameters = NULL,
 route = "oral",
 stats = c("AUC", "peak", "mean"),
 species = "Human",
 days = 28,
 daily.dose = 1,
 dose = NULL,
 doses.per.day = 1,
 output.units = "uM",
 concentration = "plasma",
 tissue = "plasma",
 model = "pbtk",
 default.to.human = FALSE,
 adjusted.Funbound.plasma = TRUE,
 regression = TRUE,
 restrictive.clearance = TRUE,
 suppress.messages = FALSE,
 ...
)

Arguments

chem.name Name of desired chemical.
chem.cas CAS number of desired chemical.
dtxsid EPA's DSSTox Structure ID (https://comptox.epa.gov/dashboard) the chemical must be identified by either CAS, name, or DTXSIDs
parameters Chemical parameters from parameterize_pbtk function, overrides chem.name and chem.cas.
route String specification of route of exposure for simulation: "oral", "iv", "inhalation", ...
stats Desired values (either 'AUC', 'mean', 'peak', or a vector containing any combination).
species Species desired (either "Rat", "Rabbit", "Dog", "Mouse", or default "Human").
days Length of the simulation.
calc_tkstats

daily.dose Total daily dose, mg/kg BW.
dose Amount of a single dose at time zero, mg/kg BW.
doses.per.day Number of doses per day.
output.units Desired units (either "mg/L", "mg", "umol", or default "uM").
concentration Desired concentration type, ‘blood’ or default ’plasma’.
tissue Desired steady state tissue concentration.
model Model used in calculation, ‘pbtk’ for the multiple compartment model,’3compartment’ for the three compartment model, ’3compartments’ for the three compartment steady state model, and ’1compartment’ for one compartment model.
default.to.human Substitutes missing animal values with human values if true (hepatic intrinsic clearance or fraction of unbound plasma).
adjusted.Funbound.plasma Uses adjusted Funbound.plasma when set to TRUE along with partition coefficients calculated with this value.
regression Whether or not to use the regressions in calculating partition coefficients.
restrictive.clearance Protein binding not taken into account (set to 1) in liver clearance if FALSE.
suppress.messages Whether to suppress output message.
... Arguments passed to solve function.

Details

Default value of 0 for doses.per.day solves for a single dose.

When species is specified as rabbit, dog, or mouse, the function uses the appropriate physiological data(volumes and flows) but substitutes human fraction unbound, partition coefficients, and intrinsic hepatic clearance.

Value

- **AUC** Area under the plasma concentration curve.
- **mean.conc** The area under the curve divided by the number of days.
- **peak.conc** The highest concentration.

Author(s)

Robert Pearce and John Wambaugh

Examples

```r
calc_tkstats(chem.name='Bisphenol-A',days=100,stats='mean',model='3compartment')

calc_tkstats(chem.name='Bisphenol-A',days=100,stats=c('peak','mean'),species='Rat')

triclosan.stats <- calc_tkstats(days=10, chem.name = "triclosan")
```
calc_total_clearance

"Calculate the total plasma clearance."

Description

This function calculates the total clearance rate for a one compartment model for plasma where clearance is entirely due to metabolism by the liver and glomerular filtration in the kidneys, identical to clearance of three compartment steady state model.

Usage

```
calc_total_clearance(  
  chem.cas = NULL,  
  chem.name = NULL,  
  dtxsid = NULL,  
  parameters = NULL,  
  species = "Human",  
  suppress.messages = FALSE,  
  default.to.human = FALSE,  
  well.stirred.correction = TRUE,  
  restrictive.clearance = TRUE,  
  adjusted.Funbound.plasma = TRUE,  
  ...  
)
```

Arguments

- **chem.cas**: Either the chemical name, CAS number, or the parameters must be specified.
- **chem.name**: Either the chemical name, CAS number, or the parameters must be specified.
- **dtxsid**: EPA’s 'DSSTox Structure ID (https://comptox.epa.gov/dashboard) the chemical must be identified by either CAS, name, or DTXSIDs.
- **parameters**: Chemical parameters from `parameterize_steadystate` function, overrides `chem.name` and `chem.cas`.
- **species**: Species desired (either "Rat", "Rabbit", "Dog", "Mouse", or default "Human").
- **suppress.messages**: Whether or not the output message is suppressed.
- **default.to.human**: Substitutes missing animal values with human values if true.
- **well.stirred.correction**: Uses correction in calculation of hepatic clearance for well-stirred model if TRUE. This assumes clearance relative to amount unbound in whole blood instead of plasma, but converted to use with plasma concentration.
- **restrictive.clearance**: Protein binding is not taken into account (set to 1) in liver clearance if FALSE.
- **adjusted.Funbound.plasma**: Uses adjusted Funbound.plasma when set to TRUE.
- **...**: Additional parameters passed to `parameterize_steadystate` if parameters is NULL.
Value
Total Clearance
Units of L/h/kg BW.

Author(s)
John Wambaugh

Examples
calc_total_clearance(chem.name="Ibuprofen")

calc_vdist Calculate the volume of distribution for a one compartment model.

Description
This function predicts partition coefficients for all tissues using predict_partitioning_schmitt, then lumps them into a single compartment.

Usage
calc_vdist(
 chem.cas = NULL,
 chem.name = NULL,
 dtxsid = NULL,
 parameters = NULL,
 default.to.human = FALSE,
 species = "Human",
 suppress.messages = FALSE,
 adjusted.Funbound.plasma = TRUE,
 regression = TRUE,
 minimum.Funbound.plasma = 1e-04
)

Arguments

chem.cas Either the CAS number or the chemical name must be specified when Fun-bound.plasma is not given in parameter list.

chem.name Either the chemical name or the CAS number must be specified when Fun-bound.plasma is not given in parameter list.

dtxsid EPA’s DSSTox Structure ID (https://comptox.epa.gov/dashboard) the chemical must be identified by either CAS, name, or DTXSIDs

parameters Parameters from parameterize_3comp, parameterize_pbtk or predict_partitioning_schmitt.

default.to.human Substitutes missing animal values with human values if true.

species Species desired (either "Rat", "Rabbit", "Dog", "Mouse", or default "Human").
calc_vdist

suppress.messages
 Whether or not the output message is suppressed.

adjusted.Funbound.plasma
 Uses adjusted Funbound.plasma when set to TRUE along with partition coefficients calculated with this value.

regression
 Whether or not to use the regressions in calculating partition coefficients.

minimum.Funbound.plasma
 Monte Carlo draws less than this value are set equal to this value (default is 0.0001 – half the lowest measured Fup in our dataset).

Details
The effective volume of distribution is calculated by summing each tissues volume times it’s partition coefficient relative to plasma. Plasma, and the partitioning into RBCs are also added to get the total volume of distribution in L/KG BW. Partition coefficients are calculated using Schmitt’s (2008) method. When species is specified as rabbit, dog, or mouse, the function uses the appropriate physiological data(volumes and flows) but substitutes human fraction unbound, partition coefficients, and intrinsic hepatic clearance.

Value

 Volume of distribution
 Units of L/ kg BW.

Author(s)

 John Wambaugh and Robert Pearce

References

See Also

 predict_partitioning_schmitt
tissue.data
physiology.data

Examples

 calc_vdist(chem.cas="80-05-7")
 calc_vdist(chem.name="Bisphenol A")
 calc_vdist(chem.name="Bisphenol A",species="Rat")
CAS.checksum

Test the check digit of a CAS number to confirm validity

Description

Chemical abstracts services registry numbers (CAS-RN) include a final digit as a "checksum" to test for validity (that is, that the number has not been corrupted).

Usage

```r
CAS.checksum(CAS.string)
```

Arguments

- **CAS.string**: A character string of three numbers separated by two dashes

Details

The check digit (final number) is calculated by working from right to left, starting with the second to last digit of the CAS-RN. We multiply each digit by an increasing digit (1, 2, 3...) and sum as we work from right to left. The check digit should equal the final digit of the sum.

Value

logical (TRUE if final digit of CAS is consistent with other digits)

Author(s)

John Wambaugh

chem.invivo.PK.aggregate.data

Parameter Estimates from Wambaugh et al. (2018)

Description

This table includes 1 and 2 compartment fits of plasma concentration vs time data aggregated from chem.invivo.PK.data, performed in Wambaugh et al. 2018. Data includes volume of distribution (Vdist, L/kg), elimination rate (kelim, 1/h), gut absorption rate (kgutabs, 1/h), fraction absorbed (Fgutabs), and steady state concentration (Css, mg/L).

Usage

```r
chem.invivo.PK.aggregate.data
```

Format

data.frame
Author(s)
John Wambaugh

Source
Wambaugh et al. 2018 Toxicological Sciences, in press

Description
This data set includes time and dose specific measurements of chemical concentration in tissues taken from animals administered control doses of the chemicals either orally or intravenously. This plasma concentration-time data is from rat experiments reported in public sources. Toxicokinetic data were retrieved from those studies by the Netherlands Organisation for Applied Scientific Research (TNO) using curve stripping (TechDig v2). This data is provided for statistical analysis as in Wambaugh et al. 2018.

Usage
chem.invivo.PK.data

Format
A data.frame containing 597 rows and 13 columns.

Author(s)
Sieto Bosgra

Source
Wambaugh et al. 2018 Toxicological Sciences, in press

References

chem.invivo.PK.summary.data

Summary of published toxicokinetic time course experiments

Description

This data set summarizes the time course data in the chem.invivo.PK.data table. Maximum concentration (Cmax), time integrated plasma concentration for the duration of treatment (AUC.treatment) and extrapolated to zero concentration (AUC.infinity) as well as half-life are calculated. Summary values are given for each study and dosage. These data can be used to evaluate toxicokinetic model predictions.

Usage

chem.invivo.PK.summary.data

Format

A data.frame containing 100 rows and 25 columns.

Author(s)

John Wambaugh

Source

Wambaugh et al. 2018 Toxicological Sciences, in press

References

chem.physical_and_invitro.data

Physico-chemical properties and in vitro measurements for toxicokinetics

Description

This data set contains the necessary information to make basic, high-throughput toxicokinetic (HTTK) predictions for compounds, including Funbound.plasma, molecular weight (g/mol), logP, logMA (membrane affinity), intrinsic clearance(uL/min/10^6 cells), and pKa. These data have been compiled from multiple sources, and can be used to parameterize a variety of toxicokinetic models. See variable EPA.ref for information on the reference EPA.

Usage

chem.physical_and_invitro.data

Format

A data.frame containing 9411 rows and 54 columns.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compound</td>
<td>The preferred name of the chemical compound</td>
<td>none</td>
</tr>
<tr>
<td>CAS</td>
<td>The preferred Chemical Abstracts Service Registry Number</td>
<td>none</td>
</tr>
<tr>
<td>CAS.Checksum</td>
<td>A logical indicating whether the CAS number is valid</td>
<td>none</td>
</tr>
<tr>
<td>DTXSID</td>
<td>DSSTox Structure ID [http://comptox.epa.gov/dashboard]</td>
<td>none</td>
</tr>
<tr>
<td>Formula</td>
<td>The proportions of atoms within the chemical compound</td>
<td>none</td>
</tr>
<tr>
<td>SMILES.desalt</td>
<td>The simplified molecular-input line-entry system structure</td>
<td>none</td>
</tr>
<tr>
<td>All.Compound.Names</td>
<td>All names of the chemical as they occured in the data</td>
<td>none</td>
</tr>
<tr>
<td>logHenry</td>
<td>The log10 Henry’s law constant</td>
<td>log10(HE) atmospheres/m^3/mol</td>
</tr>
<tr>
<td>logHenry.Reference</td>
<td>Reference for Henry’s law constant</td>
<td></td>
</tr>
<tr>
<td>logP</td>
<td>The log10 octanol:water partition coefficient (PC)</td>
<td>log10 unitless ratio</td>
</tr>
<tr>
<td>logP.Reference</td>
<td>Reference for logP</td>
<td></td>
</tr>
<tr>
<td>logPwa</td>
<td>The log10 water:air PC</td>
<td>log10 unitless ratio</td>
</tr>
<tr>
<td>logPwa.Reference</td>
<td>Reference for logPwa</td>
<td></td>
</tr>
<tr>
<td>logMA</td>
<td>The log10 phospholipid:water PC or "Membrane affinity"</td>
<td>unitless ratio</td>
</tr>
<tr>
<td>logMA.Reference</td>
<td>Reference for membrane affinity</td>
<td></td>
</tr>
<tr>
<td># logWSol</td>
<td>The log10 water solubility</td>
<td>log10(mole/L)</td>
</tr>
<tr>
<td>logWSol.Reference</td>
<td>Reference for logWSol</td>
<td></td>
</tr>
<tr>
<td>MP</td>
<td>The chemical compound melting point</td>
<td>degrees Celsius</td>
</tr>
<tr>
<td>MP.Reference</td>
<td>Reference for melting point</td>
<td></td>
</tr>
<tr>
<td>MW</td>
<td>The chemical compound molecular weight</td>
<td>g/mol</td>
</tr>
<tr>
<td>MW.Reference</td>
<td>Reference for molecular weight</td>
<td></td>
</tr>
<tr>
<td>pKa_Accept</td>
<td>The hydrogen acceptor equilibria concentrations</td>
<td>logarithm</td>
</tr>
<tr>
<td>pKa_Accept.Reference</td>
<td>Reference for pKa_Accept</td>
<td></td>
</tr>
</tbody>
</table>
Details

In some cases the rapid equilibrium dialysis method (Waters et al., 2008) fails to yield detectable concentrations for the free fraction of chemical. In those cases we assume the compound is highly bound (that is, F_{up} approaches zero). For some calculations (for example, steady-state plasma concentration) there is precedent (Rotroff et al., 2010) for using half the average limit of detection, that is 0.005. We do not recommend using other models where quantities like partition coefficients must be predicted using F_{up}. We also do not recommend including the value 0.005 in training sets for F_{up} predictive models.

Note that in some cases the $F_{bound,plasma}$ and the intrinsic clearance are provided as a series of numbers separated by commas. These values are the result of Bayesian analysis and characterize a distribution: the first value is the median of the distribution, while the second and third values are the lower and upper 95th percentile (that is, quantile 2.5 and 97.5) respectively. For intrinsic clearance a fourth value indicating a p-value for a decrease is provided. Typically 4000 samples were used for the Bayesian analysis, such that a p-value of "0" is equivalent to "<0.00025". See Wambaugh et al. (2019) for more details.

Any one chemical compound may have multiple ionization equilibria (see Strope et al., 2018) may both for donating or accepting a proton (and therefore changing charge state). If there are multiple equilibria of the same type (donor/acceptor) they are concatenated by commas.

All species-specific information is initially from experimental measurements. The functions load_sipes2017, load_pradeep2020, and load_dawson2021 may be used to add in silico, structure-based predictions for many thousands of additional compounds to this table.

Author(s)

John Wambaugh

Source

References

CompTox Chemicals Dashboard (http://comptox.epa.gov/dashboard)

Paini, Alicia; Cole, Thomas; Meinerio, Maria; Carpi, Donatella; Deceuninck, Pierre; Macko, Peter; Palosaari, Tuina; Sund, Jukka; Worth, Andrew; Whelan, Maurice (2020): EURL ECVAM in vitro hepatocyte clearance and blood plasma protein binding dataset for 77 chemicals. European Commission, Joint Research Centre (JRC) [Dataset] PID: https://data.europa.eu/89h/a2ff867f-db80-4acf-8e5c-e45502713bee

F. L. Wood, J. B. Houston and D. Hallifax, 'Drug Metabolism and Disposition November 1, 2017, 45 (11) 1178-1188; DOI: https://doi.org/10.1124/dmd.117.077040

ckd_epi_eq

CKD-EPI equation for GFR.

Description

Predict GFR from serum creatinine, gender, and age.

Usage

```r
ckd_epi_eq(scr, gender, reth, age_years, ckd_epi_race_coeff = FALSE)
```
Arguments

- `scr` Vector of serum creatinine values in mg/dL.
- `gender` Vector of genders (either 'Male' or 'Female').
- `reth` Vector of races/ethnicities. Not used unless `ckd_epi_race_coeff` is TRUE.
- `age_years` Vector of ages in years.
- `ckd_epi_race_coeff` Whether to use the "race coefficient" in the CKD-EPI equation. Default is FALSE.

Details

Value

Vector of GFR values in mL/min/1.73m^2.

Author(s)

Caroline Ring

References

Description

Concentration data involved in Linakis 2020 vignette analysis.

Usage

`concentration_data_Linakis2020`

Format

A data.frame containing x rows and y columns.

Author(s)

Matt Linakis

Source

Matt Linakis
convert_solve_x

References

DSStox database (https://www.epa.gov/ncct/dsstox

convert_httkpop_1comp Converts HTTK-Pop physiology into parameters relevant to the one compartment model

Description

Converts HTTK-Pop physiology into parameters relevant to the one compartment model

Usage

convert_httkpop_1comp(parameters.dt, httkpop.dt, ...)

Arguments

- parameters.dt: Data table returned by create_mc_samples
- httkpop.dt: Data table returned by httkpop_generate
- ...: Additional arguments passed to propagate_invitrouv_1comp

Value

A data.table whose columns are the parameters of the HTTK model specified in model.

Author(s)

Caroline Ring, John Wambaugh, and Greg Honda

References

convert_solve_x

Description

This function is designed to convert compartment values estimated from one of the HTTK models (e.g. "1compartment) using the solve_model function. It takes the HTTK model output matrix, model name, desired output units, and compound information to perform the conversion default model units to user specified units.
convert_solve_x

Usage
call_convert_solve_x(
 model.output.mat,
 model = NULL,
 output.units = NULL,
 MW = NULL,
 vol = NULL,
 chem.cas = NULL,
 chem.name = NULL,
 dtxsid = NULL,
 parameters = NULL,
 monitor.vars = NULL,
 suppress.messages = FALSE,
 verbose = FALSE,
 ...
)

Arguments

model.output.mat
Matrix of results from HTTK solve_model function.

model
Specified model to use in simulation: "pbtk", "3compartment", "3compartmentss", "1compartment", "schmitt", ...

output.units Output units of interest for the compiled components. Defaults to NULL, and will provide values in model units if unspecified.

MW Molecular weight of substance of interest in g/mole

vol Volume for the target tissue of interest in liters (L). NOTE: Volume should not be in units of per BW, i.e. "kg".

chem.cas Either the chemical name, CAS number, or the parameters must be specified.

chem.name Either the chemical name, CAS number, or the parameters must be specified.

dtxsid EPA's DSSTox Structure ID. (http://comptox.epa.gov/dashboard) the chemical must be identified by either CAS, name, or DTXSIDs.

parameters A set of model parameters, especially a set that includes MW (molecular weight) for our conversions.

monitor.vars A vector of character strings indicating the model component variables to retain in the conversion factor table (assuming suppress.messages == FALSE). It should also be noted this option does NOT exclude columns from the input matrix provided in the 'model.output.mat' parameter. (Default is NULL, i.e. conversion factors for all model components are included in the reporting matrix.)

suppress.messages Whether or not the output messages are suppressed. (Default is FALSE, i.e. show messages.)

verbose Whether or not to display the full conversion factor table. (Default is FALSE, i.e. only include rows where the conversion factor is 1.)

... Other parameters that can be passed to convert_units, e.g. temperature and compound state. See details in convert_units.
Details

The function can be used to convert all compartments to a single unit, only units for a single model compartment, or units for a set of model compartments.

More details on the unit conversion can be found in the documentation for `convert_units`.

Value

'new.output.matrix' A matrix with a column for time (in days), each compartment, and the area under the curve (AUC) and a row for each time point. The compartment and AUC columns are converted from model specified units to user specified units.

'output.units.vector' A vector of character strings providing the model compartments and their corresponding units after `convert_solve_x`.

Author(s)

Sarah E. Davidson

See Also

`convert_units`

Examples

```r
output.mat <- solve_1comp(dtxsid = "DTXSID0020573")
new.output.mat <- convert_solve_x(output.units = "mg",
                                  model.output.mat = output.mat,
                                  model = "1compartment",
                                  dtxsid = "DTXSID0020573")
```

Description

This function is designed to accept input units, output units, and the molecular weight (MW) of a substance of interest to then use a table lookup to return a scaling factor that can be readily applied for the intended conversion. It can also take chemical identifiers in the place of a specified molecular weight value to retrieve that value for its own use.

Usage

```r
convert_units(
  input.units = NULL,
  output.units = NULL,
  MW = NULL,
  vol = NULL,
  chem.cas = NULL,
  chem.name = NULL,
  dtxsid = NULL,
  parameters = NULL,
)```

temp = 25,
state = "liquid"
)

Arguments

input.units Assigned input units of interest
output.units Desired output units
MW Molecular weight of substance of interest in g/mole
vol Volume for the target tissue of interest in liters (L). NOTE: Volume should not be in units of per BW, i.e. "kg".
chem.cas Either the chemical name, CAS number, or the parameters must be specified.
chem.name Either the chemical name, CAS number, or the parameters must be specified.
dtxsid EPA's DSSTox Structure ID (http://comptox.epa.gov/dashboard) the chemical must be identified by either CAS, name, or DTXSIDs
parameters A set of model parameters, especially a set that includes MW (molecular weight) for our conversions
temp Temperature for conversions (default = 25 degrees C)
state Chemical state (gas or default liquid)

Details

If input or output units not contained in the table are queried, it gives a corresponding error message. It gives a warning message about the handling of 'ppmv,' as the function is only set up to convert between ppmv and mass-based units (like mg/m$^3$ or umol/L) in the context of ideal gases.

convert_units is not directly configured to accept and convert units based on BW, like mg/kg. For this purpose, see scale_dosing.

The function supports a limited set of most relevant units across toxicological models, currently including umol, uM, mg, mg/L, mg/m$^3$ or umol/L), and in the context of gases assumed to be ideal, ppmv.

Andersen and Clewell’s Rules of PBPK Modeling:

• 1Check Your Units

• 2Check Your Units

• 3Check Mass Balance

Author(s)

Mark Sfeir, John Wambaugh, and Sarah E. Davidson

Examples

# MW BPA is 228.29 g/mol
# 1 mg/L -> 1/228.29*1000 = 4.38 uM
convert_units("mg/L","uM",chem.cas="80-05-7")

# MW Diclofenac is 296.148 g/mol
# 1 uM -> 296.148/1000 = 0.296
convert_units("uM","mg/L",chem.name="diclofenac")
create_mc_samples

Create a table of parameter values for Monte Carlo

Description

This is the HTTK master function for creating a data table for use with Monte Carlo methods to simulate parameter uncertainty and variabiliti. Each column of the output table corresponds to an HTTK model parameter and each row corresponds to a different random draw (for example, different individuals when considering biological variability). This function call three different key functions to simulate parameter parameter uncertainty and/or variability in one of three ways. First parameters can be varied in an uncorrelated manner using truncated normal distributions by the function monte_carlo. Then, physiological parameters can be varied in a correlated manner according to the Ring et al. (2017) (doi: 10.1016/j.envint.2017.06.004) htk-pop approach by the function htkpopup. Next, both uncertainty and variability of in vitro HTTK parameters can be simulated by the function invitro as described by Wambaugh et al. (2019) (doi: 10.1093/toxsci/kfz205). Finally, tissue-specific partition coefficients are predicted for each draw using the Schmitt (2008) (doi: 10.1016/j.tiv.2007.09.010) method as calibrated to in vivo data by Pearce et al. (2017) (doi: 10.1007/s1092801795487) and implemented in predict_partitioning_schmitt.

Usage

create_mc_samples(
  chem.cas = NULL,
  chem.name = NULL,
  dtxsid = NULL,
  parameters = NULL,
  samples = 1000,
  species = "Human",
  suppress.messages = FALSE,
  model = "3compartmentss",
  htkpopup = TRUE,
  invitrouv = TRUE,
  calcrb2p = TRUE,
  censored.params = list(),
  vary.params = list(),
  return.samples = FALSE,
  tissue = NULL,
  htkpopup.dt = NULL,
  invitro.mc.arg.list = NULL,
)
create_mc_samples

httpkpop.generate.arg.list = list(method = "direct resampling"),
convert.httpkpop.arg.list = NULL,
propagate.invitrouv.arg.list = NULL,
parameterize.arg.list = NULL

Arguments

chem.cas Chemical Abstract Services Registry Number (CAS-RN) – if parameters is not
specified then the chemical must be identified by either CAS, name, or DTXISD
chem.name Chemical name (spaces and capitalization ignored) – if parameters is not speci-
ified then the chemical must be identified by either CAS, name, or DTXISD
dtxsid EPA’s DSSTox Structure ID (https://comptox.epa.gov/dashboard) – if pa-
rameters is not specified then the chemical must be identified by either CAS,
name, or DTXISDs
parameters Parameters from the appropriate parameterization function for the model indi-
cated by argument model
samples Number of samples generated in calculating quantiles.
species Species desired (either "Rat", "Rabbit", "Dog", "Mouse", or default "Human").
Species must be set to "Human" to run httkpop model.
suppress.messages Whether or not to suppress output message.
model Model used in calculation: 'pbtk' for the multiple compartment model,'3compartment'
for the three compartment model, '3compartmentss' for the three compartment
steady state model, and '1compartment' for one compartment model. This
only applies when httpkpop=TRUE and species="Human", otherwise '3compartmentss' is used.
httpkpop Whether or not to use the Ring et al. (2017) "httpkpop" population generator.
Species must be 'Human'.
invitrouv Logical to indicate whether to include in vitro parameters such as intrinsic hep-
atic clearance rate and fraction unbound in plasma in uncertainty and variability
analysis
calcrb2p Logical determining whether or not to recalculate the chemical ratio of blood to
plasma
censored.params The parameters listed in censored.params are sampled from a normal distri-
bution that is censored for values less than the limit of detection (specified sepa-
ratly for each parameter). This argument should be a list of sub-lists. Each
sublist is named for a parameter in "parameters" and contains two elements:
"CV" (coefficient of variation) and "LOD" (limit of detection, below which pa-
rameter values are censored. New values are sampled with mean equal to the
value in "parameters" and standard deviation equal to the mean times the CV.
Censored values are sampled on a uniform distribution between 0 and the limit
of detection. Not used with httkpop model.

vary.params The parameters listed in vary.params are sampled from a normal distribution that
is truncated at zero. This argument should be a list of coefficients of variation
(CV) for the normal distribution. Each entry in the list is named for a parameter
in "parameters". New values are sampled with mean equal to the value in "pa-
rameters" and standard deviation equal to the mean times the CV. Not used with
httkpop model.
create_mc_samples

return.samples  Whether or not to return the vector containing the samples from the simulation
instead of the selected quantile.
tissue  Desired steady state tissue concentration.
httkpop.dt  A data table generated by `httkpop_generate`. This defaults to NULL, in which
case `httkpop_generate` is called to generate this table.
invitro.mc.arg.list  Additional parameters passed to `invitro_mc`.
httkpop.generate.arg.list  Additional parameters passed to `httkpop_generate`.
convert.httkpop.arg.list  Additional parameters passed to the `convert_httkpop_*` function for the model.
propagate.invitrouv.arg.list  Additional parameters passed to model’s associated in vitro uncertainty and vari-
ability propagation function
parameterize.arg.list  Additional parameters passed to the `parameterize_*` function for the model.

Details

The Monte Carlo methods used here were recently updated and described by Breen et al. (submitted).

We aim to make any function that uses chemical identifiers (name, CAS, DTXSID) also work if
passed a complete vector of parameters (that is, a row from the table generated by this function).
This allows the use of Monte Carlo to vary the parameters and therefore vary the function output.
Depending on the type of parameters (for example, physiological vs. in vitro measurements) we
vary the parameters in different ways with different functions.

Value

A data table where each column corresponds to parameters needed for the specified model and each
row represents a different Monte Carlo sample of parameter values.

Author(s)

Caroline Ring, Robert Pearce, and John Wambaugh

References


Examples

```r
sample_set = create_mc_samples(chem.name = 'bisphenol a')
```
**dawson2021**

**Dawson et al. 2021 data**

**Description**

This table includes QSAR (Random Forest) model predicted values for unbound fraction plasma protein (fup) and intrinsic hepatic clearance (clint) for a subset of chemicals in the Tox21 library (see [https://www.epa.gov/chemical-research/toxicology-testing-21st-century-tox21](https://www.epa.gov/chemical-research/toxicology-testing-21st-century-tox21)).

**Usage**

dawson2021

**Format**

data.frame

**Details**

Predictions were made with a set of Random Forest QSAR models, as reported in Dawson et al. (2021).

**Author(s)**

Daniel E. Dawson

**Source**

Dawson et al. 2021 Random Forest QSAR Model

**References**

Dawson, Daniel E. et al. "Designing QSARs for parameters of high-throughput toxicokinetic models using open-source descriptors." Environmental Science & Technology____. (2021):______.

---

**EPA.ref**

**Reference for EPA Physico-Chemical Data**

**Description**

The physico-chemical data in the chem.phys_and_invitro.data table are obtained from EPA's Comptox Chemicals dashboard. This variable indicates the date the Dashboard was accessed.

**Usage**

EPA.ref

**Format**

An object of class character of length 1.
## Description

Predict GFR using CKD-EPI equation (for adults) or BSA-based equation (for children).

## Usage

```r
estimate_gfr(gfrtmp.dt, gfr_resid_var = TRUE, ckd_epi_race_coeff = FALSE)
```

## Arguments

- `gfrtmp.dt`: A data.table with columns `gender`, `reth`, `age_years`, `age_months`, `BSA_adj`, `serum_creat`.
- `gfr_resid_var`: Logical value indicating whether or not to include residual variability when generating GFR values. (Default is TRUE.)
- `ckd_epi_race_coeff`: Logical value indicating whether or not to use the "race coefficient" from the CKD-EPI equation when estimating GFR values. (Default is FALSE.)

## Details

Add residual variability based on reported residuals for each equation.

## Value

The same data.table with a `gfr_est` column added, containing estimated GFR values.

## Author(s)

Caroline Ring

## References

**estimate_gfr_ped**  
_Predict GFR in children._

**Description**

**Usage**
```
estimate_gfr_ped(BSA)
```

**Arguments**
- **BSA**
  Vector of body surface areas in m^2.

**Value**
Vector of GFRs in mL/min/1.73m^2.

**Author(s)**
Caroline Ring

**References**

---

**estimate_hematocrit**  
_Generate hematocrit values for a virtual population_

**Description**
Predict hematocrit from age using smoothing splines and kernel density estimates of residual variability fitted to NHANES data, for a given combination of gender and NHANES race/ethnicity category.

**Usage**
```
estimate_hematocrit(gender, reth, age_years, age_months, nhanes_mec_svy)
```
Arguments

- **gender**: Gender for which to generate hematocrit values ("Male" or "Female")
- **reth**: NHANES race/ethnicity category for which to generate serum creatinine values ("Mexican American", "Non-Hispanic Black", "Non-Hispanic White", "Other", or "Other Hispanic")
- **age_years**: Vector of ages in years for individuals for whom to generate hematocrit values (corresponding to age_months)
- **age_months**: Vector of ages in months for individuals for whom to generate hematocrit values (between 0-959 months)
- **nhanes_mec_svy**: Surveydesign object created from mecdt using svydesign (this is done in httkpop_generate)

Details

This function should usually not be called directly by the user. It is used by httkpop_generate() in "virtual-individuals" mode, after drawing gender, NHANES race/ethnicity category, and age from their NHANES proportions/distributions.

Value

A vector of numeric generated hematocrit values (blood percentage red blood cells by volume).

Author(s)

Caroline Ring

References


data.frame
ToxCast Example Data The main page for the ToxCast data is here: https://www.epa.gov/chemical-research/exploring-toxcast-data-downloadable-data Most useful to us is a single file containing all the hits across all chemicals and assays: https://clowder.edap-cluster.com/datasets/6364026ee4b04f6bb1409eda?space=62bb560ee4b07abf29f88f8e

Description

As of November, 2022 the most recent version was 3.5 and was available as an .Rdata file (invitrodb_3_5_mc5.Rdata)

Usage

eexample.toxcast

description

Export model to jarnac.

Description

This function exports the multiple compartment PBTK model to a jarnac file.

Usage

eexport_pbtk_jarnac(
    chem.cas = NULL,
    chem.name = NULL,
    species = "Human",
    initial.amounts = list(Agutlumen = 0),
    filename = "default.jan",
    digits = 4
  )
export_pbtk_sbml

Arguments

chem.cas Either the chemical name or CAS number must be specified.
chem.name Either the chemical name or CAS number must be specified.
species Species desired (either "Rat", "Rabbit", "Dog", or default "Human").
initial.amounts Must specify initial amounts in units of choice.
filename The name of the jarnac file containing the model.
digits Desired number of decimal places to round the parameters.

Details

Compartments to enter into the initial.amounts list includes Agutlumen, Aart, Aven, Alung, Agut, Aliver, Akidney, and Arest.

When species is specified as rabbit, dog, or mouse, the function uses the appropriate physiological data (volumes and flows) but substitutes human fraction unbound, partition coefficients, and intrinsic hepatic clearance.

Value

Text containing a Jarnac language version of the PBTK model.

Author(s)

Robert Pearce

Examples

export_pbtk_jarnac(chem.name='Nicotine', initial.amounts=list(Agutlumen=1), filename='PBTKmodel.jan')

export_pbtk_sbml

Export model to sbml.

Description

This function exports the multiple compartment PBTK model to an sbml file.

Usage

export_pbtk_sbml(
  chem.cas = NULL,
  chem.name = NULL,
  species = "Human",
  initial.amounts = list(Agutlumen = 0),
  filename = "default.xml",
  digits = 4
)
Arguments

chem.cas Either the chemical name or CAS number must be specified.
chem.name Either the chemical name or CAS number must be specified.
species Species desired (either "Rat", "Rabbit", "Dog", or default "Human").
initial.amounts Must specify initial amounts in units of choice.
filename The name of the jarnac file containing the model.
digits Desired number of decimal places to round the parameters.

Details

Compartments to enter into the initial.amounts list includes Agutlumen, Aart, Aven, Alung, Agut, Aliver, Akidney, and Arest.

When species is specified as rabbit, dog, or mouse, the function uses the appropriate physiological data (volumes and flows) but substitutes human fraction unbound, partition coefficients, and intrinsic hepatic clearance.

Value

Text describing the PBTK model in SBML.

Author(s)

Robert Pearce

Examples

```r
export_pbtk_sbml(chem.name='Nicotine',initial.amounts=list(Agutlumen=1),filename='PBTKmodel.xml')
```

---

**fetalpcs**

*Fetal Partition Coefficients*

Description

Partition coefficients were measured for tissues, including placenta, in vitro by Csanady et al. (2002) for Bisphenol A and Diadzen. Curley et al. (1969) measured the concentration of a variety of pesticides in the cord blood of newborns and in the tissues of infants that were stillborn.

Usage

fetalpcs

Format

data.frame
Three of the chemicals studied by Curley et al. (1969) were modeled by Weijs et al. (2013) using the same partition coefficients for mother and fetus. The values used represented "prior knowledge" summarizing the available literature.

Kapraun et al. 2021 (submitted)


Frank2018invivo

**Literature In Vivo Data on Doses Causing Neurological Effects**

Studies were selected from Table 1 in Mundy et al., 2015, as the studies in that publication were cited as examples of compounds with evidence for developmental neurotoxicity. There were sufficient in vitro toxicokinetic data available for this package for only 6 of the 42 chemicals.

**Usage**

Frank2018invivo

**Format**

A data.frame containing 14 rows and 16 columns.

**Author(s)**

Timothy J. Shafer

**References**


**Description**

Generate gender, NHANES race/ethnicity category, ages, heights, and weights for a virtual population, based on NHANES data.

**Usage**

```r
gen_age_height_weight(
 nsamp = NULL,
 gendernum = NULL,
 reths,
 weight_category,
 agelim_years,
 agelim_months,
 nhanes_mec_svy
)
```

**Arguments**

- `nsamp`: The desired number of individuals in the virtual population. `nsamp` need not be provided if `gendernum` is provided.
- `gendernum`: Optional: A named list giving the numbers of male and female individuals to include in the population, e.g. `list(Male=100,Female=100)`. Default is `NULL`, meaning both males and females are included, in their proportions in the NHANES data. If both `nsamp` and `gendernum` are provided, they must agree (i.e., `nsamp` must be the sum of `gendernum`).
- `reths`: Optional: A character vector giving the races/ethnicities to include in the population. Default is `c('Mexican American','Other Hispanic','Non-Hispanic White','Non-Hispanic Black','Other')`, to include all races and ethnicities in their proportions in the NHANES data. User-supplied vector must contain one or more of these strings.
- `weight_category`: Optional: The weight categories to include in the population. Default is `c('Underweight','Normal','Overweight','Obese')`. User-supplied vector must contain one or more of these strings.
- `agelim_years`: Optional: A two-element numeric vector giving the minimum and maximum ages (in years) to include in the population. Default is `c(0,79)`. If `agelim_years` is provided and `agelim_months` is not, `agelim_years` will override the default value of `agelim_months`.
- `agelim_months`: Optional: A two-element numeric vector giving the minimum and maximum ages (in months) to include in the population. Default is `c(0, 959)`, equivalent to the default `agelim_years`. If `agelim_months` is provided and `agelim_years` is not, `agelim_months` will override the default values of `agelim_years`.
- `nhanes_mec_svy`: `surveydesign` object created from `mecdt` using `svydesign` (this is done in `httkpop_generate`
Details

This function should usually not be called directly by the user. It is used by `httkpop_generate()` in "virtual-individuals" mode.

Value

A data.table containing variables

- **gender**: Gender of each virtual individual
- **reth**: Race/ethnicity of each virtual individual
- **age_months**: Age in months of each virtual individual
- **age_years**: Age in years of each virtual individual
- **weight**: Body weight in kg of each virtual individual
- **height**: Height in cm of each virtual individual

Author(s)

Caroline Ring

References


```r
importFrom survey svymean
```

---

**gen_height_weight**

*Generate heights and weights for a virtual population.*

Description

Predict height and weight from age using smoothing splines, and then add residual variability from a 2-D KDE, both fitted to NHANES data, for a given combination of gender and NHANES race/ethnicity category.

Usage

```r
gen_height_weight(gender, reth, age_months, nhanes_mec_svy)
```

Arguments

- **gender**: Gender for which to calculate height/weight ("Male" or "Female")
- **reth**: NHANES race/ethnicity category for which to calculate height/weight ("Mexican American", "Non-Hispanic Black", "Non-Hispanic White", "Other", or "Other Hispanic")
- **age_months**: vector of ages in months for individuals for whom to calculate height/weight (between 0-959 months)
- **nhanes_mec_svy**: surveydesign object created from `mecd` using `svydesign` (this is done in `httkpop_generate`)
### gen_serum_creatinine

**Generate serum creatinine values for a virtual population.**

**Description**

Predict serum creatinine from age using smoothing splines and kernel density estimates of residual variability fitted to NHANES data, for a given combination of gender and NHANES race/ethnicity category.

**Usage**

```r
gen_serum_creatinine(gender, reth, age_years, age_months, nhanes_mec_svy)
```

**Arguments**

- **gender**: Gender for which to generate serum creatinine values ("Male" or "Female")
- **reth**: NHANES race/ethnicity category for which to generate serum creatinine values ("Mexican American", "Non-Hispanic Black", "Non-Hispanic White", "Other", or "Other Hispanic")
- **age_years**: Vector of ages in years for individuals for whom to generate serum creatinine values (corresponding to age_months)
- **age_months**: Vector of ages in months for individuals for whom to generate serum creatinine values (between 0-959 months)
- **nhanes_mec_svy**: `surveydesign` object created from `mecdt` using `svydesign` (this is done in `httkpop_generate`)

**Details**

This function should usually not be called directly by the user. It is used by `httkpop_generate()` in "virtual-individuals" mode, after drawing gender, NHANES race/ethnicity category, and age from their NHANES proportions/distributions.

**Value**

A list containing two named elements, `weight` and `height`, each of which is a numeric vector. `weight` gives individual body weights in kg, and `height` gives individual heights in cm, corresponding to each item in the input `age_months`.

**Author(s)**

Caroline Ring

**References**

Value

A vector of numeric generated serum creatinine values (mg/dL).

Author(s)

Caroline Ring

References


get_cheminfo

Retrieve chemical information available from HTTK package

Description

This function lists information on all the chemicals within HTTK for which there are sufficient data for the specified model and species. By default the function returns only CAS (that is, info="CAS"). The type of information available includes chemical identifiers ("Compound", "CASRN", "DTXSID"), in vitro measurements ("Clint", "Clint.pvalue", "Funbound plasma", "Rblood2plasma"), and physico-chemical information ("Formula", "logMA", "logP", "MW", "pKa_Accept", "pKa_Donor"). The argument "info" can be a single type of information, "all" information, or a vector of specific types of information. The argument "model" defaults to "3compartmentss" and the argument "species" defaults to "human". Since different models have different requirements and not all chemicals have complete data, this function will return different numbers of chemicals depending on the model specified. If a chemical is not listed by get_cheminfo then either the in vitro or physico-chemical data needed are currently missing (but could potentially be added using add_chemtable).

Usage

get_cheminfo(
  info = "CAS",  # A single character vector (or collection of character vectors) from "Compound", "CAS", "DTXSID", "logP", "pKa_Donor", "pKa_Accept", "MW", "Clint", "Clint.pValue", "Funbound.plasma", "Structure_Formula", or "Substance_Type". info="all" gives all information for the model and species.
  species = "Human",  # Species desired (either "Rat", "Rabbit", "Dog", "Mouse", or default "Human").
  fup.lod.default = 0.005,
  model = "3compartmentss",  # model specifies which model to use
  default.to.human = FALSE,
  median.only = FALSE,
  fup.ci.cutoff = TRUE,
  clint.pvalue.threshold = 0.05,
  class.exclude = TRUE,
  suppress.messages = FALSE
)

Arguments

info

A single character vector (or collection of character vectors) from "Compound", "CAS", "DTXSID", "logP", "pKa_Donor", "pKa_Accept", "MW", "Clint", "Clint.pValue", "Funbound.plasma", "Structure_Formula", or "Substance_Type". info="all" gives all information for the model and species.

species

Species desired (either "Rat", "Rabbit", "Dog", "Mouse", or default "Human").
get_cheminfo

fup.lod.default
Default value used for fraction of unbound plasma for chemicals where measured value was below the limit of detection. Default value is 0.0005.

model
Model used in calculation, 'pbtk' for the multiple compartment model, '1compartment' for the one compartment model, '3compartment' for three compartment model, '3compartmentss' for the three compartment model without partition coefficients, or 'schmitt' for chemicals with logP and fraction unbound (used in predict_partitioning_schmitt).

default.to.human
Substitutes missing values with human values if true.

median.only
Use median values only for fup and clint. Default is FALSE.

fup.ci.cutoff
Cutoff for the level of uncertainty in fup estimates. This value should be between (0,1). Default is ‘NULL’ specifying no filtering.

clint.pvalue.threshold
Hepatic clearance for chemicals where the in vitro clearance assay result has a p-values greater than the threshold are set to zero.

class.exclude
Exclude chemical classes identified as outside of domain of applicability by relevant modelinfo_[MODEL] file (default TRUE).

suppress.messages
Whether or not the output messages are suppressed (default FALSE).

Details
When default.to.human is set to TRUE, and the species-specific data, Funbound.plasma and Clint, are missing from chem.physical_and_invitro.data, human values are given instead.

In some cases the rapid equilibrium dialysis method (Waters et al., 2008) fails to yield detectable concentrations for the free fraction of chemical. In those cases we assume the compound is highly bound (that is, Fup approaches zero). For some calculations (for example, steady-state plasma concentration) there is precedent (Rotroff et al., 2010) for using half the average limit of detection, that is, 0.005 (this value is configurable via the argument fup.lod.default). We do not recomend using other models where quantities like partition coefficients must be predicted using Fup. We also do not recomend including the value 0.005 in training sets for Fup predictive models.

Note that in some cases the Funbound.plasma and the intrinsic clearance are provided as a series of numbers separated by commas. These values are the result of Bayesian analysis and characterize a distribution: the first value is the median of the distribution, while the second and third values are the lower and upper 95th percentile (that is quantile 2.5 and 97.5) respectively. For intrinsic clearance a fourth value indicating a p-value for a decrease is provided. Typically 4000 samples were used for the Bayesian analysis, such that a p-value of “0” is equivalent to ”<0.00025”. See Wambaugh et al. (2019) for more details. If argument meadian.only == TRUE then only the median is reported for parameters with Bayesian analysis distributions. If the 95 credible interval is larger than fup.ci.cutoff (defaults to NULL) then the Fup is treated as too uncertain and the value NA is given.

Value
vector/data.table
Table (if info has multiple entries) or vector containing a column for each valid entry specified in the argument "info" and a row for each chemical with sufficient data for the model specified by argument "model":

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
<th>units</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Compound</th>
<th>The preferred name of the chemical compound</th>
<th>none</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAS</td>
<td>The preferred Chemical Abstracts Service Registry Number</td>
<td>none</td>
</tr>
<tr>
<td>DTXSID</td>
<td>DSSTox Structure ID (<a href="http://comptox.epa.gov/dashboard">http://comptox.epa.gov/dashboard</a>)</td>
<td>none</td>
</tr>
<tr>
<td>logP</td>
<td>The log10 octanol:water partition coefficient</td>
<td>log10 unitless ratio</td>
</tr>
<tr>
<td>MW</td>
<td>The chemical compound molecular weight</td>
<td>g/mol</td>
</tr>
<tr>
<td>pKa_Accept</td>
<td>The hydrogen acceptor equilibria concentrations</td>
<td>logarithm</td>
</tr>
<tr>
<td>pKa_Donor</td>
<td>The hydrogen donor equilibria concentrations</td>
<td>logarithm</td>
</tr>
<tr>
<td>[SPECIES].Clint</td>
<td>(Primary hepatocyte suspension) intrinsic hepatic clearance</td>
<td>uL/min/10^6 hepatocytes</td>
</tr>
<tr>
<td>[SPECIES].Clint.pValue</td>
<td>Probability that there is no clearance observed.</td>
<td>none</td>
</tr>
<tr>
<td>[SPECIES].Funbound.plasma</td>
<td>Chemical fraction unbound in presence of plasma proteins</td>
<td>unitless fraction</td>
</tr>
<tr>
<td>[SPECIES].Rblood2plasma</td>
<td>Chemical concentration blood to plasma ratio</td>
<td>unitless ratio</td>
</tr>
</tbody>
</table>

**Author(s)**

John Wambaugh, Robert Pearce, and Sarah E. Davidson

**References**


**Examples**

```r
List all CAS numbers for which the 3compartmentss model can be run in humans:
get_cheminfo()

get_cheminfo(info=c('compound','funbound.plasma','logP'),model='pbtk')
See all the data for humans:
get_cheminfo(info="all")

httk.TPO.rat.table <- subset(get_cheminfo(info="all",species="rat"),
CAS %in% TPO.cas)

httk.TPO.human.table <- subset(get_cheminfo(info="all",species="human"),
CAS %in% TPO.cas)

create a data.frame with all the Fup values, we ask for model="schmitt" since
that model only needs fup, we ask for "median.only" because we don't care
about uncertainty intervals here:
fup.tab <- get_cheminfo(info="all",median.only=TRUE,model="schmitt")

calculate the median, making sure to convert to numeric values:
median(as.numeric(fup.tab$Human.Funbound.plasma),na.rm=TRUE)

calculate the mean:
mean(as.numeric(fup.tab$Human.Funbound.plasma),na.rm=TRUE)

count how many non-NA values we have (should be the same as the number of
rows in the table but just in case we ask for non NA values:
sum(!is.na(fup.tab$Human.Funbound.plasma))

get_chem_id
Retrieve chemical identity from HTTK package

Description

Given one of chem.name, chem.cas (Chemical Abstract Service Registry Number), or DTXSID (DSSTox Substance Identifier https://comptox.epa.gov/dashboard) this function checks if the chemical is available and, if so, returns all three pieces of information.

Usage

```r
get_chem_id(chem.cas = NULL, chem.name = NULL, dtxsid = NULL)
```

Arguments

- `chem.cas`
 CAS registry number

- `chem.name`
 Chemical name

- `dtxsid`
 DSSTox Substance identifier

Value

A list containing the following chemical identifiers:

- `chem.cas`
 CAS registry number

- `chem.name`
 Name

- `dtxsid`
 DTXSID

Author(s)

John Wambaugh and Robert Pearce
Description

This function retrieves the chemical- and species-specific intrinsic hepatic clearance (Cl_{int}, units of mL/min/million hepatocytes) from chem.physical_and_invitro.data. If that parameter is described by a distribution (that is, a median, lower-, upper-95th percentile and p-value separated by commas) this function splits those quantiles into separate values. Most Cl_{int} values have an accompanying p-value indicating the probability that no decrease was observed. If the p-values exceeds a threshold (default 0.05) the clearance is set to zero (no clearance). Some values extracted from the literature do not have a p-value.

Usage

```r
get_clint(
  chem.cas = NULL,
  chem.name = NULL,
  dtxsid = NULL,
  species = "Human",
  default.to.human = FALSE,
  force.human.clint = FALSE,
  suppress.messages = FALSE,
  clint.pvalue.threshold = 0.05
)
```

Arguments

- **chem.cas** Chemical Abstract Services Registry Number (CAS-RN) – if parameters is not specified then the chemical must be identified by either CAS, name, or DTXISD
- **chem.name** Chemical name (spaces and capitalization ignored) – if parameters is not specified then the chemical must be identified by either CAS, name, or DTXISD
- **dtxsid** EPA’s DSSTox Structure ID (https://comptox.epa.gov/dashboard) – if parameters is not specified then the chemical must be identified by either CAS, name, or DTXISD
- **species** Species desired (either "Rat", "Rabbit", "Dog", "Mouse", or default "Human").
- **default.to.human** Substitutes missing hepatic clearance with human values if true.
- **force.human.clint** If a non-human species value (matching argument species) is available, it is ignored and the human intrinsic clearance is used
- **suppress.messages** Whether or not the output message is suppressed.
- **clint.pvalue.threshold** Hepatic clearance for chemicals where the in vitro clearance assay result has a p-values greater than the threshold are set to zero.
get_fup

Value

list containing:

- Clint.point Point estimate (central tendency) of the intrinsic hepatic clearance
- Clint.dist Quantiles of a distribution (median, lower, upper 95th percentiles) and pvalue
- Clint.pvalue pvalue for whether disappearance of parent compound was observed

Author(s)

John Wambaugh

See Also

chem.physical_and_invitro.data

get_fup Retrieve and parse fraction unbound in plasma

Description

This function retrieves the chemical- and species-specific fraction unbound in plasma \((f_{up})\) from chem.physical_and_invitro.data. If that parameter is described by a distribution (that is, a median, lower-, and upper-95th percentile separated by commas) this function splits those quantiles into separate values.

Usage

get_fup(
 chem.cas = NULL,
 chem.name = NULL,
 dtxsid = NULL,
 species = "Human",
 default.to.human = FALSE,
 force.human.fup = FALSE,
 suppress.messages = FALSE,
 minimum.Funbound.plasma = 1e-04
)

Arguments

- **chem.cas**: Chemical Abstract Services Registry Number (CAS-RN) – if parameters is not specified then the chemical must be identified by either CAS, name, or DTXISD
- **chem.name**: Chemical name (spaces and capitalization ignored) – if parameters is not specified then the chemical must be identified by either CAS, name, or DTXISD
- **dtxsid**: EPA’s DSSTox Structure ID (https://comptox.epa.gov/dashboard) – if parameters is not specified then the chemical must be identified by either CAS, name, or DTXISD
- **species**: Species desired (either "Rat", "Rabbit", "Dog", "Mouse", or default "Human")
- **default.to.human**: Substitutes missing fraction of unbound plasma with human values if true.
get_gfr_category

Categorize kidney function by GFR.

Description
For adults: In general GFR > 60 is considered normal 15 < GFR < 60 is considered kidney disease GFR < 15 is considered kidney failure

Usage
get_gfr_category(age_years, age_months, gfr_est)

Arguments
age_years Vector of ages in years.
age_months Vector of ages in months.
gfr_est Vector of estimated GFR values in mL/min/1.73m^2.

Details
These values can also be used for children 2 years old and greater (see PEDIATRICS IN REVIEW Vol. 29 No. 10 October 1, 2008 pp. 335-341 (doi: 10.1542/pir.29-10-335))

Value
Vector of GFR categories: 'Normal', 'Kidney Disease', 'Kidney Failure'.

force.human.fup
If a non-human species value (matching argument species) is available, it is ignored and the human fraction unbound is returned

suppress.messages
Whether or not the output message is suppressed.

minimum.Funbound.plasma
f_up is not allowed to drop below this value (default is 0.0001).

Value
list containing:
Funbound.plasma.point
Point estimate (central tendency) of the Unbound fraction in plasma
Funbound.plasma.dist
Quantiles of a distribution (median, lower and upper 95th percentiles) for the unbound fraction

Author(s)
John Wambaugh

See Also
chem.physical_and_invitro.data
get_invitroPK_param

Author(s)

Caroline Ring

References

Description

This function retrieves in vitro PK data (for example intrinsic metabolic clearance or fraction unbound in plasma) from the main HTTK data. This function looks for species-specific values.

Usage

get_invitroPK_param(
 param,
 species,
 chem.name = NULL,
 chem.cas = NULL,
 dtxsid = NULL
)

Arguments

param: The in vitro pharmacokinetic parameter needed.
species: Species desired (either "Rat", "Rabbit", "Dog", "Mouse", or default "Human").
chem.name: Either the chemical name, CAS number, or the parameters must be specified.
chem.cas: Either the chemical name, CAS number, or the parameters must be specified.
dtxsid: EPA's DSSTox Structure ID (https://comptox.epa.gov/dashboard) the chemical must be identified by either CAS, name, or DTXSIDs

Details

Note that this function works with a local version of the get.physical_and_invitro.data table to allow users to add/modify chemical data (for example, via `add_chemtable` or `load_sipes2017`).

Value

The value of the parameter, if found

Author(s)

John Wambaugh and Robert Pearce

See Also

get_physchem_param
get_lit_cheminfo

Get literature Chemical Information.

Description

This function provides the information specified in "info=" for all chemicals with data from the Wetmore et al. (2012) and (2013) publications and other literature.

Usage

get_lit_cheminfo(info = "CAS", species = "Human")

Arguments

species Species desired (either "Rat" or default "Human").

Value

info Table/vector containing values specified in "info" for valid chemicals.

Author(s)

John Wambaugh

References

Examples

get_lit_cheminfo()
get_lit_cheminfo(info=c("CAS", 'MW'))
get_lit_css

Get literature Css

Description

This function retrieves a steady-state plasma concentration as a result of infusion dosing from the Wetmore et al. (2012) and (2013) publications and other literature.

Usage

```r
get_lit_css(
  chem.cas = NULL,
  chem.name = NULL,
  daily.dose = 1,
  which.quantile = 0.95,
  species = "Human",
  clearance.assay.conc = NULL,
  output.units = "mg/L",
  suppress.messages = FALSE
)
```

Arguments

- `chem.cas`: Either the cas number or the chemical name must be specified.
- `chem.name`: Either the chemical name or the CAS number must be specified.
- `daily.dose`: Total daily dose infused in units of mg/kg BW/day. Defaults to 1 mg/kg/day.
- `which.quantile`: Which quantile from the SimCYP Monte Carlo simulation is requested. Can be a vector.
- `species`: Species desired (either "Rat" or default "Human").
- `clearance.assay.conc`: Concentration of chemical used in measuring intrinsic clearance data, 1 or 10 uM.
- `output.units`: Returned units for function, defaults to mg/L but can also be uM (specify units = "uM").
- `suppress.messages`: Whether or not the output message is suppressed.

Value

A numeric vector with the literature steady-state plasma concentration (1 mg/kg/day) for the requested quantiles

Author(s)

John Wambaugh
References

Examples

```r
get_lit_css(chem.cas="34256-82-1")
get_lit_css(chem.cas="34256-82-1",species="Rat",which.quantile=0.5)
get_lit_css(chem.cas="80-05-7", daily.dose = 1,which.quantile = 0.5, output.units = "uM")
```

get_lit_oral_equiv

Get Literature Oral Equivalent Dose

Description

This function converts a chemical plasma concentration to an oral equivalent dose using the values from the Wetmore et al. (2012) and (2013) publications and other literature.

Usage

```r
get_lit_oral_equiv(  
  conc,  
  chem.name = NULL,  
  chem.cas = NULL,  
  dtxsid = NULL,  
  suppress.messages = FALSE,  
  which.quantile = 0.95,  
  species = "Human",  
  input.units = "uM",  
  output.units = "mg",  
  clearance.assay.conc = NULL,  
  ...  
)
```
Arguments

- **conc**: Bioactive in vitro concentration in units of specified `input.units`, default of uM.
- **chem.name**: Either the chemical name or the CAS number must be specified.
- **chem.cas**: Either the CAS number or the chemical name must be specified.
- **dtxsid**: EPA’s DSSTox Structure ID (https://comptox.epa.gov/dashboard) the chemical must be identified by either CAS, name, or DTXSIDs.
- **suppress.messages**: Suppress output messages.
- **which.quantile**: Which quantile from the SimCYP Monte Carlo simulation is requested. Can be a vector. Papers include 0.05, 0.5, and 0.95 for humans and 0.5 for rats.
- **species**: Species desired (either "Rat" or default "Human").
- **input.units**: Units of given concentration, default of uM but can also be mg/L.
- **output.units**: Units of dose, default of ’mg’ for mg/kg BW/ day or ’mol’ for mol/ kg BW/ day.
- **clearance.assay.conc**: Concentration of chemical used in measuring intrinsic clearance data, 1 or 10 uM.
- **Additional parameters passed to get_lit_css**.

Value

Equivalent dose in specified units, default of mg/kg BW/day.

Author(s)

John Wambaugh

References

Examples

```r
table <- NULL
for(this.cas in sample(get_lit_cheminfo(),50)) table <- rbind(table,cbind(
as.data.frame(this.cas),as.data.frame(get_lit_oral_equiv(conc=1,chem.cas=this.cas)))))
```


get_lit_oral_equiv(0.1, chem.cas="34256-82-1")
get_lit_oral_equiv(0.1, chem.cas="34256-82-1", which.quantile=c(0.05, 0.5, 0.95))

get_physchem_param

Get physico-chemical parameters from chem.physical_and_invitro.data table

Description

This function retrieves physico-chemical properties ("param") for the chemical specified by chem.name or chem.cas from the vLiver tables.

Usage

get_physchem_param(param, chem.name = NULL, chem.cas = NULL, dtxsid = NULL)

Arguments

- **param**: The desired parameters, a vector or single value.
- **chem.name**: The chemical names that you want parameters for, a vector or single value.
- **chem.cas**: The chemical CAS numbers that you want parameters for, a vector or single value.
- **dtxsid**: EPA's 'DSSTox Structure ID (https://comptox.epa.gov/dashboard) the chemical must be identified by either CAS, name, or DTXSIDs.

Details

Note that this function works with a local version of the get.physical_and_invitro.data table to allow users to add/modify chemical data (for example, via add_chemtable or load_sipes2017).

Value

The parameters, either a single value, a named list for a single chemical, or a list of lists

Author(s)

John Wambaugh and Robert Pearce

See Also

get_invitroPK_param

Examples

get_physchem_param(param = 'logP', chem.cas = '80-05-7')
get_physchem_param(param = c('logP', 'MW'), chem.cas = c('80-05-7', '81-81-2'))
get_rblood2plasma

Get ratio of the blood concentration to the plasma concentration.

Description

This function attempts to retrieve a measured species- and chemical-specific blood:plasma concentration ratio.

Usage

get_rblood2plasma(
 chem.name = NULL,
 chem.cas = NULL,
 dtxsid = NULL,
 species = "Human",
 default.to.human = FALSE
)

Arguments

chem.name Either the chemical name or the CAS number must be specified.
chem.cas Either the CAS number or the chemical name must be specified.
dtxsid EPA’s ’DSSTox Structure ID (https://comptox.epa.gov/dashboard) the chemical must be identified by either CAS, name, or DTXSIDs
species Species desired (either "Rat", "Rabbit", "Dog", "Mouse", or default "Human").
default.to.human Substitutes missing animal values with human values if true.

Details

A value of NA is returned when the requested value is unavailable. Values are retrieved from chem.physical_and_invitro.data. details than the description above.

Value

A numeric value for the steady-state ratio of chemical concentration in blood to plasma

Author(s)

Robert Pearce

Examples

get_rblood2plasma(chem.name="Bisphenol A")
get_rblood2plasma(chem.name="Bisphenol A",species="Rat")
Assign weight class (underweight, normal, overweight, obese)

Description

Given vectors of age, BMI, recumbent length, weight, and gender, categorizes weight classes using CDC and WHO categories.

Usage

get_weight_class(age_years, age_months, bmi, recumlen, weight, gender)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>age_years</td>
<td>A vector of ages in years.</td>
</tr>
<tr>
<td>age_months</td>
<td>A vector of ages in months.</td>
</tr>
<tr>
<td>bmi</td>
<td>A vector of BMIs.</td>
</tr>
<tr>
<td>recumlen</td>
<td>A vector of heights or recumbent lengths in cm.</td>
</tr>
<tr>
<td>weight</td>
<td>A vector of body weights in kg.</td>
</tr>
<tr>
<td>gender</td>
<td>A vector of genders (as 'Male' or 'Female').</td>
</tr>
</tbody>
</table>

Details

According to the CDC (https://www.cdc.gov/obesity/basics/adult-defining.html), adult weight classes are defined using BMI as follows:

- **Underweight** BMI less than 18.5
- **Normal** BMI between 18.5 and 25
- **Overweight** BMI between 25 and 30
- **Obese** BMI greater than 30

For children ages 2 years and older, weight classes are defined using percentiles of sex-specific BMI for age, as follows (Barlow et al., 2007):

- **Underweight** Below 5th percentile BMI for age
- **Normal** 5th-85th percentile BMI for age
- **Overweight** 85th-95th percentile BMI for age
- **Obese** Above 95th percentile BMI for age

For children birth to age 2, weight classes are defined using percentiles of sex-specific weight-for-length (Grummer-Strawn et al., 2009). Weight above the 97.7th percentile, or below the 2.3rd percentile, of weight-for-length is considered potentially indicative of adverse health conditions. Here, weight below the 2.3rd percentile is categorized as "Underweight" and weight above the 97.7th percentile is categorized as "Obese."

Value

A character vector of weight classes. Each element will be one of 'Underweight', 'Normal', 'Overweight', or 'Obese'.
get_wetmore_cheminfo

Author(s)
Caroline Ring

References

get_wetmore_cheminfo Get literature Chemical Information. (deprecated).

Description
This function is included for backward compatibility. It calls get_lit_cheminfo which provides the information specified in "info=" for all chemicals with data from the Wetmore et al. (2012) and (2013) publications and other literature.

Usage
get_wetmore_cheminfo(
 info = "CAS",
 species = "Human",
 suppress.messages = FALSE
)

Arguments

species Species desired (either "Rat" or default "Human").

suppress.messages
Whether or not the output message is suppressed.

Value
info Table/vector containing values specified in "info" for valid chemicals.

Author(s)
John Wambaugh
References

Examples

get_lit_cheminfo()
get_lit_cheminfo(info=c('CAS', 'MW'))

get_wetmore_css

Get literature Css (deprecated).

Description

This function is included for backward compatibility. It calls get_lit_css which retrieves a steady-state plasma concentration as a result of infusion dosing from the Wetmore et al. (2012) and (2013) publications and other literature.

Usage

get_wetmore_css(
 chem.cas = NULL,
 chem.name = NULL,
 daily.dose = 1,
 which.quantile = 0.95,
 species = "Human",
 clearance.assay.conc = NULL,
 output.units = "mg/L",
 suppress.messages = FALSE
)

Arguments

chem.cas Either the cas number or the chemical name must be specified.
chem.name Either the chemical name or the CAS number must be specified.
daily.dose Total daily dose infused in units of mg/kg BW/day. Defaults to 1 mg/kg/day.
which.quantile Which quantile from the SimCYP Monte Carlo simulation is requested. Can be a vector.
get_wetmore_oral_equiv

Description

Get Literature Oral Equivalent Dose (deprecated).

Examples

get_wetmore_oral_equiv

get_lit_css(chem.cas="34256-82-1")

get_lit_css(chem.cas="34256-82-1",species="Rat",which.quantile=0.5)

get_lit_css(chem.cas="80-05-7", daily.dose = 1,which.quantile = 0.5, output.units = "uM")

Value

A numeric vector with the literature steady-state plasma concentration (1 mg/kg/day) for the requested quantiles.

Author(s)

John Wambaugh

References

get_wetmore_oral_equiv

Species desired (either "Rat" or default "Human").

Concentration of chemical used in measuring intrinsic clearance data, 1 or 10 uM.

Returned units for function, defaults to mg/L but can also be uM (specify units = "uM").

Whether or not the output message is suppressed.

This function is included for backward compatibility. It calls get_lit_oral_equiv which converts a chemical plasma concentration to an oral equivalent dose using the values from the Wetmore et al. (2012) and (2013) publications and other literature.
Usage

get_wetmore_oral_equiv(
 conc,
 chem.name = NULL,
 chem.cas = NULL,
 suppress.messages = FALSE,
 which.quantile = 0.95,
 species = "Human",
 input.units = "uM",
 output.units = "mg",
 clearance.assay.conc = NULL,
 ...
)

Arguments

conc Bioactive in vitro concentration in units of specified input.units, default of uM.
chem.name Either the chemical name or the CAS number must be specified.
chem.cas Either the CAS number or the chemical name must be specified.
suppress.messages Suppress output messages.
which.quantile Which quantile from the SimCYP Monte Carlo simulation is requested. Can be a vector. Papers include 0.05, 0.5, and 0.95 for humans and 0.5 for rats.
species Species desired (either "Rat" or default "Human").
input.units Units of given concentration, default of uM but can also be mg/L.
output.units Units of dose, default of ‘mg’ for mg/kg BW/ day or ‘mol’ for mol/ kg BW/ day.
clearance.assay.conc Concentration of chemical used in measuring intrinsic clearance data, 1 or 10 uM.
... Additional parameters passed to get_lit_css.

Value

Equivalent dose in specified units, default of mg/kg BW/day.

Author(s)

John Wambaugh

References

Examples

```r
table <- NULL
for(this.cas in sample(get_lit_cheminfo(),50)) table <- rbind(table,cbind(
  as.data.frame(this.cas),as.data.frame(get_lit_oral_equiv(conc=1,chem.cas=this.cas))))

get_lit_oral_equiv(0.1,chem.cas="34256-82-1")
get_lit_oral_equiv(0.1,chem.cas="34256-82-1",which.quantile=c(0.05,0.5,0.95))
```

Description

Bandwidths used for a one-dimensional kernel density estimation of the distribution of residual errors around smoothing spline fits of hematocrit vs. age for NHANES respondents in each of ten combinations of sex and race/ethnicity categories.

Usage

```r
hct_h
```

Format

A named list with 10 elements, each a numeric value. Each list element corresponds to, and is named for, one combination of NHANES sex categories (Male and Female) and NHANES race/ethnicity categories (Mexican American, Other Hispanic, Non-Hispanic White, Non-Hispanic Black, and Other).

Details

Each matrix is the standard deviation for a normal distribution: this is the bandwidth to be used for a kernel density estimation (KDE) (using a normal kernel) of the distribution of residual errors around smoothing spline fits of hematocrit vs. age for NHANES respondents in the specified sex and race/ethnicity category. Optimal bandwidths were pre-calculated by doing the smoothing spline fits, getting the residuals, then calling `kde` on the residuals (which calls `hpi` to compute the plug-in bandwidth).

Used by HTTK-Pop only in "virtual individuals" mode (i.e. `httkpop_generate` with `method = "v"`), in `estimate_hematocrit`.

Author(s)

Caroline Ring
hematocrit_infants

Predict hematocrit in infants under 1 year old.

References

Description

For infants under 1 year, hematocrit was not measured in NHANES. Assume a log-normal distribution where plus/minus 1 standard deviation of the underlying normal distribution is given by the reference range. Draw hematocrit values from these distributions by age.

Usage

```
 hematocrit_infants(age_months)
```

Arguments

- `age_months` Vector of ages in months; all must be <= 12.

Details

<table>
<thead>
<tr>
<th>Age</th>
<th>Reference range</th>
</tr>
</thead>
<tbody>
<tr>
<td><1 month</td>
<td>31-49</td>
</tr>
<tr>
<td>1-6 months</td>
<td>29-42</td>
</tr>
<tr>
<td>7-12 months</td>
<td>33-38</td>
</tr>
</tbody>
</table>

Value

Vector of hematocrit percentages corresponding to the input vector of ages.

Author(s)

Caroline Ring

References

honda.ivive

Return the assumptions used in Honda et al. 2019

Description

This function returns four of the better performing sets of assumptions evaluated in Honda et al. 2019 (https://doi.org/10.1371/journal.pone.0217564). These include four different combinations of hepatic clearance assumption, in vivo bioactivity assumption, and relevant tissue assumption. Generally, this function is not called directly by the user, but instead called by setting the IVIVE option in calc_mc_oral_equiv, calc_mc_css, and calc_analytic functions. Currently, these IVIVE option is not implemented the solve_1comp etc. functions.

Usage

honda(ivive(method = "Honda1", tissue = "liver")

Arguments

method
This is set to one of "Honda1", "Honda2", "Honda3", or "Honda4".

tissue
This is only relevant to "Honda4" and indicates the relevant tissue compartment.

Details

"Honda1" - tissue = NULL, restrictive.clearance = TRUE, bioactive.free.invivo = TRUE This assumption assumes restrictive hepatic clearance, and treats the free concentration in plasma as the bioactive concentration in vivo. This option must be used in combination with the concentration in vitro predicted by armitage_eval(), otherwise the result will be the same as "Honda2". This option corresponds to the result in Figure 8 panel c) restrictive, mean free plasma conc., Armitage in Honda et al. 2019. "Honda2" - tissue = NULL, restrictive.clearance = TRUE, bioactive.free.invivo = TRUE This assumption assumes restrictive hepatic clearance, and treats the free concentration in plasma as the bioactive concentration in vivo. This option corresponds to the result in Figure 8 panel b) restrictive, mean free plasma conc. in Honda et al. 2019. "Honda3" - tissue = NULL, restrictive.clearance = TRUE, bioactive.free.invivo = TRUE This assumption assumes restrictive hepatic clearance, and treats the free concentration in plasma as the bioactive concentration in vivo. This option corresponds to the result in Figure 8 panel a) restrictive, mean total plasma conc. in Honda et al. 2019. "Honda4" - tissue = tissue, restrictive.clearance = FALSE, bioactive.free.invivo = TRUE This assumption assumes restrictive hepatic clearance, and treats the free concentration in plasma as the bioactive concentration in vivo. The input tissue should be relevant to the in vitro assay endpoint used as input or that the result is being compared to. This option corresponds to the result in Figure 8 panel d) nonrestrictive, mean tissue conc. in Honda et al. 2019.

Value

A list of tissue, bioactive.free.invivo, and restrictive.clearance assumptions.

Author(s)

Greg Honda and John Wambaugh
References

Examples

honda.ivive(method = "Honda", tissue = NULL)

Howgate 2006

Description

This data set is only used in Vignette 5.

Usage

howgate

Format

A data.table containing 24 rows and 11 columns.

Author(s)

Caroline Ring

References

httkpop

httkpop: Virtual population generator for HTTK.

Description

The httkpop package generates virtual population physiologies for use in population TK.
Details

To simulate inter-individual variability in the TK model, a MC approach is used: the model parameters are sampled from known or assumed distributions, and the model is evaluated for each sampled set of parameters. To simulate variability across subpopulations, the MC approach needs to capture the parameter correlation structure. For example, kidney function changes with age (Levey et al., 2009), thus the distribution of GFR is likely different in 6-year-olds than in 65-year-olds. To directly measure the parameter correlation structure, all parameters need to be measured in each individual in a representative sample population. Such direct measurements are extremely limited. However, the correlation structure of the physiological parameters can be inferred from their known individual correlations with demographic and anthropometric quantities for which direct population measurements do exist. These quantities are sex, race/ethnicity, age, height, and weight (Howgate et al., 2006; Jamei et al., 2009a; Johnson et al., 2006; McNally et al., 2014; Price et al., 2003).

Direct measurements of these quantities in a large, representative sample of the U.S. population are publicly available from NHANES. NHANES also includes laboratory measurements, including both serum creatinine, which can be used to estimate GFR (Levey et al., 2009), and hematocrit. For conciseness, sex, race/ethnicity, age, height, weight, serum creatinine, and hematocrit will be called the NHANES quantities.

HTTK-Pop’s correlated MC approach begins by sampling from the joint distribution of the NHANES quantities to simulate a population. Then, for each individual in the simulated population, HTTKPop predicts the physiological parameters from the NHANES quantities using regression equations from the literature (Barter et al., 2007; Baxter-Jones et al., 2011; Bosgra et al., 2012; Koo et al., 2000; Levey et al., 2009; Looker et al., 2013; McNally et al., 2014; Ogliu et al., 1997; Price et al., 2003; Schwartz and Work, 2009; Webber and Barr 2012). Correlations among the physiological parameters are induced by their mutual dependence on the correlated NHANES quantities. Finally, residual variability is added to the predicted physiological parameters using estimates of residual marginal variance (i.e., variance not explained by the regressions on the NHANES quantities) (McNally et al., 2014).

Data were combined from the three most recent publicly-available NHANES cycles: 2007-2008, 2009-2010, and 2011-2012. For each cycle, some NHANES quantities - height, weight, serum creatinine, and hematocrit - were measured only in a subset of respondents. Only these subsets were included in HTTKPop. The pooled subsets from the three cycles contained 29,353 unique respondents. Some respondents were excluded from analysis: those with age recorded as 80 years (because all NHANES respondents 80 years and older were marked as "80"); those with missing height, weight or hematocrit data; and those aged 12 years or older with missing serum creatinine data. These criteria excluded 4807 respondents, leaving 24,546 unique respondents. Each NHANES respondent was assigned a cycle-specific sample weight, which can be interpreted as the number of individuals in the total U.S. population represented by each NHANES respondent in each cycle (Johnson et al., 2013). Because data from three cycles were combined, the sample weights were rescaled (divided by the number of cycles being combined, as recommended in NHANES data analysis documentation) (Johnson et al., 2013). To handle the complex NHANES sampling structure, the R survey package was used to analyze the NHANES data (Lumley, 2004).

To allow generation of virtual populations specified by weight class, we coded a categorical variable for each NHANES respondent. The categories Underweight, Normal, Overweight, or Obese were assigned based on weight, age, and height/length (Grummer-Strawn et al., 2010; Kuczmarski et al., 2002; Ogden et al., 2014; WHO, 2006, 2010). We implemented two population simulation methods within HTTK-Pop: the direct-resampling method and the virtual-individuals method. The direct-resampling method simulated a population by sampling NHANES respondents with replacement, with probabilities proportional to the sample weights. Each individual in the resulting simulated population was an NHANES respondent, identified by a unique NHANES sequence number. By contrast, the second method generates "virtual individuals" - sets of NHANES quantities that obey the approximate joint distribution of the NHANES quantities (calculated using weighted smooth-
ing functions and kernel density estimators), but do not necessarily correspond to any particular NHANES respondent. The direct-resampling method removed the possibility of generating unrealistic combinations of the NHANES quantities; the virtual-individuals method allowed the use of interpolation to simulate subpopulations represented by only a small number of NHANES respondents.

For either method, HTTK-Pop takes optional specifications about the population to be simulated and then samples from the appropriate conditional joint distribution of the NHANES quantities.

Once HTTK-Pop has simulated a population characterized by the NHANES quantities, the physiological parameters of the TK model are predicted from the NHANES quantities using regression equations from the literature. Liver mass was predicted for individuals over age 18 using allometric scaling with height from Reference Man (Valentin, 2002), and for individuals under 18 using regression relationships with height and weight published by Ogii et al. (1997). Residual marginal variability was added for each individual as in PopGen (McNally et al., 2014). Similarly, hepatic portal vein blood flows (in L/h) are predicted as fixed fractions of a cardiac output allometrically scaled with height from Reference Man (Valentin, 2002), and residual marginal variability is added for each individual (McNally et al., 2014). Glomerular filtration rate (GFR) (in L/h/1.73 m2 body surface area) is predicted from age, race, sex, and serum creatinine using the CKD-EPI equation, for individuals over age 18 (Levey et al., 2009). For individuals under age 18, GFR is estimated from body surface area (BSA) (Johnson et al., 2006); BSA is predicted using Mosteller’s formula (Verbraecken et al., 2006) for adults and Haycock’s formula (Haycock et al., 1978) for children. Hepatocellularity (in millions of cells per gram of liver tissue) is predicted from age using an equation developed by Barter et al. (2007). Hematocrit is estimated from NHANES data for individuals 1 year and older. For individuals younger than 1 year, for whom NHANES did not measure hematocrit directly, hematocrit was predicted from age in months, using published reference ranges (Lubin, 1987).

In addition to the HTTK physiological parameters, the HTTK models include chemical-specific parameters representing the fraction of chemical unbound in plasma (Fup) and intrinsic clearance (CLint). Because these parameters represent interactions of the chemical with the body, their values will vary between individuals. To simulate this variability, Fup and CLint were included in MC simulations, by sampling from estimated or assumed distributions for the parameters defining them.

Variability in hematocrit was simulated either using NHANES data (for individuals ages 1 and older) or using age-based reference ranges (for individuals under age 1). Fup was treated as a random variable obeying a distribution censored below the average limit of quantification (LOQ) of the in vitro assay. Specifically, Fup was assumed to obey a normal distribution truncated below at zero, centered at the value measured in vitro, with a 30 the average LOQ (0.01), Fup was instead drawn from a uniform distribution between 0 and 0.01. Fup was assumed to be independent of all other parameters. This censored normal distribution was chosen to match that used in Wambaugh et al. (2015).

Variability in hepatocellularity (106 cells/g liver) and Mliver (kg) were simulated. The remaining source of variability in CLint,h is variability in CLint, which was simulated using a Gaussian mixture distribution to represent the population proportions of poor metabolizers (PMs) and non-PMs of each substance. The true prevalence of PMs is isozyme-specific (Ma et al., 2002; Yasuda et al., 2008); however, isozyme- specific metabolism data were not available for the majority of chemicals considered. We therefore made a simplifying assumption that 5 slower than average. With 95 a normal distribution truncated below at zero, centered at the value measured in vitro, with a 30 CLint was drawn from a PM distribution: a truncated normal distribution centered on one-tenth of the in vitro value with 30 Both CLint itself and the probability of being a PM were assumed to be independent of all other parameters. The truncated normal nonePM distribution was chosen because it has been used (with 100 in previous work (Rotroff et al., 2010; Wambaugh et al., 2015; Wetmore et al., 2014; Wetmore et al., 2015; Wetmore et al., 2012); the PM distribution was chosen to comport with the nonePM distribution.
Main function to generate a population

If you just want to generate a table of (chemical-independent) population physiology parameters, use `httkpop_generate`.

Using HTTK-Pop with HTTK

To generate a population and then run an HTTK model for that population, the workflow is as follows:

1. Generate a population using `httkpop_generate`.
2. For a given HTTK chemical and general model, convert the population data to corresponding sets of HTTK model parameters using `httkpop_mc`.

Author(s)

Caroline Ring

References

httkpop_biotophys_default

Convert HTTK-Pop-generated parameters to HTTK physiological parameters

Description

Convert HTTK-Pop-generated parameters to HTTK physiological parameters

Usage

httkpop_biotophys_default(indiv_dt)

Arguments

indiv_dt The data.table object returned by httkpop_generate()

Value

A data.table with the physiological parameters expected by any HTTK model, including body weight (BW), hematocrit, tissue volumes per kg body weight, tissue flows as fraction of CO, CO per (kg BW)^3/4, GFR per (kg BW)^3/4, portal vein flow per (kg BW)^3/4, and liver density.

Author(s)

Caroline Ring

References

httkpop_direct_resample

Generate a virtual population by directly resampling the NHANES data.

Description

Generate a virtual population by directly resampling the NHANES data.

Usage

httkpop_direct_resample(
 nsamp = NULL,
 gendernum = NULL,
 agelim_years = NULL,
 agelim_months = NULL,
 weight_category = c("Underweight", "Normal", "Overweight", "Obese"),
 gfr_category = c("Normal", "Kidney Disease", "Kidney Failure"),
 reths = c("Mexican American", "Other Hispanic", "Non-Hispanic White",
 "Non-Hispanic Black", "Other"),
 gfr_resid_var = TRUE,
 ckd_epi_race_coeff = FALSE,
 nhanes_mec_svy
)

Arguments

nsamp The desired number of individuals in the virtual population. nsamp need not be provided if gendernum is provided.

gendernum Optional: A named list giving the numbers of male and female individuals to include in the population. e.g. list(Male=100,Female=100). Default is NULL, meaning both males and females are included, in their proportions in the NHANES data. If both nsamp and gendernum are provided, they must agree (i.e., nsamp must be the sum of gendernum).

agelim_years Optional: A two-element numeric vector giving the minimum and maximum ages (in years) to include in the population. Default is c(0,79). If agelim_years is provided and agelim_months is not, agelim_years will override the default value of agelim_months.

agelim_months Optional: A two-element numeric vector giving the minimum and maximum ages (in months) to include in the population. Default is c(0, 959), equivalent to the default agelim_years. If agelim_months is provided and agelim_years is not, agelim_months will override the default values of agelim_years.

weight_category Optional: The weight categories to include in the population. Default is c("Underweight", "Normal"). User-supplied vector must contain one or more of these strings.

gfr_category The kidney function categories to include in the population. Default is c("Normal", "Kidney Disease", "Kidney Failure") to include all kidney function levels.

reths Optional: a character vector giving the races/ethnicities to include in the population. Default is c("Mexican American", "Other Hispanic", "Non-Hispanic White", "Non-Hispanic Black", "Other").
White', 'Non-Hispanic Black', 'Other'), to include all races and ethnicities in their proportions in the NHANES data. User-supplied vector must contain one or more of these strings.

gfr_resid_var Logical value indicating whether or not to include residual variability when generating GFR values. (Default is TRUE.)

ckd_epi_race_coeff Logical value indicating whether or not to use the "race coefficient" from the CKD-EPI equation when estimating GFR values. (Default is FALSE.)

nhanes_mec_svy surveydesign object created from mecdt using svydesign (this is done in httkpop_generate)

Value

A data.table where each row represents an individual, and each column represents a demographic, anthropometric, or physiological parameter.

Author(s)

Caroline Ring

References

Description

Inner loop function called by httkpop_direct_resample.

Usage

httkpop_direct_resample_inner(
 nsamp,
 gendernum,
 agelim_months,
 agelim_years,
 reths,
 weight_category,
 gfr_resid_var,
 ckd_epi_race_coeff,
 nhanes_mec_svy
)
Arguments

- **nsamp**: The desired number of individuals in the virtual population. `nsamp` need not be provided if `gendernum` is provided.
- **gendernum**: Optional: A named list giving the numbers of male and female individuals to include in the population, e.g. `list(Male=100,Female=100)`. Default is NULL, meaning both males and females are included, in their proportions in the NHANES data. If both `nsamp` and `gendernum` are provided, they must agree (i.e., `nsamp` must be the sum of `gendernum`).
- **agelim_months**: Optional: A two-element numeric vector giving the minimum and maximum ages (in months) to include in the population. Default is c(0, 959), equivalent to the default `agelim_years`. If `agelim_months` is provided and `agelim_years` is not, `agelim_months` will override the default values of `agelim_years`.
- **agelim_years**: Optional: A two-element numeric vector giving the minimum and maximum ages (in years) to include in the population. Default is c(0, 79). If `agelim_years` is provided and `agelim_months` is not, `agelim_years` will override the default value of `agelim_months`.
- **reths**: Optional: A character vector giving the races/ethnicities to include in the population. Default is c('Mexican American', 'Other Hispanic', 'Non-Hispanic White', 'Non-Hispanic Black', 'Other'), to include all races and ethnicities in their proportions in the NHANES data. User-supplied vector must contain one or more of these strings.
- **weight_category**: Optional: The weight categories to include in the population. Default is c('Underweight', 'Normal', 'Overweight', 'Obese'). User-supplied vector must contain one or more of these strings.
- **gfr_resid_var**: Logical value indicating whether or not to include residual variability when generating GFR values. (Default is TRUE, passed from `httkpop_direct_resample`.)
- **ckd_epi_race_coeff**: Logical value indicating whether or not to use the "race coefficient" from the CKD-EPI equation when estimating GFR values. (Default is FALSE, passed from `httkpop_direct_resample`.)
- **nhanes_mec_svy**: surveydesign object created from `mecdt` using `svydesign` (this is done in `httkpop_generate`)

Value

A data.table where each row represents an individual, and each column represents a demographic, anthropometric, or physiological parameter.

Author(s)

Caroline Ring

References

httkpop_generate

Generate a virtual population for PBTK

Description

Generate a virtual population characterized by demographic, anthropometric, and physiological parameters relevant to PBTK.

Usage

httkpop_generate(
 method,
 nsamp = NULL,
 gendernum = NULL,
 agelim_years = NULL,
 agelim_months = NULL,
 weight_category = c("Underweight", "Normal", "Overweight", "Obese"),
 gfr_category = c("Normal", "Kidney Disease", "Kidney Failure"),
 reths = c("Mexican American", "Other Hispanic", "Non-Hispanic White",
 "Non-Hispanic Black", "Other"),
 gfr_resid_var = TRUE,
 ckd_epi_race_coeff = FALSE
)

Arguments

method
 The population-generation method to use. Either "virtual individuals" or "direct resampling." Short names may be used: "d" or "dr" for "direct resampling", and "v" or "vi" for "virtual individuals".

nsamp
 The desired number of individuals in the virtual population. nsamp need not be provided if gendernum is provided.

gendernum
 Optional: A named list giving the numbers of male and female individuals to include in the population, e.g. list(Male=100,Female=100). Default is NULL, meaning both males and females are included, in their proportions in the NHANES data. If both nsamp and gendernum are provided, they must agree (i.e., nsamp must be the sum of gendernum).

agelim_years
 Optional: A two-element numeric vector giving the minimum and maximum ages (in years) to include in the population. Default is c(0,79). If only a single value is provided, both minimum and maximum ages will be set to that value; e.g. agelim_years=3 is equivalent to agelim_years=c(3,3). If agelim_years is provided and agelim_months is not, agelim_years will override the default value of agelim_months.

agelim_months
 Optional: A two-element numeric vector giving the minimum and maximum ages (in months) to include in the population. Default is c(0, 959), equivalent to the default agelim_years. If only a single value is provided, both minimum and maximum ages will be set to that value; e.g. agelim_months=36 is equivalent to agelim_months=c(36,36). If agelim_months is provided and agelim_years is not, agelim_months will override the default values of agelim_years.
weight_category
Optional: The weight categories to include in the population. Default is c('Underweight', 'Normal', 'Overweight', 'Obese'). User-supplied vector must contain one or more of these strings.

gfr_category
The kidney function categories to include in the population. Default is c('Normal', 'Kidney Disease', 'Kidney Failure') to include all kidney function levels.

reths
Optional: a character vector giving the races/ethnicities to include in the population. Default is c('Mexican American', 'Other Hispanic', 'Non-Hispanic White', 'Non-Hispanic Black', 'Other'), to include all races and ethnicities in their proportions in the NHANES data. User-supplied vector must contain one or more of these strings.

gfr_resid_var
TRUE to add residual variability to GFR predicted from serum creatinine; FALSE to not add residual variability

ckd_epi_race_coeff
TRUE to use the CKD-EPI equation as originally published (with a coefficient changing predicted GFR for individuals identified as "Non-Hispanic Black"); FALSE to set this coefficient to 1.

Details
Demographic and anthropometric (body measures) variables, along with serum creatinine and hematocrit, are generated from survey data from the Centers for Disease Control’s National Health and Nutrition Examination Survey (NHANES). Those data are stored in the object nhanes_mec_svy (a survey.design object, see package survey). With method = "d", these variables will be sampled with replacement directly from NHANES data. Each NHANES respondent’s likelihood of being sampled is given by their sample weight. With method = "v", these variables will be sampled from distributions fitted to NHANES data. Tissue masses and flows are generated based on demographic, body measures, and serum creatinine values, using regression equations from the literature and/or allometric scaling based on height. Extensive details about how each of these parameters are generated are available in the supplemental material of Ring et al. (2017) (see References for full citation).

Value
A data.table where each row represents an individual, and each column represents a demographic, anthropometric, or physiological parameter. Details of the parameters returned and their units are in the following tables.

Demographic variables

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>seqn</td>
<td>NHANES unique identifier (only included if method = "direct resampling")</td>
<td>NA</td>
</tr>
<tr>
<td>gender</td>
<td>Sex: "Male" or "Female"</td>
<td>NA</td>
</tr>
<tr>
<td>reth</td>
<td>Race/ethnicity: "Non-Hispanic Black", "Non-Hispanic White", "Mexican American", "Other Hispanic", or "Other"</td>
<td>NA</td>
</tr>
<tr>
<td>age_years</td>
<td>Age (0-79 years)</td>
<td>years</td>
</tr>
<tr>
<td>age_months</td>
<td>Age (0-959 months)</td>
<td>months</td>
</tr>
</tbody>
</table>

Body measures and laboratory measurements
<table>
<thead>
<tr>
<th>Name</th>
<th>Definition</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>height</td>
<td>Height</td>
<td>cm</td>
</tr>
<tr>
<td>weight</td>
<td>Body weight</td>
<td>kg</td>
</tr>
<tr>
<td>serum_creat</td>
<td>Serum creatinine</td>
<td>mg/dL</td>
</tr>
<tr>
<td>hematocrit</td>
<td>Hematocrit (percentage by volume of red blood cells in blood)</td>
<td>%</td>
</tr>
</tbody>
</table>

Tissue masses

<table>
<thead>
<tr>
<th>Name</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood_mass</td>
<td>Mass of blood</td>
</tr>
<tr>
<td>Brain_mass</td>
<td>Mass of brain</td>
</tr>
<tr>
<td>Gonads_mass</td>
<td>Mass of gonads</td>
</tr>
<tr>
<td>Heart_mass</td>
<td>Mass of heart</td>
</tr>
<tr>
<td>Kidneys_mass</td>
<td>Mass of kidneys</td>
</tr>
<tr>
<td>Large_intestine_mass</td>
<td>Mass of large intestine</td>
</tr>
<tr>
<td>Liver_mass</td>
<td>Mass of liver</td>
</tr>
<tr>
<td>Lung_mass</td>
<td>Mass of lung</td>
</tr>
<tr>
<td>Muscle_mass</td>
<td>Mass of skeletal muscle</td>
</tr>
<tr>
<td>Pancreas_mass</td>
<td>Mass of pancreas</td>
</tr>
<tr>
<td>Skeleton_mass</td>
<td>Mass of skeleton (including bone, red and yellow marrow, cartilage, periarticular tissue)</td>
</tr>
<tr>
<td>Skin_mass</td>
<td>Mass of skin</td>
</tr>
<tr>
<td>Small_intestine_mass</td>
<td>Mass of small intestine</td>
</tr>
<tr>
<td>Spleen_mass</td>
<td>Mass of spleen</td>
</tr>
<tr>
<td>Stomach_mass</td>
<td>Mass of stomach tissue</td>
</tr>
<tr>
<td>Other_mass</td>
<td>Mass of GI tract contents (1.4% of body weight) and tissues not otherwise enumerated (3.3% of body weight)</td>
</tr>
<tr>
<td>org_mass_sum</td>
<td>Sum of the above tissue masses. A check to ensure this is less than body weight</td>
</tr>
<tr>
<td>Adipose_mass</td>
<td>Mass of adipose tissue. Assigned as weight - org_mass_sum</td>
</tr>
</tbody>
</table>

Tissue flows

<table>
<thead>
<tr>
<th>Name</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adipose_flow</td>
<td>Blood flow to adipose tissue</td>
</tr>
<tr>
<td>Brain_flow</td>
<td>Blood flow to brain</td>
</tr>
<tr>
<td>CO</td>
<td>Blood flow to brain</td>
</tr>
<tr>
<td>Gonads_flow</td>
<td>Blood flow to gonads</td>
</tr>
<tr>
<td>Heart_flow</td>
<td>Blood flow to heart</td>
</tr>
<tr>
<td>Kidneys_flow</td>
<td>Blood flow to kidneys (not for glomerular filtration)</td>
</tr>
<tr>
<td>Large_intestine_flow</td>
<td>Blood flow to large intestine</td>
</tr>
<tr>
<td>Liver_flow</td>
<td>Blood flow to liver</td>
</tr>
<tr>
<td>Lung_flow</td>
<td>Blood flow to lung</td>
</tr>
<tr>
<td>Muscle_flow</td>
<td>Blood flow to skeletal muscle</td>
</tr>
<tr>
<td>Pancreas_flow</td>
<td>Blood flow to pancreas</td>
</tr>
<tr>
<td>Skeleton_flow</td>
<td>Blood flow to skeleton</td>
</tr>
<tr>
<td>Skin_flow</td>
<td>Blood flow to skin</td>
</tr>
<tr>
<td>Small_intestine_flow</td>
<td>Blood flow to small intestine</td>
</tr>
<tr>
<td>Spleen_flow</td>
<td>Blood flow to spleen</td>
</tr>
<tr>
<td>Stomach_flow</td>
<td>Blood flow to stomach</td>
</tr>
</tbody>
</table>
org_flow_check Sum of blood flows as a fraction of cardiac output (CO). A check to make sure this is less than 1.

Adjusted variables

<table>
<thead>
<tr>
<th>Name</th>
<th>Definition</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>weight_adj</td>
<td>Adjusted body weight: Sum of all tissue masses.</td>
<td>kg</td>
</tr>
<tr>
<td>BSA_adj</td>
<td>Adjusted body surface area, based on height and</td>
<td>cm²</td>
</tr>
<tr>
<td>million.cells.per.gliver</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gfr_est</td>
<td>Glomerular filtration rate (GFR) estimated using either the CKD-EPI equation for adults or a body-surface-area-based equation for children.</td>
<td>mL/min/1.73 m²</td>
</tr>
<tr>
<td>bmi_adj</td>
<td>Body mass index (BMI), adjusted to match weight_adj and height.</td>
<td>kg/m²</td>
</tr>
<tr>
<td>weight_class</td>
<td>Weight category based on bmi_adj: "Underweight" (BMI < 18.5), "Normal" (18.5 < BMI < 24.9), "Overweight" (25.0 < BMI < 29.9), or "Obese" (BMI >= 30).</td>
<td>Unitless</td>
</tr>
<tr>
<td>gfr_class</td>
<td>Kidney function category based on GFR: "Normal" (GFR >=60 mL/min/1.73 m²), "Kidney Disease" (15 <= GFR <= 60), or "Kidney Failure" (GFR < 15).</td>
<td>Unitless</td>
</tr>
</tbody>
</table>

Author(s)

Caroline Ring

References

Examples

```r
#Simply generate a virtual population of 100 individuals, #using the direct-resampling method
set.seed(42)
httkpop_generate(method='direct resampling', nsamp=100)
#Generate a population using the virtual-individuals method, #including 80 females and 20 males, #including only ages 20-65, #including only Mexican American and #Non-Hispanic Black individuals, #including only non-obese individuals
httkpop_generate(method = 'virtual individuals',
gendernum=list(Female=80,
              Male=20),
agelim_years=c(20,65),
reths=c('Mexican American',
       'Non-Hispanic Black'),
weight_category=c('Underweight',
                 'Normal',
                 'Overweight'))
```
httkpop_mc

Description

This is the core function for httk-pop correlated human physiological variability simulation as described by Ring et al. (2017) (doi: 10.1016/j.envint.2017.06.004). This function takes the data table of population biometrics (one individual per row) generated by `httkpop_generate`, and converts it to the corresponding table of HTTK model parameters for a specified HTTK model.

Usage

```r
httkpop_mc(model, samples = 1000, httkpop.dt = NULL, ...)
```

Arguments

- `model` One of the HTTK models: "1compartment", "3compartmentss", "3compartment", or "pbtk".
- `samples` The number of Monte Carlo samples to use (can often think of these as separate individuals).
- `httkpop.dt` A data table generated by `httkpop_generate`. This defaults to NULL, in which case `httkpop_generate` is called to generate this table.
- `...` Additional arguments passed on to `httkpop_generate`.

Details

The Monte Carlo methods used here were recently updated and described by Breen et al. (submitted).

Value

A data.table with a row for each individual in the sample and a column for each parameter in the model.

Author(s)

Caroline Ring and John Wambaugh

References

Examples

```r
set.seed(42)
indiv_examp <- httkpop_generate(method="d", nsamp=10)

httk_param <- httkpop_mc(httkpop.dt=indiv_examp,
                         samples=10,
                         model="1compartment")
```

httkpop_virtual_indiv
Generate a virtual population by the virtual individuals method.

Description

Generate a virtual population by the virtual individuals method.

Usage

```r
httkpop_virtual_indiv(
  nsamp = NULL,
  gendernum = NULL,
  agelim_years = NULL,
  agelim_months = NULL,
  weight_category = c("Underweight", "Normal", "Overweight", "Obese"),
  gfr_category = c("Normal", "Kidney Disease", "Kidney Failure"),
  reths = c("Mexican American", "Other Hispanic", "Non-Hispanic White",
            "Non-Hispanic Black", "Other"),
  gfr_resid_var = TRUE,
  ckd_epi_race_coeff = FALSE,
  nhanes_mec_svy
)
```

Arguments

- **nsamp**
The desired number of individuals in the virtual population. `nsamp` need not be provided if `gendernum` is provided.

- **gendernum**
Optional: A named list giving the numbers of male and female individuals to include in the population, e.g. `list(Male=100,Female=100)`. Default is `NULL`, meaning both males and females are included, in their proportions in the NHANES data. If both `nsamp` and `gendernum` are provided, they must agree (i.e., `nsamp` must be the sum of `gendernum`).

- **agelim_years**
Optional: A two-element numeric vector giving the minimum and maximum ages (in years) to include in the population. Default is `c(0,79)`. If `agelim_years` is provided and `agelim_months` is not, `agelim_years` will override the default value of `agelim_months`.

- **agelim_months**
Optional: A two-element numeric vector giving the minimum and maximum ages (in months) to include in the population. Default is `c(0,959)`, equivalent to the default `agelim_years`. If `agelim_months` is provided and `agelim_years` is not, `agelim_months` will override the default values of `agelim_years`.

Optional: The weight categories to include in the population. Default is `c('Underweight', 'Normal', 'Overweight', 'Obese')`. User-supplied vector must contain one or more of these strings.

gfr_category
The kidney function categories to include in the population. Default is `c('Normal', 'Kidney Disease', 'Kidney Failure')` to include all kidney function levels.

reths
Optional: a character vector giving the races/ethnicities to include in the population. Default is `c('Mexican American', 'Other Hispanic', 'Non-Hispanic White', 'Non-Hispanic Black', 'Other')`, to include all races and ethnicities in their proportions in the NHANES data. User-supplied vector must contain one or more of these strings.

gfr_resid_var
Logical value indicating whether or not to include residual variability when generating GFR values. (Default is TRUE.)

ckd_epi_race_coeff
Logical value indicating whether or not to use the "race coefficient" from the CKD-EPI equation when estimating GFR values. (Default is FALSE.)

nhanes_mec_svy
surveydesign object created from `mecdt` using `svydesign` (this is done in `httkpop_generate`, which calls this function)

Value
A data.table where each row represents an individual, and each column represents a demographic, anthropometric, or physiological parameter.

Author(s)
Caroline Ring

References

Description
Bandwidths used for a two-dimensional kernel density estimation of the joint distribution of residual errors around smoothing spline fits of height vs. age and weight vs. age for NHANES respondents in each of ten combinations of sex and race/ethnicity categories.

Usage
hw_H

Format
A named list with 10 elements, each a matrix with 2 rows and 2 columns. Each list element corresponds to, and is named for, one combination of NHANES sex categories (Male and Female) and NHANES race/ethnicity categories (Mexican American, Other Hispanic, Non-Hispanic White, Non-Hispanic Black, and Other).
Details

Each matrix is a variance-covariance matrix for a two-dimensional normal distribution: this is the bandwidth to be used for a two-dimensional kernel density estimation (KDE) (using a two-dimensional normal kernel) of the joint distribution of residual errors around smoothing spline fits of height vs. age and weight vs. age for NHANES respondents in the specified sex and race/ethnicity category. Optimal bandwidths were pre-calculated by doing the smoothing spline fits, getting the residuals, then calling \texttt{kde} on the residuals (which calls \texttt{Hpi} to compute the plug-in bandwidth).

Used by HTTK-Pop only in "virtual individuals" mode (i.e. \texttt{httkpop_generate} with \texttt{method = "v"}), in \texttt{gen_height_weight}.

Author(s)

Caroline Ring

References

\begin{verbatim}
in.list

Convenience Boolean (yes/no) functions to identify chemical membership in several key lists.

\end{verbatim}

Description

These functions allow easy identification of whether or not a chemical CAS is included in various research projects. While it is our intent to keep these lists up-to-date, the information here is only for convenience and should not be considered to be definitive.

Usage

\begin{verbatim}
in.list(chem.cas = NULL, which.list = "ToxCast")

\end{verbatim}

Arguments

\begin{itemize}
 \item \texttt{chem.cas} \hspace{1cm} The Chemical Abstracts Service Registry Number (CAS-RN) corresponding to the chemical of interest.
 \item \texttt{which.list} \hspace{1cm} A character string that can take the following values: "ToxCast", "Tox21", "ExpoCast", "NHANES", "NHANES.serum.parent", "NHANES.serum.analyte", "NHANES.blood.parent", "NHANES.blood.analyte", "NHANES.urine.parent", "NHANES.urine.analyte"
\end{itemize}

Details

Tox21: Toxicology in the 21st Century (Tox21) is a U.S. federal High Throughput Screening (HTS) collaboration among EPA, NIH, including National Center for Advancing Translational Sciences and the National Toxicology Program at the National Institute of Environmental Health Sciences, and the Food and Drug Administration. (Bucher et al., 2008)

ToxCast: The Toxicity Forecaster (ToxCast) is a HTS screening project led by the U.S. EPA to perform additional testing of a subset of Tox21 chemicals. (Judson et al. 2010)
ExpoCast: ExpoCast (Exposure Forecaster) is an U.S. EPA research project to generate tentative exposure estimates (e.g., mg/kg BW/day) for thousands of chemicals that have little other information using models and informatics. (Wambaugh et al. 2014)

NHANES: The U.S. Centers for Disease Control (CDC) National Health and Nutrition Examination Survey (NHANES) is an on-going survey to characterize the health and biometrics (e.g., weight, height) of the U.S. population. One set of measurements includes the quantification of xenobiotic chemicals in various samples (blood, serum, urine) of the thousands of surveyed individuals. (CDC, 2014)

Value

- **logical**: A Boolean (1/0) value that is TRUE if the chemical is in the list.

Author(s)

- John Wambaugh

References

See Also

- `is.httk` for determining inclusion in httk project

Examples

```r
httk.table <- get_cheminfo(info=c("CAS","Compound"))
httk.table[,"Rat"] <- ""
httk.table[,"NHANES"] <- ""
httk.table[,"Tox21"] <- ""
httk.table[,"ToxCast"] <- ""
httk.table[,"ExpoCast"] <- ""
httk.table[,"PBTK"] <- ""
# To make this example run quickly, this loop is only over the first five chemicals. To build a table with all available chemicals use:
# for (this.cas in httk.table$CAS)
for (this.cas in httk.table$CAS[1:5])
{
  this.index <- httk.table$CAS==this.cas
  if (is.nhanes(this.cas)) httk.table[this.index,"NHANES"] <- "Y"
  if (is.tox21(this.cas)) httk.table[this.index,"Tox21"] <- "Y"
  if (is.toxcast(this.cas)) httk.table[this.index,"ToxCast"] <- "Y"
  if (is.expocast(this.cas)) httk.table[this.index,"ExpoCast"] <- "Y"
}`
if (is.httk(this.cas, model="PBTK")) httk.table[this.index,"PBTK"] <- "Y"
if (is.httk(this.cas, species="rat")) httk.table[this.index,"Rat"] <- "Y"
}

invitro_mc

Monte Carlo for in vitro toxicokinetic parameters including uncertainty and variability.

Description

Given a CAS in the HTTK data set, a virtual population from HTTK-Pop, some user specifications on the assumed distributions of Funbound.plasma and Clint, draw "individual" values of Funbound.plasma and Clint from those distributions. The methodology for this function was developed and described by Wambaugh et al. (2019) (doi: 10.1093/toxsci/kfz205).

Usage

invitro_mc(
  parameters.dt = NULL,
  samples,
  fup.meas.mc = TRUE,
  fup.pop.mc = TRUE,
  clint.meas.mc = TRUE,
  clint.pop.mc = TRUE,
  fup.meas.cv = 0.4,
  clint.meas.cv = 0.3,
  fup.pop.cv = 0.3,
  clint.pop.cv = 0.3,
  poormetab = TRUE,
  fup.lod = 0.01,
  fup.censored.dist = FALSE,
  adjusted.Funbound.plasma = TRUE,
  adjusted.Clin = TRUE,
  clint.pvalue.threshold = 0.05,
  minimum.Funbound.plasma = 1e-04
)

Arguments

parameters.dt A data table of physiological and chemical-specific parameters
samples The number of samples to draw.
fup.meas.mc Logical – should we perform measurement (uncertainty) Monte Carlo for Funbound.plasma values (Default TRUE). If FALSE, the user may choose to provide columns for "unadjusted.Funbound.plasma" or "fup.mean" from their own methods.
fup.pop.mc Logical – should we perform population (variability) Monte Carlo for Funbound.plasma values (Default TRUE)
clint.meas.mc Logical – should we perform measurement (uncertainty) Monte Carlo for Clint values (Default TRUE)
clint.pop.mc Logical – should we perform population (variability) Monte Carlo for Clint values (Default TRUE)
fup.meas.cv Coefficient of variation of distribution of measured Funbound.plasma values.
clint.meas.cv Coefficient of variation of distribution of measured Clint values.
fup.pop.cv Coefficient of variation of distribution of population Funbound.plasma values.
clint.pop.cv Coefficient of variation of distribution of population Clint values.
poormetab Logical. Whether to include poor metabolizers in the Clint distribution or not.
fup.lod The average limit of detection for Funbound.plasma, below which distribution will be censored if fup.censored.dist is TRUE. Default 0.01.
fup.censored.dist Logical. Whether to draw Funbound.plasma from a censored distribution or not.
adjusted.Funbound.plasma Uses Pearce et al. (2017) lipid binding adjustment for Funbound.plasma when set to TRUE (Default).
adjusted.Clint Uses Kilford et al. (2008) hepatocyte incubation binding adjustment for Clint when set to TRUE (Default).
clint.pvalue.threshold Hepatic clearance for chemicals where the in vitro clearance assay result has a p-values greater than the threshold are set to zero.
minimum.Funbound.plasma Monte Carlo draws less than this value are set equal to this value (default is 0.0001 – half the lowest measured Fup in our dataset).
parameters A list of chemical-specific model parameters containing at least Funbound.plasma, Clint, and Fhep.assay.correction.

Details

The Monte Carlo methods used here were recently updated and described by Breen et al. (submitted).

Value

A data.table with three columns: Funbound.plasma and Clint, containing the sampled values, and Fhep.assay.correction, containing the value for fraction unbound in hepatocyte assay.

Author(s)

Caroline Ring and John Wambaugh

References

Examples

```r
Simply generate a virtual population of 100 individuals,
using the direct-resampling method
set.seed(42)
Pull mean vchemical=specific values:
chem.props <- parameterize_pbtk(chem.name="bisphenolaf")
Convert to data.table with one row per sample:
parameters.dt <- monte_carlo(chem.props,samples=100)
Use httk-pop to generate a population:
pop <- httkpop_generate(method='direct resampling', nsamp=100)
Overwrite parameters specified by httk-pop:
parameters.dt[,names(pop):=pop]
Vary in vitro parameters:
parameters.dt <- invitro_mc(parameters.dt,samples=100)
```

```
is.httk Convenience Boolean (yes/no) function to identify chemical membership and treatment within the httk project.
```

Description

allows easy identification of whether or not a chemical CAS is included in various aspects of the httk research project (by model type and species of interest). While it is our intent to keep these lists up-to-date, the information here is only for convenience and should not be considered definitive.

Usage

```r
is.httk(chem.cas, species = "Human", model = "3compartmentss")
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>chem.cas</td>
<td>The Chemical Abstracts Service Registry Number (CAS-RN) corresponding to the chemical of interest.</td>
</tr>
<tr>
<td>species</td>
<td>Species desired (either &quot;Rat&quot;, &quot;Rabbit&quot;, &quot;Dog&quot;, &quot;Mouse&quot;, or default &quot;Human&quot;).</td>
</tr>
<tr>
<td>model</td>
<td>Model used in calculation, 'pbtk' for the multiple compartment model, '1compartment' for the one compartment model, '3compartment' for three compartment model, '3compartmentss' for the three compartment model without partition coefficients, or 'schmitt' for chemicals with logP and fraction unbound (used in predict_partitioning_schmitt).</td>
</tr>
</tbody>
</table>

Details

Tox21: Toxicology in the 21st Century (Tox21) is a U.S. federal High Throughput Screening (HTS) collaboration among EPA, NIH, including National Center for Advancing Translational Sciences and the National Toxicology Program at the National Institute of Environmental Health Sciences, and the Food and Drug Administration. (Bucher et al., 2008)

ToxCast: The Toxicity Forecaster (ToxCast) is a HTS screening project led by the U.S. EPA to perform additional testing of a subset of Tox21 chemicals. (Judson et al. 2010)
ExpoCast: ExpoCast (Exposure Forecaster) is an U.S. EPA research project to generate tentative exposure estimates (e.g., mg/kg BW/day) for thousands of chemicals that have little other information using models and informatics. (Wambaugh et al. 2014)

NHANES: The U.S. Centers for Disease Control (CDC) National Health and Nutrition Examination Survey (NHANES) is an on-going survey to characterize the health and biometrics (e.g., weight, height) of the U.S. population. One set of measurements includes the quantification of xenobiotic chemicals in various samples (blood, serum, urine) of the thousands of surveyed individuals. (CDC, 2014)

Value

`logical` A Boolean (1/0) value that is TRUE if the chemical is included in the httk project with a given modeling scheme (PBTK) and a given species

Author(s)

John Wambaugh

References


See Also

`in.list` for determining chemical membership in several other key lists

Examples

```r
httk.table <- get_cheminfo(info=c("CAS","Compound"))
httk.table[,"Rat"] <- ""
httk.table[,"NHANES"] <- ""
httk.table[,"Tox21"] <- ""
httk.table[,"ToxCast"] <- ""
httk.table[,"ExpoCast"] <- ""
httk.table[,"PBTK"] <- ""
To make this example run quickly, this loop is only over the first five
chemicals. To build a table with all available chemicals use:
for (this.cas in httk.table$CAS)
for (this.cas in httk.table$CAS[1:5]) {
 this.index <- httk.table$CAS==this.cas
 if (is.nhanes(this.cas)) httk.table[this.index,"NHANES"] <- "Y"
 if (is.tox21(this.cas)) httk.table[this.index,"Tox21"] <- "Y"
 if (is.toxcast(this.cas)) httk.table[this.index,"ToxCast"] <- "Y"
```
if (is.expocast(this.cas)) httk.table[this.index,"ExpoCast"] <- "Y"
if (is.httk(this.cas,model="PBTK")) httk.table[this.index,"PBTK"] <- "Y"
if (is.httk(this.cas,species="rat")) httk.table[this.index,"Rat"] <- "Y"
}

is_in_inclusive

Checks whether a value, or all values in a vector, is within inclusive limits

Description
Checks whether a value, or all values in a vector, is within inclusive limits

Usage
is_in_inclusive(x, lims)

Arguments

x A numeric value, or vector of values.
lims A two-element vector of (min, max) values for the inclusive limits. If x is a vector, lims may also be a two-column matrix with nrow=length(x) where the first column is lower limits and the second column is upper limits. If x is a vector and lims is a two-element vector, then each element of x will be checked against the same limits. If x is a vector and lims is a matrix, then each element of x will be checked against the limits given by the corresponding row of lims.

Value
A logical vector the same length as x, indicating whether each element of x is within the inclusive limits given by lims.

Author(s)
Caroline Ring

References
johnson  Johnson 2006

Description
This data set is only used in Vignette 5.

Usage
johnson

Format
A data.table containing 60 rows and 11 columns.

Author(s)
Caroline Ring

References

kapraun2019 Kapraun et al. 2019 data

Description
A list object containing time-varying parameters for the human maternal-fetal HTTK model. List elements contain scalar coefficients for the polynomial, logistic, Gompertz, and other functions of time describing blood flow rates, tissue volumes, hematocrits, and other anatomical/physiological quantities that change in the human mother and her fetus during pregnancy and gestation.

Usage
kapraun2019

Format
list

Author(s)
Dustin F. Kapraun

Source
Kapraun et al. 2019 Fetal PBTK Model
References


kidney_mass_children  Predict kidney mass for children

Description

For individuals under age 18, predict kidney mass from weight, height, and gender using equations from Ogiu et al. 1997

Usage

kidney_mass_children(weight, height, gender)

Arguments

weight  Vector of weights in kg.
height  Vector of heights in cm.
gender  Vector of genders (either 'Male' or 'Female').

Value

A vector of kidney masses in kg.

Author(s)

Caroline Ring

References


liver_mass_children  Predict liver mass for children

**Description**

For individuals under 18, predict the liver mass from height, weight, and gender, using equations from Ogiu et al. 1997

**Usage**

liver_mass_children(height, weight, gender)

**Arguments**

- `height` Vector of heights in cm.
- `weight` Vector of weights in kg.
- `gender` Vector of genders (either 'Male' or 'Female').

**Value**

A vector of liver masses in kg.

**Author(s)**

Caroline Ring

**References**


**Description**

This function returns an updated version of chem.physical_and_invitro.data that includes data predicted with Random Forest QSAR models developed and presented in Dawson et al. 2021, included in dawson2021.

**Usage**

load_dawson2021(overwrite = FALSE, exclude_oad = TRUE, target.env = .GlobalEnv)
load_pradeep2020

Arguments

overwrite

Only matters if load.image=FALSE. If overwrite=TRUE then existing data in chem.physical_and_invitro.data will be replaced by any data/predictions in Dawson et al. (2021) that is for the same chemical and property. If overwrite=FALSE (DEFAULT) then new data for the same chemical and property are ignored. Fun-bound.plasma values of 0 (below limit of detection) are overwritten either way.

exclude_oad

Include the chemicals only within the applicability domain. If exclude_oad=TRUE (DEFAULT) chemicals outside the applicability domain do not have their predicted values loaded.

target.env

The environment where the new chem.physical_and_invitro.data is loaded. Defaults to global environment.

Value
data.frame

An updated version of chem.physical_and_invitro.data.

Author(s)

Sarah E. Davidson

References


Examples

```r
Not run:
chem.physical_and_invitro.data <- load_dawson2021()
chem.physical_and_invitro.data <- load_dawson2021(overwrite=TRUE)
```

## End(Not run)

load_pradeep2020

Load data from Pradeep et al. 2020.

Description

This function returns an updated version of chem.physical_and_invitro.data that includes data predicted with Support Vector Machine and Random Forest models developed and presented in Pradeep et al. 2020, included in pradeep2020.

Usage

```r
load_pradeep2020(overwrite = FALSE, target.env = .GlobalEnv)
```
Arguments

overwrite

Only matters if load.image=FALSE. If overwrite=TRUE then existing data in chem.physical_and_invitro.data will be replaced by any data/predictions in Pradeep et al. (2020) that is for the same chemical and property. If overwrite=FALSE (DEFAULT) then new data for the same chemical and property are ignored. Funbound.plasma values of 0 (below limit of detection) are overwritten either way.

target.env

The environment where the new chem.physical_and_invitro.data is loaded. Defaults to global environment.

Value

data.frame

An updated version of chem.physical_and_invitro.data.

Author(s)

Sarah E. Davidson

References


Examples

## Not run:
chem.physical_and_invitro.data <- load_pradeep2020()
chem.physical_and_invitro.data <- load_pradeep2020(overwrite=TRUE)

## End(Not run)

load_sipes2017

Load data from Sipes et al 2017.

Description

This function returns an updated version of chem.physical_and_invitro.data that includes data predicted with Simulations Plus’ ADMET predictor that was used in Sipes et al. 2017, included in admet.data.

Usage

load_sipes2017(overwrite = FALSE, target.env = .GlobalEnv)
lump_tissues

Lump tissue parameters into model compartments This function takes the tissue:plasma partition coefficients from predict_partitioning_schmitt along with the tissue-specific volumes and flows and aggregates (or "lumps") them according to the needed scheme of toxicokinetic model tissue compartments.

Arguments

overwrite

Only matters if load.image=FALSE. If overwrite=TRUE then existing data in chem.physical_and_invitro.data will be replaced by any data/predictions in Sipes et al. (2017) that is for the same chemical and property. If overwrite=FALSE (DEFAULT) then new data for the same chemical and property are ignored. Funbound.plasma values of 0 (below limit of detection) are overwritten either way.

target.env

The environment where the new chem.physical_and_invitro.data is loaded. Defaults to global environment.

Value

data.frame

An updated version of chem.physical_and_invitro.data.

Author(s)

Robert Pearce and John Wambaugh

References


Examples

```r
num.chems <- length(get_cheminfo())
load_sipes2017()

We should have the ADMet Predicted chemicals from Sipes et al. (2017), # this one is a good test since the logP is nearly 10
calc_css(chem.cas="26040-51-7")

Let's see how many chemicals we have now with the Sipes (2017) data loaded:
length(get_cheminfo())

Now let us reset
reset_httk()

We should be back to our original number:
num.chems == length(get_cheminfo())
```
Description

predict_partitioning_schmitt makes tissue-specific predictions drawing from those tissues described in tissue.data. Since different physiologically-based toxicokinetic (PBTK) models use different schemes for organizing the tissues of the body into differing compartments (for example, "rapidly perfused tissues"), this function lumps tissues into compartments as specified by the argument 'tissuelist'. Aggregate flows, volumes, and partition coefficients are provided for the lumped tissue compartments. Flows and volumes are summed while partition coefficients is calculated using averaging weighted by species-specific tissue volumes.

Usage

lump_tissues(
  Ktissue2pu.in,
  parameters = NULL,
  tissuelist = NULL,
  species = "Human",
  tissue.vols = NULL,
  tissue.flows = NULL,
  tissuenames = NULL,
  model = "pbtk",
  suppress.messages = FALSE
)

Arguments

Ktissue2pu.in List of partition coefficients from predict_partitioning_schmitt. The tissues named in this list are lumped into the compartments specified by tissuelist unless they are not present the specified model's associated alltissues.
parameters A list of physiological parameters including flows and volumes for tissues named in Ktissue2pu.in

Usage
tissuelist Manually specifies compartment names and tissues, which override the standard compartment names and tissues that are usually specified in a model’s associated modelinfo file. Remaining tissues in the model’s associated alltissues listing are lumped in the rest of the body.
species Species desired (either "Rat", "Rabbit", "Dog", "Mouse", or default "Human").
tissue.vols A list of volumes for tissues in tissuelist.
tissue.flows A list of flows for tissues in tissuelist.
tissuenames A list of tissue names in tissuenames.
model Specify which model (and therefore which tissues) are being considered.
suppress.messages Whether or not the output message is suppressed.

Details

The name of each entry in 'tissuelist' is its own compartment. The modelinfo_MODEL.R file corresponding to the model specified by argument 'model' includes both a 'tissuelist' describing to the model’s compartmentallumping scheme as well as a vector of 'tissuenames' specifying all tissues to be lumped into those compartments.

Alternatively the 'tissuelist' and 'tissuenames' can also be manually specified for alternate lumping schemes not necessarily related to a pre-made httk model. For example, tissuelist<-list(Rapid=c("Brain","Kidney")).
The tissues contained in 'tissuenames' that are unused in 'tissuelist' are aggregated into a single compartment termed "rest".

NOTE: The partition coefficients of lumped compartments vary according to individual and species differences since the volumes of the constituent tissues may vary.

**Value**

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Krbc2pu</td>
<td>Ratio of concentration of chemical in red blood cells to unbound concentration in plasma.</td>
</tr>
<tr>
<td>Krest2pu</td>
<td>Ratio of concentration of chemical in rest of body tissue to unbound concentration in plasma.</td>
</tr>
<tr>
<td>Vrestc</td>
<td>Volume of the rest of the body per kg body weight, L/kg BW.</td>
</tr>
<tr>
<td>Vliverc</td>
<td>Volume of the liver per kg body weight, L/kg BW.</td>
</tr>
<tr>
<td>Qtotal.liverf</td>
<td>Fraction of cardiac output flowing to the gut and liver, i.e. out of the liver.</td>
</tr>
<tr>
<td>Qgutf</td>
<td>Fraction of cardiac output flowing to the gut.</td>
</tr>
<tr>
<td>Qkidneyf</td>
<td>Fraction of cardiac output flowing to the kidneys.</td>
</tr>
</tbody>
</table>

**Author(s)**

John Wambaugh and Robert Pearce

**References**


**See Also**

predict_partitioning_schmitt
tissue.data

**Examples**

```r
pcs <- predict_partitioning_schmitt(chem.name='bisphenola')
tissuelist <- list(
 liver=c("liver"),
 rapid=c("lung","kidney","muscle","brain"),
 fat=c("adipose"),
 slow=c('bone'))
lump_tissues(pcs,tissuelist=tissuelist)
```
lung_mass_children

Predict lung mass for children

Description
For individuals under 18, predict the lung mass from height, weight, and gender, using equations from Ogiu et al. 1997

Usage
lung_mass_children(height, weight, gender)

Arguments
- height: Vector of heights in cm.
- weight: Vector of weights in kg.
- gender: Vector of genders (either 'Male' or 'Female').

Value
A vector of lung masses in kg.

Author(s)
Caroline Ring

References

mcnally_dt
Reference tissue masses and flows from tables in McNally et al. 2014.

Description
Reference tissue masses, flows, and residual variance distributions from Tables 1, 4, and 5 of McNally et al. 2014.

Usage
mcnally_dt
Format

A data.table with variables:

- **tissue**: Body tissue
- **gender**: Gender: Male or Female
- **mass_ref**: Reference mass in kg, from Reference Man
- **mass_cv**: Coefficient of variation for mass
- **mass_dist**: Distribution for mass: Normal or Log-normal
- **flow_ref**: Reference flow in L/h, from Reference Man
- **flow_cv**: Coefficient of variation for flow (all normally distributed)
- **height_ref**: Reference heights (by gender)
- **CO_ref**: Reference cardiac output by gender
- **flow_frac**: Fraction of CO flowing to each tissue: \( \frac{\text{flow_ref}}{\text{CO_ref}} \)

Author(s)

Caroline Ring

Source


References


---

**mecdt**

*Pre-processed NHANES data.*

Description

NHANES data on demographics, anthropometrics, and some laboratory measures, cleaned and combined into a single data set.

Usage

mecdt

Format

A data.table with 23620 rows and 12 variables.

- **seqn**: NHANES unique identifier for individual respondents.
- **riagendr**: Gender: "Male" or "Female"
**metabolism_data_Linakis2020**

- **ridreth1** Race/ethnicity category: one of "Mexican American", "Non-Hispanic White", "Non-Hispanic Black", "Other", "Other Hispanic".
- **ridexagm** Age in months at the time of examination (if not recorded by NHANES, it was imputed based on age at the time of screening)
- **ridexagy** Age in years at the time of examination (if not recorded by NHANES, it was imputed based on age at the time of screening)
- **bmxwt** Weight in kg
- **lbxscr** Serum creatinine, mg/dL
- **lbxhct** Hematocrit, percent by volume of blood composed of red blood cells
- **wtmec6yr** 6-year sample weights for combining 3 cycles, computed by dividing 2-year sample weights by 3.
- **bmxh1lenavg** Average of height and recumbent length if both were measured; if only one was measured, takes value of the one that was measured.
- **weight_class** One of Underweight, Normal, Overweight, or Obese. Assigned using methods in `get_weight_class`.

**Author(s)**
Caroline Ring

**Source**

**References**

---

**Description**
Metabolism data involved in Linakis 2020 vignette analysis.

**Usage**
metabolism_data_Linakis2020

**Format**
A data.frame containing x rows and y columns.

**Author(s)**
Matt Linakis
**monte_carlo**

**Source**
Matt Linakis

**References**
DSStox database (https://www.epa.gov/ncct/dsstox)

---

**Description**
This function performs basic, uncorrelated Monte Carlo to simulate uncertainty and/or variability for parameters of toxicokinetic models. Parameters can be varied according to either a normal distribution that is truncated at zero (using argument `cv.params`) or from a normal distribution that is censored for values less than the limit of detection (`censored.params`). Coefficient of variation (`cv`) and limit of detection can be specified separately for each parameter.

**Usage**
```r
monte_carlo(
 parameters,
 cv.params = NULL,
 censored.params = NULL,
 samples = 1000,
 suppress.messages = TRUE
)
```

**Arguments**
- **parameters**: These parameters that are also listed in either `cv.params` or `censored.params` are sampled using Monte Carlo.
- **cv.params**: The parameters listed in `cv.params` are sampled from a normal distribution that is truncated at zero. This argument should be a list of coefficients of variation (`cv`) for the normal distribution. Each entry in the list is named for a parameter in “parameters”. New values are sampled with mean equal to the value in “parameters” and standard deviation equal to the mean times the `cv`.
- **censored.params**: The parameters listed in `censored.params` are sampled from a normal distribution that is censored for values less than the limit of detection (specified separately for each parameter). This argument should be a list of sub-lists. Each sublist is named for a parameter in "params" and contains two elements: "cv" (coefficient of variation) and "LOD" (limit of detection), below which parameter values are censored. New values are sampled with mean equal to the value in "params" and standard deviation equal to the mean times the `cv`. Censored values are sampled on a uniform distribution between 0 and the limit of detection.
- **samples**: This argument is the number of samples to be generated for calculating quantiles.
- **suppress.messages**: Whether or not the output message is suppressed.
Value

A data.table with a row for each individual in the sample and a column for each parameter in the model.

Author(s)

John Wambaugh

References


Examples

# Example based on Pearce et al. (2017):

# Set up means:
params <- parameterize_pbtk(chem.name="zoxamide")
# Nothing changes:
monte_carlo(params)

vary.params <- NULL
for (this.param in names(params)[!(names(params) %in%
  c("Funbound.plasma", "pKa_Donor", "pKa_Accept" )) &
  !is.na(as.numeric(params)))]) vary.params[this.param] <- 0.2
# Most everything varies with CV of 0.2:
monte_carlo(
  parameters=params,
  cv.params = vary.params)

censored.params <- list(Funbound.plasma = list(cv = 0.2, lod = 0.01))
# Fup is censored below 0.01:
monte_carlo(
  parameters=params,
  cv.params = vary.params,
  censored.params = censored.params)
References

onlyp NHANES Exposure Data

Description
This data set is only used in Vignette 6.

Usage
onlyp

Format
A data.table containing 1060 rows and 5 columns.

Author(s)
Caroline Ring

References

pancreas_mass_children Predict pancreas mass for children

Description
For individuals under 18, predict the pancreas mass from height, weight, and gender, using equations from Ogiu et al.

Usage
pancreas_mass_children(height, weight, gender)

Arguments
height Vector of heights in cm.
weight Vector of weights in kg.
gender Vector of genders (either 'Male' or 'Female').
**Value**

A vector of pancreas masses in kg.

**Author(s)**

Caroline Ring

**References**


---

**parameterize_1comp**

*Parameters for a one compartment (empirical) toxicokinetic model*

**Description**

This function initializes the parameters needed in the function solve_1comp. Volume of distribution is estimated by using a modified Schmitt (2008) method to predict tissue partition coefficients (Pearce et al., 2017) and then lumping the compartments weighted by tissue volume:

**Usage**

```r
parameterize_1comp(
 chem.cas = NULL,
 chem.name = NULL,
 dtxsid = NULL,
 species = "Human",
 default.to.human = FALSE,
 adjusted.Funbound.plasma = TRUE,
 adjusted.Clint = TRUE,
 regression = TRUE,
 restrictive.clearance = TRUE,
 well.stirred.correction = TRUE,
 suppress.messages = FALSE,
 clint.pvalue.threshold = 0.05,
 minimum.Funbound.plasma = 1e-04
)
```

**Arguments**

- `chem.cas`: Chemical Abstract Services Registry Number (CAS-RN) – the chemical must be identified by either CAS, name, or DTXISD
- `chem.name`: Chemical name (spaces and capitalization ignored) – the chemical must be identified by either CAS, name, or DTXISD
- `dtxsid`: EPA’s DSSTox Structure ID ([https://comptox.epa.gov/dashboard](https://comptox.epa.gov/dashboard)) – the chemical must be identified by either CAS, name, or DTXISD
- `species`: Species desired (either "Rat", "Rabbit", "Dog", "Mouse", or default "Human").
```
default.to.human
 Substitutes missing rat values with human values if true.

adjusted.Funbound.plasma
 Uses Pearce et al. (2017) lipid binding adjustment for Funbound.plasma (which
 impacts volume of distribution) when set to TRUE (Default).

adjusted.Clint
 Uses Kilford et al. (2008) hepatocyte incubation binding adjustment for Clint
 when set to TRUE (Default).

regression
 Whether or not to use the regressions in calculating partition coefficients in vol-
 ume of distribution calculation.

restrictive.clearance
 In calculating elimination rate and hepatic bioavailability, protein binding is not
 taken into account (set to 1) in liver clearance if FALSE.

well.stirred.correction
 Uses correction in calculation of hepatic clearance for well-stirred model if
 TRUE. This assumes clearance relative to amount unbound in whole blood in-
 stead of plasma, but converted to use with plasma concentration.

suppress.messages
 Whether or not to suppress messages.

clint.pvalue.threshold
 Hepatic clearance for chemicals where the in vitro clearance assay result has a
 p-value greater than the threshold are set to zero.

minimum.Funbound.plasma
 Monte Carlo draws less than this value are set equal to this value (default is
 0.0001 – half the lowest measured Fup in our dataset).

Details

\[V_{d,\text{steady-state}} = \sum_{i \in \text{tissues}} K_i V_i + V_{\text{plasma}} \]

where \(K_i \) is the tissue:unbound plasma concentration partition coefficient for tissue \(i \).

Value

\(V_{\text{dist}} \) \hspace{1cm} \text{Volume of distribution, units of L/kg BW.}
\(F_{\text{gutabs}} \) \hspace{1cm} \text{Fraction of the oral dose absorbed, i.e. the fraction of the dose that enters the}
\hspace{1cm} \text{gutlumen.}
\(F_{\text{hep.assay.correction}} \) \hspace{1cm} \text{The fraction of chemical unbound in hepatocyte assay using the method of Kil-
\hspace{1cm} \text{ford et al. (2008)}}
\(k_{\text{elim}} \) \hspace{1cm} \text{Elimination rate, units of 1/h.}
\(\text{hematocrit} \) \hspace{1cm} \text{Percent volume of red blood cells in the blood.}
\(k_{\text{gutabs}} \) \hspace{1cm} \text{Rate chemical is absorbed, 1/h.}
\(\text{million.cells.per.gliver} \) \hspace{1cm} \text{Millions cells per gram of liver tissue.}
\(MW \) \hspace{1cm} \text{Molecular Weight, g/mol.}
\(R_{\text{blood2plasma}} \) \hspace{1cm} \text{The ratio of the concentration of the chemical in the blood to the concentration}
\hspace{1cm} \text{in the plasma. Not used in calculations but included for the conversion of plasma}
\hspace{1cm} \text{outputs.}
\(\text{hepatic.bioavailability} \) \hspace{1cm} \text{Fraction of dose remaining after first pass clearance, calculated from the cor-
\hspace{1cm} \text{rected well-stirred model.}
\(BW \) \hspace{1cm} \text{Body Weight, kg.}
```
Author(s)

John Wambaugh and Robert Pearce

References


See Also

solve_1comp
calc_analytic_css_1comp
calc_vdist
parameterize_steadystate
apply_clint_adjustment
tissue.data
physiology.data

Examples

parameters <- parameterize_1comp(chem.name='Bisphenol-A',species='Rat')
parameters <- parameterize_1comp(chem.cas='80-05-7',
  restrictive.clearance=FALSE,
  species='rabbit',
  default.to.human=TRUE)
out <- solve_1comp(parameters=parameters)

Description

This function generates the chemical- and species-specific parameters needed for model '3compartment', for example solve_3comp. A call is made to parameterize_pbtk to use Schmitt (2008)’s method as modified by Pearce et al. (2017) to predict partition coefficients based on descriptions in tissue.data. Organ volumes and flows are retrieved from table physiology.data.
Usage

```
parameterize_3comp(
 chem.cas = NULL,
 chem.name = NULL,
 dtxsid = NULL,
 species = "Human",
 default.to.human = FALSE,
 force.human.clint.fup = FALSE,
 clint.pvalue.threshold = 0.05,
 adjusted.Funbound.plasma = TRUE,
 adjusted.Clint = TRUE,
 regression = TRUE,
 suppress.messages = FALSE,
 restrictive.clearance = TRUE,
 minimum.Funbound.plasma = 1e-04
)
```

Arguments

- **chem.cas**: Chemical Abstract Services Registry Number (CAS-RN) – the chemical must be identified by either CAS, name, or DTXISD.
- **chem.name**: Chemical name (spaces and capitalization ignored) – the chemical must be identified by either CAS, name, or DTXISD.
- **dtxsid**: EPA’s DSSTox Structure ID (https://comptox.epa.gov/dashboard) – the chemical must be identified by either CAS, name, or DTXISDs.
- **species**: Species desired (either "Rat", "Rabbit", "Dog", "Mouse", or default "Human").
- **default.to.human**: Substitutes missing animal values with human values if true.
- **force.human.clint.fup**: Forces use of human values for hepatic intrinsic clearance and fraction of unbound plasma if true.
- **clint.pvalue.threshold**: Hepatic clearances with clearance assays having p-values greater than the threshold are set to zero.
- **adjusted.Funbound.plasma**: Uses Pearce et al. (2017) lipid binding adjustment for Funbound.plasma (which impacts partition coefficients) when set to TRUE (Default).
- **adjusted.Clint**: Uses Kilford et al. (2008) hepatocyte incubation binding adjustment for Clint when set to TRUE (Default).
- **regression**: Whether or not to use the regressions in calculating partition coefficients.
- **suppress.messages**: Whether or not the output message is suppressed.
- **restrictive.clearance**: In calculating hepatic bioavailability, protein binding is not taken into account (set to 1) in liver clearance if FALSE.
- **minimum.Funbound.plasma**: Monte Carlo draws less than this value are set equal to this value (default is 0.0001 – half the lowest measured Fup in our dataset).
**Value**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BW</td>
<td>Body Weight, kg.</td>
</tr>
<tr>
<td>Clmetabolism</td>
<td>Hepatic Clearance, L/h/kg BW.</td>
</tr>
<tr>
<td>Fgutabs</td>
<td>Fraction of the oral dose absorbed, i.e. the fraction of the dose that enters the gut lumen.</td>
</tr>
<tr>
<td>Funbound.plasma</td>
<td>Fraction of plasma that is not bound.</td>
</tr>
<tr>
<td>Fhep.assay.correction</td>
<td>The fraction of chemical unbound in hepatocyte assay using the method of Kilford et al. (2008)</td>
</tr>
<tr>
<td>hematocrit</td>
<td>Percent volume of red blood cells in the blood.</td>
</tr>
<tr>
<td>Kgut2pu</td>
<td>Ratio of concentration of chemical in gut tissue to unbound concentration in plasma.</td>
</tr>
<tr>
<td>Kliver2pu</td>
<td>Ratio of concentration of chemical in liver tissue to unbound concentration in plasma.</td>
</tr>
<tr>
<td>Krbc2pu</td>
<td>Ratio of concentration of chemical in red blood cells to unbound concentration in plasma.</td>
</tr>
<tr>
<td>Krest2pu</td>
<td>Ratio of concentration of chemical in rest of body tissue to unbound concentration in plasma.</td>
</tr>
<tr>
<td>million.cells.per.gliver</td>
<td>Millions cells per gram of liver tissue.</td>
</tr>
<tr>
<td>MW</td>
<td>Molecular Weight, g/mol.</td>
</tr>
<tr>
<td>Qcardiacc</td>
<td>Cardiac Output, L/h/kg BW^3/4.</td>
</tr>
<tr>
<td>Qgfrc</td>
<td>Glomerular Filtration Rate, L/h/kg BW^3/4, volume of fluid filtered from kidney and excreted.</td>
</tr>
<tr>
<td>Qgutf</td>
<td>Fraction of cardiac output flowing to the gut.</td>
</tr>
<tr>
<td>Qliverf</td>
<td>Fraction of cardiac output flowing to the liver.</td>
</tr>
<tr>
<td>Rblood2plasma</td>
<td>The ratio of the concentration of the chemical in the blood to the concentration in the plasma.</td>
</tr>
<tr>
<td>Vgutc</td>
<td>Volume of the gut per kg body weight, L/kg BW.</td>
</tr>
<tr>
<td>Vliverc</td>
<td>Volume of the liver per kg body weight, L/kg BW.</td>
</tr>
<tr>
<td>Vrestc</td>
<td>Volume of the rest of the body per kg body weight, L/kg BW.</td>
</tr>
</tbody>
</table>

**Author(s)**

Robert Pearce and John Wambaugh

**References**


parameterize_fetal_pbtk

See Also

solve_3comp
calc_analytic_css_3comp
parameterize_pbtk
apply_clint_adjustment
tissue.data
physiology.data

Examples

parameters <- parameterize_3comp(chem.name='Bisphenol-A',species='Rat')
parameters <- parameterize_3comp(chem.cas='80-05-7',
                                 species='rabbit',default.to.human=TRUE)
out <- solve_3comp(parameters=parameters,plots=TRUE)

parameterize_fetal_pbtk

Parameterize_fetal_PBTK

Description

This function initializes the parameters needed in the functions solve_fetal_pbtk by calling solve_pbtk and adding additional parameters.

Usage

parameterize_fetal_pbtk(
  chem.cas = NULL,
  chem.name = NULL,
  dtxsid = NULL,
  species = "Human",
  fetal_fup_adjustment = TRUE,
  return.kapraun2019 = TRUE,
  suppress.messages = FALSE,
  ...
)

Arguments

chem.cas Either the chemical name or the CAS number must be specified.
chem.name Either the chemical name or the CAS number must be specified.
dtxsid EPA's DSSTox Structure ID (http://comptox.epa.gov/dashboard) the chemical must be identified by either CAS, name, or DTXSIDs
species Species desired (either "Rat", "Rabbit", "Dog", "Mouse", or default "Human"). Currently only a narrow human model is supported.
parameterize_fetal_pbtk

fetal_fup_adjustment
Logical indicator of whether to use an adjusted estimate for fetal fup based on
the fetal:maternal plasma protein binding ratios presented in McNamara and
Alcorn’s 2002 study “Protein Binding Predictions in Infants.” Defaults to TRUE.

return.kapraun2019
If TRUE (default) the empirical parameters for the Kapraun et al. (2019) maternal-
fetal growth parameters are provided.

suppress.messages
Whether or not the output message is suppressed.

Arguments passed to parameterize_pbtk.

Value

pre_pregnant_BW
Body Weight before pregnancy, kg.

C1metabolism
Hepatic Clearance, L/h/kg BW.

Fgutabs
Fraction of the oral dose absorbed, i.e. the fraction of the dose that enters the
gutlumen.

Funbound.plasma
Fraction of plasma that is not bound.

Fhep.assay.correction
The fraction of chemical unbound in hepatocyte assay using the method of Kil-
ford et al. (2008)

hematocrit
Percent volume of red blood cells in the blood.

Kgut2pu
Ratio of concentration of chemical in gut tissue to unbound concentration in
plasma.

kgutabs
Rate that chemical enters the gut from gutlumen, 1/h.

Kkidney2pu
Ratio of concentration of chemical in kidney tissue to unbound concentration in
plasma.

Kliver2pu
Ratio of concentration of chemical in liver tissue to unbound concentration in
plasma.

Klung2pu
Ratio of concentration of chemical in lung tissue to unbound concentration in
plasma.

Krbc2pu
Ratio of concentration of chemical in red blood cells to unbound concentration
in plasma.

Krest2pu
Ratio of concentration of chemical in rest of body tissue to unbound concentra-
tion in plasma.

million.cells.per.gliver
Millions cells per gram of liver tissue.

MW
Molecular Weight, g/mol.

Qgfrc
Glomerular Filtration Rate, L/h/kg BW^3/4, volume of fluid filtered from kidney
and excreted.

Rblood2plasma
The ratio of the concentration of the chemical in the blood to the concentration
in the plasma from available_rblood2plasma.

Vgutc
Volume of the gut per kg body weight, L/kg BW.

Vkidneyc
Volume of the kidneys per kg body weight, L/kg BW.

Vliverc
Volume of the liver per kg body weight, L/kg BW.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V\textsubscript{lungc}</td>
<td>Volume of the lungs per kg body weight, L/kg BW.</td>
</tr>
<tr>
<td>V\textsubscript{thyroidc}</td>
<td>Volume of the thyroid per kg body weight, L/kg BW.</td>
</tr>
<tr>
<td>K\textsubscript{fgut2pu}</td>
<td>Ratio of concentration of chemical in fetal gut tissue to unbound concentration in plasma.</td>
</tr>
<tr>
<td>K\textsubscript{fkidney2pu}</td>
<td>Ratio of concentration of chemical in fetal kidney tissue to unbound concentration in plasma.</td>
</tr>
<tr>
<td>K\textsubscript{fliver2pu}</td>
<td>Ratio of concentration of chemical in fetal liver tissue to unbound concentration in plasma.</td>
</tr>
<tr>
<td>K\textsubscript{flung2pu}</td>
<td>Ratio of concentration of chemical in fetal lung tissue to unbound concentration in plasma.</td>
</tr>
<tr>
<td>K\textsubscript{frest2pu}</td>
<td>Ratio of concentration of chemical in fetal rest of body tissue to unbound concentration in plasma.</td>
</tr>
<tr>
<td>K\textsubscript{fbrain2pu}</td>
<td>Ratio of concentration of chemical in fetal brain tissue to unbound concentration in plasma.</td>
</tr>
<tr>
<td>K\textsubscript{thyroid2pu}</td>
<td>Ratio of concentration of chemical in fetal thyroid tissue to unbound concentration in plasma.</td>
</tr>
<tr>
<td>K\textsubscript{fthyroid2pu}</td>
<td>Ratio of concentration of chemical in fetal thyroid tissue to unbound concentration in plasma.</td>
</tr>
<tr>
<td>K\textsubscript{placenta2pu}</td>
<td>Ratio of concentration of chemical in placental tissue to unbound concentration in maternal plasma.</td>
</tr>
<tr>
<td>K\textsubscript{fplacenta2pu}</td>
<td>Ratio of concentration of chemical in placental tissue to unbound concentration in fetal plasma.</td>
</tr>
</tbody>
</table>

**Author(s)**

Robert Pearce, Mark Sfeir, John Wambaugh, and Dustin Kapraun
Mark Sfeir, Dustin Kapraun, John Wambaugh

**References**


**See Also**

- `solve_fetal_pbtk`
- `parameterize_pbtk`
- `predict_partitioning_schmitt`
- `apply_clint_adjustment`
- `tissue.data`
- `physiology.data`
- `kapraun2019`
Examples

```r
parameters <- parameterize_fetal_pbtk(chem.cas='80-05-7')
parameters <- parameterize_fetal_pbtk(chem.name='Bisphenol-A', species='Rat')
```

Description

This function initializes the parameters needed for the model `gas_pbtk`, for example `solve_gas_pbtk`. Chemical- and species-specific model parameters are generated. These include tissue:plasma partition coefficients via Schmitt (2008)'s method as modified by Pearce et al. (2017). Organ volumes and flows are retrieved from table `physiology.data`. This model was first described by Linakis et al. (2020).

Usage

```r
parameterize_gas_pbtk(
 chem.cas = NULL,
 chem.name = NULL,
 dtxsid = NULL,
 species = "Human",
 default.to.human = FALSE,
 tissuelist = list(liver = c("liver"), kidney = c("kidney"), lung = c("lung"), gut = c("gut")),
 force.human.clint.fup = FALSE,
 clint.pvalue.threshold = 0.05,
 adjusted.Funbound.plasma = TRUE,
 adjusted.Clint = TRUE,
 regression = TRUE,
 vmax = 0,
 km = 1,
 exercise = FALSE,
 FR = 12,
 VT = 0.75,
 VD = 0.15,
 suppress.messages = FALSE,
 minimum.Funbound.plasma = 1e-04,
 ...
)
```

Arguments

- `chem.cas`: Either the chemical name or the CAS number must be specified.
- `chem.name`: Either the chemical name or the CAS number must be specified.
dtxsid      EPA’s DSSTox Structure ID (https://comptox.epa.gov/dashboard) the chemical must be identified by either CAS, name, or DTXSIDs

species     Species desired (either "Rat", "Rabbit", "Dog", "Mouse", or default "Human").

default.to.human Substitutes missing animal values with human values if true (hepatic intrinsic clearance or fraction of unbound plasma).

tissuelist  Specifies compartment names and tissues groupings. Remaining tissues in tissue.data are lumped in the rest of the body. However, solve_pbtk only works with the default parameters.

force.human.clinf.fup Forces use of human values for hepatic intrinsic clearance and fraction of unbound plasma if true.

clint.pvalue.threshold Hepatic clearance for chemicals where the in vitro clearance assay result has a p-values greater than the threshold are set to zero.

adjusted.Funbound.plasma Uses Pearce et al. (2017) lipid binding adjustment for Funbound.plasma (which impacts partition coefficients) when set to TRUE (Default).

adjusted.Clint Uses Kilford et al. (2008) hepatocyte incubation binding adjustment for Clint when set to TRUE (Default).

regression Whether or not to use the regressions in calculating partition coefficients.

vmax         Michaelis-Menten vmax value in reactions/min

km           Michaelis-Menten concentration of half-maximal reaction velocity in desired output concentration units.

exercise Logical indicator of whether to simulate an exercise-induced heightened respiration rate

fR            Respiratory frequency (breaths/minute), used especially to adjust breathing rate in the case of exercise. This parameter, along with VT and VD (below) gives another option for calculating Qalv (Alveolar ventilation) in case pulmonary ventilation rate is not known

VT           Tidal volume (L), to be modulated especially as part of simulating the state of exercise

VD           Anatomical dead space (L), to be modulated especially as part of simulating the state of exercise

suppress.messages Whether or not the output messages are suppressed.

minimum.Funbound.plasma Monte Carlo draws less than this value are set equal to this value (default is 0.0001 – half the lowest measured Fup in our dataset).

... Other parameters

Value

BW  Body Weight, kg.

Clint Hepatic intrinsic clearance, uL/min/10^6 cells

Clint.dist Distribution of hepatic intrinsic clearance values (median, lower 95th, upper 95th, p value)
Clmetabolismc  Hepatic Clearance, L/h/kg BW.
Fgutabs  Fraction of the oral dose absorbed, i.e. the fraction of the dose that enters the gut lumen.
Fhep.assay.correction  The fraction of chemical unbound in hepatocyte assay using the method of Kilford et al. (2008)
Funbound.plasma  Fraction of chemical unbound to plasma.
Funbound.plasma.adjustment  Fraction unbound to plasma adjusted as described in Pearce et al. 2017
Funbound.plasma.dist  Distribution of fraction unbound to plasma (median, lower 95th, upper 95th)
hematocrit  Percent volume of red blood cells in the blood.
Kblood2air  Ratio of concentration of chemical in blood to air
Kgut2pu  Ratio of concentration of chemical in gut tissue to unbound concentration in plasma.
kgutabs  Rate that chemical enters the gut from gutlumen, 1/h.
Kkidney2pu  Ratio of concentration of chemical in kidney tissue to unbound concentration in plasma.
Kliver2pu  Ratio of concentration of chemical in liver tissue to unbound concentration in plasma.
Klung2pu  Ratio of concentration of chemical in lung tissue to unbound concentration in plasma.
km  Michaelis-Menten concentration of half-maximal activity
Kmuc2air  Mucus to air partition coefficient
Krbc2pu  Ratio of concentration of chemical in red blood cells to unbound concentration in plasma.
Krest2pu  Ratio of concentration of chemical in rest of body tissue to unbound concentration in plasma.
kUrtc  Unscaled upper respiratory tract uptake parameter (L/h/kg^0.75)
liver.density  Density of liver in g/mL
MA  phospholipid:water distribution coefficient, membrane affinity
million.cells.per.gliver  Millions cells per gram of liver tissue.
MW  Molecular Weight, g/mol.
pKa_Accept  compound H association equilibrium constant(s)
pKa_Donor  compound H dissociation equilibrium constant(s)
Pow  octanol:water partition coefficient (not log transformed)
Qalvc  Unscaled alveolar ventilation rate (L/h/kg^0.75)
Qcardiac  Cardiac Output, L/h/kg BW^3/4.
Qgfrc  Glomerular Filtration Rate, L/h/kg BW^0.75, volume of fluid filtered from kidney and excreted.
Qgutf  Fraction of cardiac output flowing to the gut.
Qkidneyf  Fraction of cardiac output flowing to the kidneys.
Qliverf  Fraction of cardiac output flowing to the liver.
Qlungf  Fraction of cardiac output flowing to lung tissue.
Qrestf  Fraction of blood flow to rest of body
Rblood2plasma  The ratio of the concentration of the chemical in the blood to the concentration
              in the plasma from available_rblood2plasma.
Vartc  Volume of the arteries per kg body weight, L/kg BW.
Vgutc  Volume of the gut per kg body weight, L/kg BW.
Vkidneyc  Volume of the kidneys per kg body weight, L/kg BW.
Vliverc  Volume of the liver per kg body weight, L/kg BW.
Vlungc  Volume of the lungs per kg body weight, L/kg BW.
vmax  Michaelis-Menten maximum reaction velocity (1/min)
vmucc  Unscaled mucosal volume (L/kg BW^0.75
Vrestc  Volume of the rest of the body per kg body weight, L/kg BW.
Vvenc  Volume of the veins per kg body weight, L/kg BW.

Author(s)
Matt Linakis, Robert Pearce, John Wambaugh

References
Linakis, Matthew W., et al. "Development and evaluation of a high throughput inhalation model
for organic chemicals." Journal of exposure science & environmental epidemiology 30.5 (2020):
866-877.
Schmitt, Walter. "General approach for the calculation of tissue to plasma partition coefficients."
Pearce, Robert G., et al. "Evaluation and calibration of high-throughput predictions of chemical
distribution to tissues." Journal of pharmacokinetics and pharmacodynamics 44.6 (2017): 549-565.
Kilford, P. J., Gertz, M., Houston, J. B. and Galetin, A. (2008). Hepatocellular binding of drugs:
correction for unbound fraction in hepatocyte incubations using microsomal binding or drug lipophilicity
data. Drug Metabolism and Disposition 36(7), 1194-7, 10.1124/dmd.108.020834.

See Also
solve_gas_pbtk
apply_clint_adjustment
predict_partitioning_schmitt
available_rblood2plasma
calc_kair
tissue.data
physiology.data
get_clint
get_fup
get_physchem_param
### Examples

```r
parameters <- parameterize_gas_pbtk(chem.cas='129-00-0')

parameters <- parameterize_gas_pbtk(chem.name='pyrene',species='Rat')

parameterize_gas_pbtk(chem.cas = '56-23-5')

parameters <- parameterize_gas_pbtk(chem.name='Carbon tetrachloride',species='Rat')

Change the tissue lumping:
compartments <- list(liver=c("liver"),fast=c("heart","brain","muscle","kidney"),
 lung=c("lung"),gut=c("gut"),slow=c("bone"))

parameters <- parameterize_gas_pbtk(chem.name="Bisphenol a",species="Rat",default.to.human=TRUE,
 tissuelist=compartments)
```

---

**parameterize_pbtk**

*Parameters for a generic physiologically-based toxicokinetic model*

---

**Description**

Generate a chemical- and species-specific set of PBPK model parameters. Parameters include tissue:plasma partition coefficients, organ volumes, and flows for the tissue lumping scheme specified by argument `tissuelist`. Tissue:(fraction unbound in) plasma partition coefficients are predicted via Schmitt (2008)'s method as modified by Pearce et al. (2017) using `predict_partitioning_schmitt`. Organ volumes and flows are retrieved from table `physiology.data`. Tissues must be described in table `tissue.data`.

**Usage**

```r
parameterize_pbtk(
 chem.cas = NULL,
 chem.name = NULL,
 dtxsid = NULL,
 species = "Human",
 default.to.human = FALSE,
 tissuelist = list(liver = c("liver"), kidney = c("kidney"), lung = c("lung"), gut =
 c("gut")),
 force.human.clint.fup = FALSE,
 clint.pvalue.threshold = 0.05,
 adjusted.Funbound.plasma = TRUE,
 adjusted.Clint = TRUE,
 regression = TRUE,
 suppress.messages = FALSE,
 restrictive.clearance = TRUE,
 minimum.Funbound.plasma = 1e-04,
 million.cells.per.gliver = 110,
 liver.density = 1.05,
 kgutabs = 2.18
)
```
parameterize_pbtk

Arguments

chem.cas Chemical Abstract Services Registry Number (CAS-RN) – the chemical must be identified by either CAS, name, or DTXISD

chem.name Chemical name (spaces and capitalization ignored) – the chemical must be identified by either CAS, name, or DTXISD

dtxisid EPA's 'DSSTox Structure ID (https://comptox.epa.gov/dashboard) – the chemical must be identified by either CAS, name, or DTXISID

species Species desired (either "Rat", "Rabbit", "Dog", "Mouse", or default "Human").

default.to.human Substitutes missing animal values with human values if true (hepatic intrinsic clearance or fraction of unbound plasma).

tissuelist Specifies compartment names and tissues groupings. Remaining tissues in tissue.data are lumped in the rest of the body. However, solve_pbtk only works with the default parameters.

force.human.clint.fup Forces use of human values for hepatic intrinsic clearance and fraction of unbound plasma if true.

clint.pvalue.threshold Hepatic clearance for chemicals where the in vitro clearance assay result has a p-values greater than the threshold are set to zero.

adjusted.Funbound.plasma Uses Pearce et al. (2017) lipid binding adjustment for Funbound.plasma (which impacts partition coefficients) when set to TRUE (Default).

adjusted.Clint Uses Kilford et al. (2008) hepatocyte incubation binding adjustment for Clint when set to TRUE (Default).

regression Whether or not to use the regressions in calculating partition coefficients.

suppress.messages Whether or not the output message is suppressed.

restrictive.clearance In calculating hepatic.bioavailability, protein binding is not taken into account (set to 1) in liver clearance if FALSE.

minimum.Funbound.plasma $f_{up}$ is not allowed to drop below this value (default is 0.0001).

million.cells.per.gliver Hepatocellularity (defaults to 110 10^6 cells/g-liver, from Carlile et al. (1997))

liver.density Liver density (defaults to 1.05 g/mL from International Commission on Radiological Protection (1975))

kgutabs Oral absorption rate from gut (defaults to 2.18 1/h from Wambaugh et al. (2018))

Details

By default, this function initializes the parameters needed in the functions solve_pbtk, calc_css, and others using the httk default generic PBTK model (for oral and intravenous dosing only).

Value

BW Body Weight, kg.

Clmetabolismc Hepatic Clearance, L/h/kg BW.
**Fgutabs** Fraction of the oral dose absorbed, i.e. the fraction of the dose that enters the gut lumen.

**Funbound.plasma** Fraction of plasma that is not bound.

**Fhep.assay.correction** The fraction of chemical unbound in hepatocyte assay using the method of Kilford et al. (2008)

**hematocrit** Percent volume of red blood cells in the blood.

**Kgut2pu** Ratio of concentration of chemical in gut tissue to unbound concentration in plasma.

**kgutabs** Rate that chemical enters the gut from gut lumen, 1/h.

**Kkidney2pu** Ratio of concentration of chemical in kidney tissue to unbound concentration in plasma.

**Kliver2pu** Ratio of concentration of chemical in liver tissue to unbound concentration in plasma.

**Klung2pu** Ratio of concentration of chemical in lung tissue to unbound concentration in plasma.

**Krbc2pu** Ratio of concentration of chemical in red blood cells to unbound concentration in plasma.

**Krest2pu** Ratio of concentration of chemical in rest of body tissue to unbound concentration in plasma.

**million.cells.per.gliver** Millions cells per gram of liver tissue.

**MW** Molecular Weight, g/mol.

**Qcardiacc** Cardiac Output, L/h/kg BW^{3/4}.

**Qgfrc** Glomerular Filtration Rate, L/h/kg BW^{3/4}, volume of fluid filtered from kidney and excreted.

**Qgutf** Fraction of cardiac output flowing to the gut.

**Qkidneyf** Fraction of cardiac output flowing to the kidneys.

**Qliverf** Fraction of cardiac output flowing to the liver.

**Rblood2plasma** The ratio of the concentration of the chemical in the blood to the concentration in the plasma from available_rblood2plasma.

**Vartc** Volume of the arteries per kg body weight, L/kg BW.

**Vgutc** Volume of the gut per kg body weight, L/kg BW.

**Vkidneyc** Volume of the kidneys per kg body weight, L/kg BW.

**Vliverc** Volume of the liver per kg body weight, L/kg BW.

**Vlungc** Volume of the lungs per kg body weight, L/kg BW.

**Vrestc** Volume of the rest of the body per kg body weight, L/kg BW.

**Vvenc** Volume of the veins per kg body weight, L/kg BW.

**Author(s)**

John Wambaugh and Robert Pearce
References


See Also

solve_pbtk
calc_analytic_css_pbtk
predict_partitioning_schmitt
apply_clint_adjustment
tissue.data
physiology.data

Examples

```r
parameters <- parameterize_pbtk(chem.cas='80-05-7')
parameters <- parameterize_pbtk(chem.name='Bisphenol-A',species='Rat')

Change the tissue lumping (note, these model parameters will not work with our current solver):
compartments <- list(liver=c("liver"),fast=c("heart","brain","muscle","kidney"),
lung=c("lung"),gut=c("gut"),slow=c("bone"))
parameterize_pbtk(chem.name="Bisphenol a",species="Rat",default.to.human=TRUE,
tissuelist=compartments)
```

Description

This function provides the necessary parameters to run predict_partitioning_schmitt, excluding the data in table tissue.data. The model is based on the Schmitt (2008) method for predicting tissue:plasma partition coefficients as modified by Pearce et al. (2017). The modifications include approaches adapted from Peyret et al. (2010).
Usage

```r
parameterize_schmitt(
 chem.cas = NULL,
 chem.name = NULL,
 dtxsid = NULL,
 parameters = NULL,
 species = "Human",
 default.to.human = FALSE,
 force.human.fup = FALSE,
 adjusted.Funbound.plasma = TRUE,
 suppress.messages = FALSE,
 minimum.Funbound.plasma = 1e-04
)
```

Arguments

- **chem.cas**: Chemical Abstract Services Registry Number (CAS-RN) – if parameters is not specified then the chemical must be identified by either CAS, name, or DTXISD
- **chem.name**: Chemical name (spaces and capitalization ignored) – if parameters is not specified then the chemical must be identified by either CAS, name, or DTXISD
- **dtxsid**: EPA’s DSSTox Structure ID ([https://comptox.epa.gov/dashboard](https://comptox.epa.gov/dashboard)) – if parameters is not specified then the chemical must be identified by either CAS, name, or DTXISD
- **parameters**: Chemical and physiological description parameters needed to run the Schmitt et al. (2008) model
- **species**: Species desired (either "Rat", "Rabbit", "Dog", "Mouse", or default "Human").
- **default.to.human**: Substitutes missing fraction of unbound plasma with human values if true.
- **force.human.fup**: Returns human fraction of unbound plasma in calculation for rats if true. When species is specified as rabbit, dog, or mouse, the human unbound fraction is substituted.
- **adjusted.Funbound.plasma**: Uses Pearce et al. (2017) lipid binding adjustment for Funbound.plasma (which impacts partition coefficients) when set to TRUE (Default).
- **suppress.messages**: Whether or not the output message is suppressed.
- **minimum.Funbound.plasma**: Monte Carlo draws less than this value are set equal to this value (default is 0.0001 – half the lowest measured Fup in our dataset).

Value

- **Funbound.plasma**: Unbound fraction in plasma, adjusted for lipid binding according to Pearce et al. (2017)
- **unadjusted.Funbound.plasma**: measured unbound fraction in plasma (0.005 if below limit of detection)
- **Pow**: octanol:water partition coefficient (not log transformed)
- **pKa_Donor**: compound H dissociation equilibrium constant(s)
parameterize_steadystate

pKa_Accept  compound H association equilibrium constant(s)
MA           phospholipid:water distribution coefficient, membrane affinity
Fprotein_plasma  protein fraction in plasma
plasma.pH  pH of the plasma

Author(s)
Robert Pearce and John Wambaugh

References

See Also
predict_partitioning_schmitt
tissue.data
calc_ma
apply_fup_adjustment

Examples

parameterize_schmitt(chem.name='bisphenola')

---

**Classification**
Parameters for a three-compartment toxicokinetic model at steady-state

**Description**
This function initializes the parameters needed in the functions calc_mc_css, calc_mc_oral_equiv, and calc_analytic_css for the three compartment steady state model ('3compartmentss') as used in Rotroff et al. (2010), Wetmore et al. (2012), Wetmore et al. (2015), and elsewhere. By assuming that enough time has passed to reach steady-state, we eliminate the need for tissue-specific partition coefficients because we assume all tissues have come to equilibrium with the unbound concentration in plasma. However, we still use chemical properties to predict the blood:plasma ratio for estimating first-pass hepatic metabolism for oral exposures.
Usage

```r
call = parameterize_steadystate(
 chem.cas = NULL,
 chem.name = NULL,
 dtxsid = NULL,
 species = "Human",
 clint.pvalue.threshold = 0.05,
 default.to.human = FALSE,
 force.human.clint.fup = FALSE,
 adjusted.Funbound.plasma = TRUE,
 adjusted.Clint = TRUE,
 restrictive.clearance = TRUE,
 fup.lod.default = 0.005,
 suppress.messages = FALSE,
 minimum.Funbound.plasma = 1e-04
)
```

Arguments

- **chem.cas**: Chemical Abstract Services Registry Number (CAS-RN) – the chemical must be identified by either CAS, name, or DTXISD.
- **chem.name**: Chemical name (spaces and capitalization ignored) – the chemical must be identified by either CAS, name, or DTXISD.
- **dtxsid**: EPA’s DSSTox Structure ID (https://comptox.epa.gov/dashboard) – the chemical must be identified by either CAS, name, or DTXISDs.
- **species**: Species desired (either "Rat", "Rabbit", "Dog", "Mouse", or default "Human").
- **clint.pvalue.threshold**: Hepatic clearances with clearance assays having p-values greater than the threshold are set to zero.
- **default.to.human**: Substitutes missing species-specific values with human values if TRUE (default is FALSE).
- **force.human.clint.fup**: Uses human hepatic intrinsic clearance and fraction of unbound plasma in calculation of partition coefficients for rats if true.
- **adjusted.Funbound.plasma**: Uses Pearce et al. (2017) lipid binding adjustment for Funbound.plasma (which impacts partition coefficients) when set to TRUE (Default).
- **adjusted.Clint**: Uses Kilford et al. (2008) hepatocyte incubation binding adjustment for Clint when set to TRUE (Default).
- **restrictive.clearance**: In calculating hepatic.bioavailability, protein binding is not taken into account (set to 1) in liver clearance if FALSE.
- **fup.lod.default**: Default value used for fraction of unbound plasma for chemicals where measured value was below the limit of detection. Default value is 0.0005.
- **suppress.messages**: Whether or not the output message is suppressed.
- **minimum.Funbound.plasma**: Monte Carlo draws less than this value are set equal to this value (default is 0.0001 – half the lowest measured Fup in our dataset).
**parameterize_steadystate**

**Value**

- **Clint**: Hepatic Intrinsic Clearance, uL/min/10^6 cells.
- **Fgutabs**: Fraction of the oral dose absorbed, i.e. the fraction of the dose that enters the gutlumen.
- **Funbound.plasma**: Fraction of plasma that is not bound.
- **Qtotal.liverc**: Flow rate of blood exiting the liver, L/h/kg BW^3/4.
- **Qgfrc**: Glomerular Filtration Rate, L/h/kg BW^3/4, volume of fluid filtered from kidney and excreted.
- **BW**: Body Weight, kg
- **MW**: Molecular Weight, g/mol
- **million.cells.per.gliver**: Millions cells per gram of liver tissue.
- **Vliverc**: Volume of the liver per kg body weight, L/kg BW.
- **liver.density**: Liver tissue density, kg/L.
- **Fhep.assay.correction**: The fraction of chemical unbound in hepatocyte assay using the method of Kilford et al. (2008)
- **hepatic.bioavailability**: Fraction of dose remaining after first pass clearance, calculated from the corrected well-stirred model.

**Author(s)**

John Wambaugh

**References**


**See Also**

- `calc_analytic_css_3compss`
- `apply_clint_adjustment`
- `tissue.data`
- `physiology.data`

**Examples**

```r
parameters <- parameterize_steadystate(chem.name='Bisphenol-A', species='Rat')
parameters <- parameterize_steadystate(chem.cas='80-05-7')
```
**Description**

Measured rat in vivo partition coefficients and data for predicting them.

**Usage**

pc.data

**Format**

A data.frame.

**Author(s)**

Jimena Davis and Robert Pearce

**References**


Description
This table includes the adjusted and unadjusted regression parameter estimates for the chemical-specific plasma protein unbound fraction (fup) in 12 different tissue types.

Usage
pearce2017regression

Format
data.frame

Details
Predictions were made with regression models, as reported in Pearce et al. (2017).

Author(s)
Robert G. Pearce

Source
Pearce et al. 2017 Regression Models

References

Description
SWISSPHARMA is a list of pharmaceuticals with consumption data from Switzerland, France, Germany and the USA, used for a suspect screening/exposure modelling approach described in Singer et al 2016, DOI: 10.1021/acs.est.5b03332. The original data is available on the NORMAN Suspect List Exchange.

Usage
pharma

Format
An object of class matrix (inherits from array) with 14 rows and 954 columns.
physiology.data

Source

https://comptox.epa.gov/dashboard/chemical_lists/swisspharma

References


---

physiology.data  Species-specific physiology parameters

Description

This data set contains values from Davies and Morris (1993) necessary to parameterize a toxicokinetic model for human, mouse, rat, dog, or rabbit. The temperature for each species are taken from Robertshaw et al. (2004), Gordon (1993), and Stammers(1926).

Usage

physiology.data

Format

A data.frame containing 11 rows and 7 columns.

Author(s)

John Wambaugh and Nisha Sipes

Source


References


Gordon (1993) Temperature Regulation in Laboratory Rodents
**Partition Coefficients from PK-Sim**

**Description**

**Usage**
pksim.pcs

**Format**
data.frame

**Source**
Kapraun et al. 2021 (submitted)

**References**

---

**Pradeep et al. 2020**

**Description**
This table includes Support Vector Machine and Random Forest model predicted values for unbound fraction plasma protein (fup) and intrinsic hepatic clearance (clint) values for a subset of chemicals in the Tox21 library (see [https://www.epa.gov/chemical-research/toxicology-testing-21st-century](https://www.epa.gov/chemical-research/toxicology-testing-21st-century)).

**Usage**
pradeep2020

**Format**
data.frame

**Details**
Prediction were made with Support Vector Machine and Random Forest models, as reported in Pradeep et al. (2020).
predict_partitioning_schmitt

Predict partition coefficients using the method from Schmitt (2008). #'
This function implements the method from Schmitt (2008) for predict-
ing the tissue to unbound plasma partition coefficients for the tissues
contained in the tissue.data table. The method has been modified by
Pearce et al. (2017) based on an evaluation using in vivo measured
partition coefficients.

Description

To understand this method, it is important to recognize that in a given media the fraction unbound
in that media is inverse of the media:water partition coefficient. In Schmitt’s model, each tissue
is composed of cells and interstitium, with each cell consisting of neutral lipid, neutral phospho-
lipid, water, protein, and acidic phospholipid. Each tissue cell is defined as the sum of separate
compartments for each constituent, all of which partition with a shared water compartment. The
partitioning between the cell components and cell water is compound specific and determined by
log Pow (in neutral lipid partitioning), membrane affinity (phospholipid and protein partitioning),
and pKa (neutral lipid and acidic phospholipid partitioning). For a given compound the partitioning
into each component is identical across tissues. Thus the differences among tissues are driven by
their composition, that is, the varying volumes of components such as neutral lipid. However, pH
differences across tissues also determine small differences in partitioning between cell and plasma
water. The fup is used as the plasma water to total plasma partition coefficient and to approximate
the partitioning between interstitial protein and water.

Usage

predict_partitioning_schmitt(
  chem.name = NULL,
  chem.cas = NULL,
  dtxsid = NULL,
  species = "Human",
  model = "pbtk",
  default.to.human = FALSE,
  parameters = NULL,
  alpha = 0.001,
  adjusted.Funbound.plasma = TRUE,
  regression = TRUE,
  regression.list = c("brain", "adipose", "gut", "heart", "kidney", "liver", "lung",
                   "muscle", "skin", "spleen", "bone"),
)
tissues = NULL,
minimum.Funbound.plasma = 1e-04,
suppress.messages = FALSE
)

Arguments

chem.name Either the chemical name or the CAS number must be specified.
chem.cas Either the chemical name or the CAS number must be specified.
dtxsid EPA's DSSTox Structure ID (https://comptox.epa.gov/dashboard) the chemical must be identified by either CAS, name, or DTXSIDs
species Species desired (either "Rat", "Rabbit", "Dog", "Mouse", or default "Human").
model Model for which partition coefficients are needed (for example, "pbtk", "3compartment")
default.to.human Substitutes missing animal values with human values if true (hepatic intrinsic clearance or fraction of unbound plasma).
parameters Chemical parameters from parameterize_schmitt overrides chem.name, dtxsid, and chem.cas.
alpha Ratio of Distribution coefficient D of totally charged species and that of the neutral form
adjusted.Funbound.plasma Whether or not to use Funbound.plasma adjustment.
regression Whether or not to use the regressions. Regressions are used by default.
regression.list Tissues to use regressions on.
tissues Vector of desired partition coefficients. Returns all by default.
minimum.Funbound.plasma Monte Carlo draws less than this value are set equal to this value (default is 0.0001 – half the lowest measured Fup in our dataset).
suppress.messages Whether or not the output message is suppressed.

Details

A regression is used to predict membrane affinity when measured values are not available (calc_ma). The regressions for correcting each tissue are performed on tissue plasma partition coefficients (Ktissue2pu * Funbound.plasma) calculated with the corrected Funbound.plasma value and divided by this value to get Ktissue2pu. Thus the regressions should be used with the corrected Funbound.plasma.

A separate regression is used when adjusted.Funbound.plasma is FALSE.

The red blood cell regression can be used but is not by default because of the span of the data used for evaluation, reducing confidence in the regression for higher and lower predicted values.

Human tissue volumes are used for species other than Rat.

Value

Returns tissue to unbound plasma partition coefficients for each tissue.
AUCs for Pregnant and Non-Pregnant Women

Dallmann et al. (2018) includes compiled literature descriptions of toxicokinetic summary statistics, including time-integrated plasma concentrations (area under the curve or AUC) for drugs administered to a sample of subjects including both pregnant and non-pregnant women. The circumstances of the dosing varied slightly between drugs and are summarized in the table.

Usage
pregnonpregaucs

data.frame

Source
Kapraun et al. 2021 (submitted)

References
propagate_invitrouv_1comp

Propagates uncertainty and variability in in vitro HTTK data into one compartment model parameters

Description

Propagates uncertainty and variability in in vitro HTTK data into one compartment model parameters

Usage

propagate_invitrouv_1comp(parameters.dt, ...)

Arguments

- parameters.dt: The data table of parameters being used by the Monte Carlo sampler
- ...: Additional arguments passed to calc_elimination_rate

Value

A data.table whose columns are the parameters of the HTTK model specified in model.

Author(s)

John Wambaugh

propagate_invitrouv_3comp

Propagates uncertainty and variability in in vitro HTTK data into three compartment model parameters

Description

Propagates uncertainty and variability in in vitro HTTK data into three compartment model parameters

Usage

propagate_invitrouv_3comp(parameters.dt, ...)

Arguments

- parameters.dt: The data table of parameters being used by the Monte Carlo sampler
- ...: Additional arguments passed to calc_hep_clearance

Value

A data.table whose columns are the parameters of the HTTK model specified in model.
propagate_invitrouv_pbtk

Propagates uncertainty and variability in in vitro HTTK data into PBPK model parameters

**Description**

Propagates uncertainty and variability in in vitro HTTK data into PBPK model parameters

**Usage**

```r
propagate_invitrouv_pbtk(parameters.dt, ...)
```

**Arguments**

- `parameters.dt`: The data table of parameters being used by the Monte Carlo sampler
- `...`: Additional arguments passed to `calc_hep_clearance`

**Value**

A data.table whose columns are the parameters of the HTTK model specified in `model`.

**Author(s)**

John Wambaugh

---

reset_httk

Reset HTTK to Default Data Tables

**Description**

This function returns an updated version of chem.physical_and_invitro.data that includes data predicted with Simulations Plus’ ADMET predictor that was used in Sipes et al. 2017, included in admet.data.

**Usage**

```r
reset_httk(target.env = .GlobalEnv)
```

**Arguments**

- `target.env`: The environment where the new chem.physical_and_invitro.data is loaded. Defaults to global environment.

**Value**

- `data.frame`: The package default version of chem.physical_and_invitro.data.
Author(s)
John Wambaugh

Examples

```r
chem.physical_and_invitro.data <- load_sipes2017()
reset_h ttk()
```

rfun
Randomly draws from a one-dimensional KDE

Description
Randomly draws from a one-dimensional KDE

Usage

```r
rfun(n, fhat)
```

Arguments

- `n`: Number of samples to draw
- `fhat`: A list with elements x, w, and h (h is the KDE bandwidth).

Value
A vector of n samples from the KDE fhat

Author(s)
Caroline Ring

References

Description

This function draws N random numbers from a distribution that approximates a median that is equal to the limit of detection (LOD, value x.LOD) but has an upper 95th percentile (x.u95) that is above x.LOD. We make the assumption that values above x.u95 are uniformly distributed between x.u95 and x.u95 + (x.u95 - x.LOD)

Usage

rmed0non0u95(n, x.u95, x.min = 0, x.LOD = 0.005)

Arguments

n  Number of samples to draw
x.u95  The upper limit on the 95th confidence/credible interval (this is the 97.5 percentile)
xx.min  The minimum allowed value (defaults to 0)
x.LOD  The limit of detection (defaults to 0.005)

Value

A vector of N samples where the 50th and 97.5th quantiles approximate x.LOD and x.u95 respectively

Author(s)

John Wambaugh

References

Breen et al., in preparation

Examples

Fup.95 <- 0.02
N <- 1000

set.seed(1235)
Fup.vec <- rmed0non0u95(n=N, x.u95=Fup.95)
quantile(Fup.vec,c(0.5,0.975))
quantile(rmed0non0u95(200,x.u95=0.05,x.min=10^-4,x.LOD=0.01),c(0.5,0.975))
hist(rmed0non0u95(1000,x.u95=0.05,x.min=10^-4,x.LOD=0.01))
quantile(rmed0non0u95(200,x.u95=0.005,x.min=10^-4,x.LOD=0.01),c(0.5,0.975))
hist(rmed0non0u95(1000,x.u95=0.005,x.min=10^-4,x.LOD=0.01))
\textbf{r\_left\_censored\_norm} \hspace{1cm} \textit{Returns draws from a normal distribution with a lower censoring limit of lod (limit of detection)}

\textbf{Description}

Returns draws from a normal distribution with a lower censoring limit of lod (limit of detection)

\textbf{Usage}

\begin{verbatim}
r_left_censored_norm(n, mean = 0, sd = 1, lod = 0.005, lower = 0, upper = 1)
\end{verbatim}

\textbf{Arguments}

\begin{itemize}
  \item \texttt{n} \hspace{1cm} Number of samples to take
  \item \texttt{mean} \hspace{1cm} Mean of censored distribution. Default 0.
  \item \texttt{sd} \hspace{1cm} Standard deviation of censored distribution. Default 1.
  \item \texttt{lod} \hspace{1cm} Bound below which to censor. Default 0.005.
  \item \texttt{lower} \hspace{1cm} Lower bound on censored distribution. Default 0.
  \item \texttt{upper} \hspace{1cm} Upper bound on censored distribution. Default 1.
\end{itemize}

\textbf{Value}

A vector of samples from the specified censored distribution.

\textbf{scale\_dosing} \hspace{1cm} \textit{Scale mg/kg body weight doses according to body weight and units}

\textbf{Description}

This function transforms the dose (in mg/kg) into the appropriate units. It handles single doses, matrices of doses, or daily repeated doses at varying intervals. Gut absorption is also factored in through the parameter \texttt{Fgutabs}, and scaling is currently avoided in the inhalation exposure case with a scale factor of 1

\textbf{Usage}

\begin{verbatim}
scale_dosing(
  dosing,
  parameters,
  route,
  input.units = NULL,
  output.units = "uM",
  vol = NULL
)
\end{verbatim}
Arguments

dosing List of dosing metrics used in simulation, which must include the general entries with names "initial.dose", "doses.per.day", "daily.dose", and "dosing.matrix". The "dosing.matrix" is used for more precise dose regimen specification, and is a matrix consisting of two columns or rows named "time" and "dose" containing the time and amount, in mg/kg BW, of each dose. The minimal usage case involves all entries but "initial.dose" set to NULL in value.

parameters Chemical parameters from parameterize_pbtik function, overrides chem.name and chem.cas.

route String specification of route of exposure for simulation: "oral", "iv", "inhalation", ...

input.units Units of the dose values being scaled. (Default is NULL.) Currently supported units "mg/L", "ug/L", "ug/mL", "uM", "umol/L", "ug/dL", "ug/g", "nmol/L", "nM", and "ppmw" (supported input.units subject to change).

output.units Desired units (either "mg/L", "mg", "umol", or default "uM").

vol Volume for the target tissue of interest. NOTE: Volume should not be in units of per BW, i.e. "kg".

Value

A list of numeric values for doses converted to output.units, potentially (depending on argument dosing) including:

initial.dose The first dose given

dosing.matrix A 2xN matrix where the first column is dose time and the second is dose amount for N doses

daily.dose The total cumulative daily dose

Author(s)

John Wambaugh and Sarah E. Davidson

---

**scr_h**

*KDE bandwidths for residual variability in serum creatinine*

Description

Bandwidths used for a one-dimensional kernel density estimation of the distribution of residual errors around smoothing spline fits of serum creatinine vs. age for NHANES respondents in each of ten combinations of sex and race/ethnicity categories.

Usage

**scr_h**

Format

A named list with 10 elements, each a numeric value. Each list element corresponds to, and is named for, one combination of NHANES sex categories (Male and Female) and NHANES race/ethnicity categories (Mexican American, Other Hispanic, Non-Hispanic White, Non-Hispanic Black, and Other).
Details

Each matrix is the standard deviation for a normal distribution: this is the bandwidth to be used for a kernel density estimation (KDE) (using a normal kernel) of the distribution of residual errors around smoothing spline fits of serum creatinine vs. age for NHANES respondents in the specified sex and race/ethnicity category. Optimal bandwidths were pre-calculated by doing the smoothing spline fits, getting the residuals, then calling kde on the residuals (which calls hpi to compute the plug-in bandwidth).

Used by HTTK-Pop only in "virtual individuals" mode (i.e. httkpop_generate with method = "v"), in gen_serum_creatinine.

Author(s)

Caroline Ring

References


set_httk_precision

Description

Although the ODE solver and other functions return very precise numbers, we cannot (or at least do not spend enough computing time to) be sure of the precision to an arbitrary level. This function both limits the number of significant figures reported and truncates the numerical precision.

Usage

set_httk_precision(in.num, sig.fig = 4, num.prec = 9)

Arguments

  in.num  The numeric variable (or assembly of numerics) to be processed.
  sig.fig The number of significant figures reported. Defaults to 4.
  num.prec The precision maintained, digits below 10^num.prec are dropped. Defaults to 9.

Value

numeric values

Author(s)

John Wambaugh
skeletal_muscle_mass

Predict skeletal muscle mass

Description

Predict skeletal muscle mass from age, height, and gender.

Usage

skeletal_muscle_mass(smm, age_years, height, gender)

Arguments

- smm: Vector of allometrically-scaled skeletal muscle masses.
- age_years: Vector of ages in years.
- height: Vector of heights in cm.
- gender: Vector of genders, either 'Male' or 'Female.'

Details

For individuals over age 18, use allometrically-scaled muscle mass with an age-based scaling factor, to account for loss of muscle mass with age (Janssen et al. 2000). For individuals under age 18, use skeletal_muscle_mass_children.

Value

Vector of skeletal muscle masses in kg.

Author(s)

Caroline Ring

References


See Also

skeletal_muscle_mass_children
skeletal_muscle_mass_children

*Predict skeletal muscle mass for children*

**Description**

For individuals under age 18, predict skeletal muscle mass from gender and age, using a nonlinear equation from Webber and Barr (2012).

**Usage**

`skeletal_muscle_mass_children(gender, age_years)`

**Arguments**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>gender</td>
<td>Vector of genders (either 'Male' or 'Female').</td>
</tr>
<tr>
<td>age_years</td>
<td>Vector of ages in years.</td>
</tr>
</tbody>
</table>

**Value**

Vector of skeletal muscle masses in kg.

**Author(s)**

Caroline Ring

**References**


---

skin_mass_bosgra

*Predict skin mass*

**Description**

Using equation from Bosgra et al. 2012, predict skin mass from body surface area.

**Usage**

`skin_mass_bosgra(BSA)`

**Arguments**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSA</td>
<td>Vector of body surface areas in cm^2.</td>
</tr>
</tbody>
</table>
solve_1comp

Value

Vector of skin masses in kg.

Author(s)

Caroline Ring

References


solve_1comp  Solve one compartment TK model

Description

This function solves for the amount or concentration of a chemical in plasma for a one compartment model as a function of time based on the dose and dosing frequency.

Usage

```r
solve_1comp(
 chem.name = NULL,
 chem.cas = NULL,
 dtxsid = NULL,
 times = NULL,
 parameters = NULL,
 days = 10,
 tsteps = 4,
 daily.dose = NULL,
 dose = NULL,
 doses.per.day = NULL,
 initial.values = NULL,
 plots = FALSE,
 suppress.messages = FALSE,
 species = "Human",
 iv.dose = FALSE,
 input.units = "mg/kg",
 output.units = NULL,
 method = "lsoda",
 rtol = 1e-08,
 atol = 1e-12,
 default.to.human = FALSE,
 recalc.blood2plasma = FALSE,
 recalc.clearance = FALSE,
 dosing.matrix = NULL,
)```
adjusted.Funbound.plasma = TRUE,
regression = TRUE,
restrictive.clearance = TRUE,
minimum.Funbound.plasma = 1e-04,
monitor.vars = NULL,
"
)

Arguments

chem.name Either the chemical name, CAS number, or the parameters must be specified.
chem.cas Either the chemical name, CAS number, or the parameters must be specified.
dtxsid EPA's 'DSSTox Structure ID (https://comptox.epa.gov/dashboard) the chemical must be identified by either CAS, name, or DTXSIDs
times Optional time sequence for specified number of days.
parameters Chemical parameters from parameterize_1comp function, overrides chem.name and chem.cas.
days Length of the simulation.
tsteps The number time steps per hour.
daily.dose Total daily dose, default is mg/kg BW.
dose Amount of a single dose, default is mg/kg BW.
doses.per.day Number of doses per day.
initial.values Vector containing the initial concentrations or amounts of the chemical in specified tissues with units corresponding to output.units. Defaults are zero.
plots Plots all outputs if true.
suppress.messages Whether or not the output message is suppressed.
species Species desired (either "Rat", "Rabbit", "Dog", or default "Human").
iv.dose Simulates a single i.v. dose if true.
input.units Input units of interest assigned to dosing, defaults to "mg/kg" BW.
output.units A named vector of output units expected for the model results. Default, NULL, returns model results in units specified in the 'modelinfo' file. See table below for details.
method Method used by integrator (deSolve).
rtol Argument passed to integrator (deSolve).
 atol Argument passed to integrator (deSolve).
default.to.human Substitutes missing rat values with human values if true.
recalc.blood2plasma Whether or not to recalculate the blood:plasma chemical concentration ratio
recalc.clearance Whether or not to recalculate the elimination rate.
dosing.matrix Vector of dosing times or a matrix consisting of two columns or rows named "dose" and "time" containing the time and amount, in mg/kg BW by default, of each dose.
solve.1comp

- **adjusted.Funbound.plasma**
 Uses adjusted Funbound.plasma when set to TRUE along with volume of distribution calculated with this value.

- **regression**
 Whether or not to use the regressions in calculating partition coefficients in volume of distribution calculation.

- **restrictive.clearance**
 In calculating elimination rate, protein binding is not taken into account (set to 1) in liver clearance if FALSE.

- **minimum.Funbound.plasma**
 Monte Carlo draws less than this value are set equal to this value (default is 0.0001 – half the lowest measured Fup in our dataset).

- **monitor.vars**
 Which variables are returned as a function of time. Defaults value of NULL provides "Agutlumen", "Ccompartment", "Ametabolized", "AUC"

- **...**
 Additional arguments passed to the integrator.

Details

Note that the timescales for the model parameters have units of hours while the model output is in days.

Default value of NULL for doses.per.day solves for a single dose.

When species is specified as rabbit, dog, or mouse, the function uses the appropriate physiological data(volumes and flows) but substitutes human fraction unbound, partition coefficients, and intrinsic hepatic clearance.

AUC is area under plasma concentration curve.

Model Figure
Value
A matrix with a column for time (in days) and a column for the compartment and the area under the curve (concentration only).

Author(s)
Robert Pearce

References
solve_3comp

See Also
- `solve_model`
- `parameterize_1comp`
- `calc_analytic_css_1comp`

Examples

```r
solve_1comp(chem.name='Bisphenol-A', days=1)

# By storing the model parameters in a vector first, you can potentially
# edit them before using the model:
params <- parameterize_1comp(chem.cas="80-05-7")
solve_1comp(parameters=params, days=1)

head(solve_1comp(chem.name="Terbufos", daily.dose=0, dose=1, days=1))
head(solve_1comp(chem.name="Terbufos", daily.dose=0, dose=1, days=1, iv.dose=TRUE))

# A dose matrix specifies times and magnitudes of doses:
dm <- matrix(c(0,1,2,5,5,5),nrow=3)
colnames(dm) <- c("time","dose")
solve_1comp(chem.name="Methenamine", dosing.matrix=dm, 
days=2.5, dose=NULL, daily.dose=NULL)
solve_1comp(chem.name="Besonprodil", daily.dose=1, dose=NULL, 
days=2.5, doses.per.day=4)
```

solve_3comp

Description

This function solves for the amounts or concentrations of a chemical in different tissues as functions of time based on the dose and dosing frequency. It uses a three compartment model with partition coefficients.

Usage

```r
solve_3comp(
  chem.name = NULL,
  chem.cas = NULL,
  dtxsid = NULL,
  times = NULL,
  parameters = NULL,
  days = 10,
  tsteps = 4,
  daily.dose = NULL,
  dose = NULL,
  doses.per.day = NULL,
  initial.values = NULL,
  plots = FALSE,
)```
suppress.messages = FALSE,
species = "Human",
iv.dose = FALSE,
input.units = "mg/kg",
output.units = NULL,
method = "lsoda",
rtol = 1e-08,
 atol = 1e-12,
default.to.human = FALSE,
recalc.blood2plasma = FALSE,
recalc.clearance = FALSE,
dosing.matrix = NULL,
adjusted.Funbound.plasma = TRUE,
regression = TRUE,
restrictive.clearance = TRUE,
minimum.Funbound.plasma = 1e-04,
monitor.vars = NULL,
...
)

Arguments

c
chem.name
chem.cas
dtxsid
times
parameters
days
tsteps
daily.dose
dose
doses.per.day
initial.values
plots
suppress.messages
species
iv.dose
input.units
output.units
method
rtol

Either the chemical name, CAS number, or the parameters must be specified.
Either the chemical name, CAS number, or the parameters must be specified.
EPA's DSSTox Structure ID (https://comptox.epa.gov/dashboard) the chemical must be identified by either CAS, name, or DTXSIDs
Optional time sequence for specified number of days. The dosing sequence begins at the beginning of times.
Chemical parameters from parameterize_3comp function, overrides chem.name and chem.cas.
Length of the simulation.
The number time steps per hour.
Total daily dose, mg/kg BW.
Amount of a single dose, mg/kg BW.
Number of doses per day.
Vector containing the initial concentrations or amounts of the chemical in specified tissues with units corresponding to output.units. Defaults are zero.
Plots all outputs if true.
Whether or not the output message is suppressed.
Species desired (either "Rat", "Rabbit", "Dog", "Mouse", or default "Human").
Simulates a single i.v. dose if true.
Input units of interest assigned to dosing, defaults to mg/kg BW
A named vector of output units expected for the model results. Default, NULL, returns model results in units specified in the 'modelinfo' file. See table below for details.
Method used by integrator (deSolve).
Argument passed to integrator (deSolve).
solve_3comp

**atol** Argument passed to integrator (deSolve).

**default.to.human** Substitutes missing animal values with human values if true (hepatic intrinsic clearance or fraction of unbound plasma).

**recalc.blood2plasma** Recalculates the ratio of the amount of chemical in the blood to plasma using the input parameters, calculated with hematocrit, Funbound.plasma, and Krbc2pu.

**recalc.clearance** Recalculates the the hepatic clearance (Clmetabolism) with new million.cells.per.gliver parameter.

**dosing.matrix** Vector of dosing times or a matrix consisting of two columns or rows named "dose" and "time" containing the time and amount, in mg/kg BW, of each dose.

**adjusted.Funbound.plasma** Uses adjusted Funbound.plasma when set to TRUE along with partition coefficients calculated with this value.

**regression** Whether or not to use the regressions in calculating partition coefficients.

**restrictive.clearance** Protein binding not taken into account (set to 1) in liver clearance if FALSE.

**minimum.Funbound.plasma** Monte Carlo draws less than this value are set equal to this value (default is 0.0001 – half the lowest measured Fup in our dataset).

**monitor.vars** Which variables are returned as a function of time. Defaults value of NULL provides "Cliver", "Csystcomp", "Atubules", "Ametabolized", "AUC"

... Additional arguments passed to the integrator.

**Details**

Note that the timescales for the model parameters have units of hours while the model output is in days.

Default of NULL for doses.per.day solves for a single dose.

The compartments used in this model are the gutlumen, gut, liver, and rest-of-body, with the plasma equivalent to the liver plasma.

Model Figure
When species is specified as rabbit, dog, or mouse, the function uses the appropriate physiological data (volumes and flows) but substitutes human fraction unbound, partition coefficients, and intrinsic hepatic clearance.

**Value**

A matrix of class deSolve with a column for time (in days) and each compartment, the plasma concentration, area under the curve, and a row for each time point.

**Author(s)**

John Wambaugh and Robert Pearce
References


See Also

solve_model  
parameterize_3comp  
calc_analytic_css_3comp

Examples

```r
solve_3comp(chem.name='Bisphenol-A',
doses_per.day=2,
daily.dose=.5,
days=1,
tsteps=2)

By storing the model parameters in a vector first, you can potentially edit them before using the model:
params <- parameterize_3comp(chem.cas="80-05-7")
solve_3comp(parameters=params, days=1)

head(solve_3comp(chem.name="Terbufos", daily.dose=NULL, dose=1, days=1))
head(solve_3comp(chem.name="Terbufos", daily.dose=NULL, dose=1,
days=1, iv.dose=TRUE))

A dose matrix specifies times and magnitudes of doses:
dm <- matrix(c(0,1,2,5,5,5),nrow=3)
colnames(dm) <- c("time","dose")
solve_3comp(chem.name="Methenamine", dosing.matrix=dm,
dose=NULL, daily.dose=NULL,
days=2.5)

solve_3comp(chem.name="Besonprodil",
daily.dose=1, dose=NULL,
days=2.5, doses.per.day=4)
```

solve_fetal_pbtk  

Solve_fetal_PBTK

Description

This function solves for the amounts or concentrations in uM of a chemical in different tissues of a maternofetal system as functions of time based on the dose and dosing frequency.

Usage

```r
solve_fetal_pbtk(
 chem.name = NULL,
 chem.cas = NULL,
```
solve_fetal_pbtk

dtxsid = NULL,
times = seq(13 * 7, 40 * 7, 1),
parameters = NULL,
days = NULL,
species = "human",
tsteps = 4,
dose = NULL,
dosing.matrix = NULL,
daily.dose = NULL,
doses.per.day = NULL,
initial.values = NULL,
plots = FALSE,
suppress.messages = FALSE,
iv.dose = FALSE,
input.units = "mg/kg",
output.units = NULL,
method = "lsoda",
rtol = 1e-08,
 atol = 1e-12,
default.to.human = FALSE,
recalc.blood2plasma = FALSE,
recalc.clearance = FALSE,
adjusted.Funbound.plasma = TRUE,
regression = TRUE,
restrictive.clearance = TRUE,
minimum.Funbound.plasma = 1e-04,
monitor.vars = NULL,
... )

Arguments

chem.name Either the chemical name, CAS number, or the parameters must be specified.
chem.cas Either the chemical name, CAS number, or the parameters must be specified.
dtxsid EPA’s DSSTox Structure ID (http://comptox.epa.gov/dashboard) the chemical must be identified by either CAS, name, or DTXSIDs
times Optional time sequence in days. Dosing sequence begins at the beginning of times. Default is from 13th week of pregnancy to 40th due to data constraints.
parameters Chemical parameters from parameterize_fetal_pbtk function, overrides chem.name and chem.cas.
days Length of the simulation.
species Included for compatibility with other functions, but the model will not run for non-human species (default "Human").
tsteps The number time steps per hour. Default of 4.
dose Amount of a single, initial oral dose in mg/kg BW.
dosing.matrix A matrix of either one column (or row) with a set of dosing times or with two columns (or rows) correspondingly named "dose" and "time" containing the time and amount, in mg/kg BW, of each dose.
daily.dose Total daily dose, mg/kg BW.
doses.per.day Number of doses per day.
initial.values  Vector containing the initial concentrations or amounts of the chemical in specified tissues with units corresponding to compartment.units. Defaults are zero.

plots  Plots all outputs if true.

suppress.messages  Whether or not the output message is suppressed.

iv.dose  Simulates a single i.v. dose if true.

input.units  Input units of interest assigned to dosing, defaults to mg/kg BW

output.units  A named vector of output units expected for the model results. Default, NULL, returns model results in units specified in the ‘modelinfo’ file. See table below for details.

method  Method used by integrator (deSolve).

rtol  Argument passed to integrator (deSolve).

atol  Argument passed to integrator (deSolve).

default.to.human  Substitutes missing animal values with human values if true (hepatic intrinsic clearance or fraction of unbound plasma).

recalc.blood2plasma  Recalculates the ratio of the amount of chemical in the blood to plasma using the input parameters, calculated with hematocrit, Funbound.plasma, and Krbc2pu.

recalc.clearance  Recalculates the the hepatic clearance (Clmetabolism) with new million.cells.per.gliver parameter.

adjusted.Funbound.plasma  Uses adjusted Funbound.plasma when set to TRUE along with partition coefficients calculated with this value.

regression  Whether or not to use the regressions in calculating partition coefficients.

restrictive.clearance  Protein binding not taken into account (set to 1) in liver clearance if FALSE.

minimum.Funbound.plasma  Monte Carlo draws less than this value are set equal to this value (default is 0.0001 – half the lowest measured Fup in our dataset).

monitor.vars  Which variables to track by default

Details

The stage of pregnancy simulated here begins by default at the 13th week due to a relative lack of data to support parameterization prior, in line with the recommendations of Kapraun et al. 2019 ("Empirical models for anatomical and physiological..."), and ends at the 40th week of pregnancy. Note that the model parameters have units of hours while the model output is in days. Dose is in mg, not scaled for body weight.

Default NULL value for doses.per.day solves for a single dose.

The maternal compartments used in this model are the gut lumen, gut, liver, venous blood, arterial blood, lung, adipose tissue, kidney, thyroid, and rest of body. A placenta is modeled as a joint organ shared by mother and fetus, through which chemical exchange can occur with the fetus. Fetal compartments include arterial blood, venous blood, kidney, thyroid, liver, lung, gut, brain, and rest of body.
The extra compartments include the amounts or concentrations metabolized by the liver and excreted by the kidneys through the tubules.

AUC is the area under the curve of the plasma concentration.

This gestational model is only parameterized for humans.

Value

A matrix of class deSolve with a column for time(in days), each compartment, the area under the curve, and plasma concentration and a row for each time point.

Author(s)

John Wambaugh, Mark Sfeir, and Dustin Kapraun

See Also

solve_model

parameterize_fetal_pbtk

Examples

eout = solve_fetal_pbtk(chem.name = 'bisphenol a', daily.dose = 1, doses.per.day = 3)

# With adjustment to fraction unbound plasma for fetus:
fetal_parms_fup_adjusted <-
  parameterize_fetal_pbtk(chem.name = 'perfluorooctane sulfonic acid')
head(solve_fetal_pbtk(parameters = fetal_parms_fup_adjusted))

# Without adjustment to fraction unbound plasma for fetus:
fetal_parms_fup_unadjusted <-
  parameterize_fetal_pbtk(chem.name = 'perfluorooctane sulfonic acid',
                          fetal_fup_adjustment = FALSE)
head(solve_fetal_pbtk(parameters = fetal_parms_fup_unadjusted))
solve_gas_pbtk

times = NULL,
days = 10,
tsteps = 4,
daily.dose = NULL,
doses.per.day = NULL,
dose = NULL,
dosing.matrix = NULL,
forcings = NULL,
exp.start.time = 0,
exp.conc = 1,
period = 24,
exp.duration = 12,
initial.values = NULL,
plots = FALSE,
suppress.messages = FALSE,
species = "Human",
iv.dose = FALSE,
input.units = "ppmv",
output.units = NULL,
method = "lsoda",
rtol = 1e-08,
atol = 1e-12,
default.to.human = FALSE,
recalc.blood2plasma = FALSE,
recalc.clearance = FALSE,
adjusted.Funbound.plasma = TRUE,
regression = TRUE,
restrictive.clearance = TRUE,
minimum.Funbound.plasma = 1e-04,
monitor.vars = NULL,
vmax = 0,
km = 1,
exercise = FALSE,
fr = 12,
VT = 0.75,
VD = 0.15,
...
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>chem.name</td>
<td>Either the chemical name, CAS number, or the parameters must be specified.</td>
</tr>
<tr>
<td>chem.cas</td>
<td>Either the chemical name, CAS number, or the parameters must be specified.</td>
</tr>
<tr>
<td>dtxsid</td>
<td>EPA’s DSSTox Structure ID (<a href="https://comptox.epa.gov/dashboard">https://comptox.epa.gov/dashboard</a>) the chemical must be identified by either CAS, name, or DTXSIDs.</td>
</tr>
<tr>
<td>parameters</td>
<td>Chemical parameters from parameterize_gas_pbtk (or other bespoke) function, overrides chem.name and chem.cas.</td>
</tr>
<tr>
<td>times</td>
<td>Optional time sequence for specified number of days. Dosing sequence begins at the beginning of times.</td>
</tr>
<tr>
<td>days</td>
<td>Length of the simulation.</td>
</tr>
<tr>
<td>tsteps</td>
<td>The number of time steps per hour.</td>
</tr>
</tbody>
</table>
daily.dose  Total daily dose

doses.per.day  Number of doses per day.

dose  Amount of a single dose

dosing.matrix  Vector of dosing times or a matrix consisting of two columns or rows named "dose" and "time" containing the time and amount of each dose.

forcings  Manual input of 'forcings' data series argument for ode integrator. If left unspecified, 'forcings' defaults to NULL, and then other input parameters (see exp.start.time, exp.conc, exp.duration, and period) provide the necessary information to assemble a forcings data series.

exp.start.time  Start time in specifying forcing exposure series, default 0.

exp.conc  Specified inhalation exposure concentration for use in assembling "forcings" data series argument for integrator. Defaults to units of ppmv.

period  For use in assembling forcing function data series 'forcings' argument, specified in hours

exp.duration  For use in assembling forcing function data series 'forcings' argument, specified in hours

initial.values  Vector containing the initial concentrations or amounts of the chemical in specified tissues with units corresponding to those specified for the model outputs. Default values are zero.

plots  Plots all outputs if true.

suppress.messages  Whether or not the output message is suppressed.

species  Species desired (either "Rat", "Rabbit", "Dog", "Mouse", or default "Human").

iv.dose  Simulates a single i.v. dose if true.

input.units  Input units of interest assigned to dosing, including forcings. Defaults to "ppmv" as applied to the default forcings scheme.

output.units  A named vector of output units expected for the model results. Default, NULL, returns model results in units specified in the 'modelinfo' file. See table below for details.

method  Method used by integrator (deSolve).

rtol  Argument passed to integrator (deSolve).

atol  Argument passed to integrator (deSolve).

default.to.human  Substitutes missing animal values with human values if true (hepatic intrinsic clearance or fraction of unbound plasma).

recalc.blood2plasma  Recalculates the ratio of the amount of chemical in the blood to plasma using the input parameters, calculated with hematocrit, Funbound.plasma, and Krbc2pu.

recalc.clearance  Recalculates the hepatic clearance (Clmetabolism) with new million.cells.per.gliver parameter.

adjusted.Funbound.plasma  Uses adjusted Funbound.plasma when set to TRUE along with partition coefficients calculated with this value.

regression  Whether or not to use the regressions in calculating partition coefficients.
restrictive.clearance

Protein binding not taken into account (set to 1) in liver clearance if FALSE.

minimum.Funbound.plasma

Monte Carlo draws less than this value are set equal to this value (default is 0.0001 – half the lowest measured Fup in our dataset).

monitor.vars


vmax

Michaelis-Menten vmax value in reactions/min

km

Michaelis-Menten concentration of half-maximal reaction velocity in desired output concentration units.

exercise

Logical indicator of whether to simulate an exercise-induced heightened respiration rate

fR

Respiratory frequency (breaths/minute), used especially to adjust breathing rate in the case of exercise. This parameter, along with VT and VD (below) gives another option for calculating Qalv (Alveolar ventilation) in case pulmonary ventilation rate is not known

VT

Tidal volume (L), to be modulated especially as part of simulating the state of exercise

VD

Anatomical dead space (L), to be modulated especially as part of simulating the state of exercise

Additional arguments passed to the integrator.

Details

The default dosing scheme involves a specification of the start time of exposure (exp.start.time), the concentration of gas inhaled (exp.conc), the period of a cycle of exposure and non-exposure (period), the duration of the exposure during that period (exp.duration), and the total days simulated. Together, these arguments determine the "forcings" passed to the ODE integrator. Forcings can also be specified manually, or effectively turned off by setting exposure concentration to zero, if the user prefers to simulate dosing by other means.

The "forcings" object is configured to be passed to the integrator with, at the most, a basic unit conversion among ppmv, mg/L, and uM. No scaling by BW is set to be performed on the forcings series.

Note that the model parameters have units of hours while the model output is in days.

Default NULL value for doses.per.day solves for a single dose.

The compartments used in this model are the gut lumen, gut, liver, kidneys, veins, arteries, lungs, and the rest of the body.

The extra compartments include the amounts or concentrations metabolized by the liver and excreted by the kidneys through the tubules.

AUC is the area under the curve of the plasma concentration.

Model Figure from (Linakis et al. 2020):
Model parameters are named according to the following convention:

<table>
<thead>
<tr>
<th>prefix</th>
<th>suffic</th>
<th>Meaning</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td></td>
<td>Partition coefficient for tissue to free plasma</td>
<td>unitless</td>
</tr>
<tr>
<td>V</td>
<td></td>
<td>Volume</td>
<td>L</td>
</tr>
<tr>
<td>Q</td>
<td></td>
<td>Flow</td>
<td>L/h</td>
</tr>
<tr>
<td>k</td>
<td>c</td>
<td>Rate</td>
<td>1/h</td>
</tr>
<tr>
<td>c</td>
<td></td>
<td>Parameter is proportional to body weight</td>
<td>1/kg for volumes and 1/kg^(3/4) for flows</td>
</tr>
</tbody>
</table>

When species is specified but chemical-specific in vitro data are not available, the function uses the appropriate physiological data (volumes and flows) but default.to.human = TRUE must be used to substitute human fraction unbound, partition coefficients, and intrinsic hepatic clearance.
**Value**

A matrix of class deSolve with a column for time (in days), each compartment, the area under the curve, and plasma concentration and a row for each time point.

**Author(s)**

Matt Linakis, John Wambaugh, Mark Sfeir, Miyuki Breen

**References**


**See Also**

solve_model

parameterize_gas_pbtk

**Examples**

```r
solve_gas_pbtk(chem.name = 'pyrene', exp.conc = 1, period = 24, expduration = 24)
```

```r
out <- solve_gas_pbtk(chem.name='pyrene',
 exp.conc = 0, doses.per.day = 2,
 daily.dose = 3, input.units = "umol",
 days=2.5,
 plots=TRUE, initial.values=c(Aven=20))
```

```r
out <- solve_gas_pbtk(chem.name = 'pyrene', exp.conc = 3,
 period = 24, days=2.5,
 exp.duration = 6, exercise = TRUE)
```

```r
params <- parameterize_gas_pbtk(chem.cas="80-05-7")
solve_gas_pbtk(parameters=params, days=2.5)
```

```r
Oral dose with exhalation as a route of elimination:
out <- solve_gas_pbtk(chem.name = 'bisphenol a', exp.conc = 0, dose=100,
 days=2.5, input.units="mg/kg")
```

```r
Note that different model compartments for this model have different units
and that the final units can be controlled with the output.units argument:
head(solve_gas_pbtk(chem.name="lindane", days=2.5))
```

```r
Convert all compartment units to mg/L:
head(solve_gas_pbtk(chem.name="lindane", days=2.5, output.units="mg/L"))
```

```r
Convert just the plasma to mg/L:
head(solve_gas_pbtk(chem.name="lindane", days=2.5, output.units=list(Cplasma="mg/L")))
```
solve_model is designed to accept systematized metadata (provided by the model.list defined in the modelinfo files) for a given toxicokinetic model, including names of variables, parameterization functions, and key units, and use it along with chemical information to prepare an ode system for numerical solution over time of the amounts or concentrations of chemical in different bodily compartments of a given species (either "Rat", "Rabbit", "Dog", "Mouse", or default "Human").

Usage

```r
solve_model(
 chem.name = NULL,
 chem.cas = NULL,
 dtxsid = NULL,
 times = NULL,
 parameters = NULL,
 model = NULL,
 route = "oral",
 dosing = NULL,
 days = 10,
 tsteps = 4,
 initial.values = NULL,
 initial.value.units = NULL,
 plots = FALSE,
 monitor.vars = NULL,
 suppress.messages = FALSE,
 species = "Human",
 input.units = "mg/kg",
 output.units = NULL,
 method = "lsoda",
 rtol = 1e-08,
 atol = 1e-12,
 recalc.blood2plasma = FALSE,
 recalc.clearance = FALSE,
 restrictive.clearance = TRUE,
 adjusted.Funbound.plasma = TRUE,
 minimum.Funbound.plasma = 1e-04,
 parameterize.arg.list = list(),
 ...
)
```

Arguments

- `chem.name`: Either the chemical name, CAS number, or the parameters must be specified.
- `chem.cas`: Either the chemical name, CAS number, or the parameters must be specified.
- `dtxsid`: EPA’s DSSTox Structure ID (http://comptox.epa.gov/dashboard) the chemical must be identified by either CAS, name, or DTXSIDs.
times

Optional time sequence for specified number of days. Dosing sequence begins at the beginning of times.

parameters

List of chemical parameters, as output by parameterize_pbtk function. Over-rides chem.name and chem.cas.

model

Specified model to use in simulation: "pbtk", "3compartment", "3compartmentss", "1compartment", "schmitt", ...

route

String specification of route of exposure for simulation: "oral", "iv", "inhala-
tion", ...

dosing

List of dosing metrics used in simulation, which includes the namesake entries of a model's associated dosing.params. In the case of most httk models, these should include "initial.dose", "doses.per.day", "daily.dose", and "dos-
ing.matrix". The "dosing.matrix" is used for more precise dose regimen specification, and is a matrix consisting of two columns or rows named "time" and "dose" containing the time and amount of each dose. If none of the namesake entries of the dosing list is set to a non-NULL value, solve_model uses a default dose of 1 mg/kg BW along with the dose type (add/multiply) specified for a given route (e.g. add the dose to gut lumen for oral route)

days

Simulated period. Default 10 days.

tsteps

The number of time steps per hour. Default of 4.

initial.values

Vector of numeric values containing the initial concentrations or amounts of the chemical in specified tissues with units corresponding to those specified for the model outputs. Default values are zero.

initial.value.units

Vector of character strings containing the units corresponding to 'initial.values' specified for the model outputs. Default is assuming the units match expected compartment units for the model.

plots

Plots all outputs if true.

monitor.vars

Which variables are returned as a function of time. Default values of NULL looks up variables specified in modelinfo_MODEL.R

suppress.messages

Whether or not the output messages are suppressed.

species

Species desired (models have been designed to be parameterized for some sub-
set of the following species: "Rat", "Rabbit", "Dog", "Mouse", or default "Hu-
man").

input.units

Input units of interest assigned to dosing. Defaults to mg/kg BW, in line with the default dosing scheme of a one-time dose of 1 mg/kg in which no other dosing parameters are specified.

output.units

Output units of interest for the compiled components. Defaults to NULL, and will provide values in model units if unspecified.

method

Method used by integrator (deSolve).

rtol

Argument passed to integrator (deSolve).

atol

Argument passed to integrator (deSolve).

recalc.blood2plasma

Recalculates the ratio of the amount of chemical in the blood to plasma using the input parameters, calculated with hematocrit, Funbound.plasma, and Krbc2pu.

recalc.clearance

Recalculates the the hepatic clearance (Clmetabolism) with new million.cells.per.gliver parameter.
restrictive.clearance

Protein binding not taken into account (set to 1) in liver clearance if FALSE.

adjusted.Funbound.plasma

Uses adjusted Funbound.plasma when set to TRUE along with partition coefficients calculated with this value.

minimum.Funbound.plasma

Monte Carlo draws less than this value are set equal to this value (default is 0.0001 – half the lowest measured Fup in our dataset)

parameterize.arg.list

Additional parameterized passed to the model parameterization function.

... Additional arguments passed to the integrator.

Details

Dosing values with certain acceptable associated input.units (like mg/kg BW) are configured to undergo a unit conversion. All model simulations are intended to run with units as specified by "compartment.units" in the model.list (as defined by the modelinfo files).

The 'dosing' argument includes all parameters needed to describe exposure in terms of route of administration, frequency, and quantity short of scenarios that require use of a more precise forcing function. If the dosing argument’s namesake entries are left NULL, solve_model defaults to a single-time dose of 1 mg/kg BW according to the given dosing route and associated type (either add/multiply, for example we typically add a dose to gut lumen when oral route is specified).

AUC is the area under the curve of the plasma concentration.

Model parameters are named according to the following convention:

<table>
<thead>
<tr>
<th>prefix</th>
<th>suffix</th>
<th>Meaning</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td></td>
<td>Partition coefficient for tissue to free plasma \ tab unitless</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td></td>
<td>Volume</td>
<td>L</td>
</tr>
<tr>
<td>Q</td>
<td></td>
<td>Flow</td>
<td>L/h</td>
</tr>
<tr>
<td>k</td>
<td>c</td>
<td>Rate</td>
<td>1/h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parameter is proportional to body weight 1 / kg for volumes and 1/kg^(3/4) for flows</td>
<td></td>
</tr>
</tbody>
</table>

When species is specified but chemical-specific in vitro data are not available, the function uses the appropriate physiological data (volumes and flows) but default.to.human = TRUE must be used to substitute human fraction unbound, partition coefficients, and intrinsic hepatic clearance. (NOTE: The ‘default.to.human’ specification should be included as part of the arguments listed in 'parameterize.arg.list'.)

For both plotting purposes and helping the numerical equation solver, it is helpful to specify that time points shortly before and after dosing are included. This function automatically add these points, and they are returned to the user unless the times argument is used, in which case only the time points specified by that argument are provided.

Value

A matrix of class deSolve with a column for time(in days), each compartment, the area under the curve, and plasma concentration and a row for each time point.

Author(s)

John Wambaugh, Robert Pearce, Miyuki Breen, Mark Sfeir, and Sarah E. Davidson
References


Examples

# The varrious "solve_x" functions are wrappers for solve_model:
head(solve_pbtk(chem.name="Terbufos", days=1))

head(solve_model(chem.name="Terbufos",model="pbtk",dosing=list(
    initial.dose = 1, # Assume dose is in mg/kg BW/day
    doses.per.day=NULL,
    dosing.matrix = NULL,
    days=1,
    daily.dose = NULL)))

# A dose matrix specifies times and magnitudes of doses:
dm <- matrix(c(0,1,2,5,5,5),nrow=3)
colnames(dm) <- c("time","dose")
solve_pbtk(chem.name="Methenamine",
    dosing.matrix=dm,
    dose=NULL,
    days=2.5,
    daily.dose=NULL)
solve_model(chem.name="Methenamine",model="pbtk",dosing=list(
    initial.dose =NULL,
    doses.per.day=NULL,
    daily.dose=NULL,
    days=2.5,
    dosing.matrix=dm))
solve_model(chem.name="Besonprodil",model="pbtk",dosing=list(
    initial.dose =NULL,
    doses.per.day=4,
    daily.dose=1,
    days=2.5,
    dosing.matrix=NULL))
solve_pbtk(chem.name="Besonprodil",
    daily.dose=1,
    dose=NULL,
    doses.per.day=4,
    days=2.5)

solve_pbtk  Solve_PBTK

Description

This function solves for the amounts or concentrations in uM of a chemical in different tissues as functions of time based on the dose and dosing frequency.
Usage

solve_pbtk(
  chem.name = NULL,
  chem.cas = NULL,
  dtxsid = NULL,
  times = NULL,
  parameters = NULL,
  days = 10,
  tsteps = 4,
  daily.dose = NULL,
  dose = NULL,
  doses.per.day = NULL,
  initial.values = NULL,
  plots = FALSE,
  suppress.messages = FALSE,
  species = "Human",
  iv.dose = FALSE,
  input.units = "mg/kg",
  output.units = NULL,
  method = "lsoda",
  rtol = 1e-08,
  atol = 1e-12,
  default.to.human = FALSE,
  recalc.blood2plasma = FALSE,
  recalc.clearance = FALSE,
  dosing.matrix = NULL,
  adjusted.Funbound.plasma = FALSE,
  regression = TRUE,
  restrictive.clearance = TRUE,
  minimum.Funbound.plasma = 1e-04,
  monitor.vars = NULL,
  ...
)

Arguments

chem.name Either the chemical name, CAS number, or the parameters must be specified.
chem.cas Either the chemical name, CAS number, or the parameters must be specified.
dtxsid EPA's DSSTox Structure ID (https://comptox.epa.gov/dashboard) the chemical must be identified by either CAS, name, or DTXSID

times Optional time sequence for specified number of days. Dosing sequence begins at the beginning of times.
parameters Chemical parameters from parameterize_pbtk function, overrides chem.name and chem.cas.
days Length of the simulation.
tsteps The number of time steps per hour.
daily.dose Total daily dose, defaults to mg/kg BW.
dose Amount of a single, initial oral dose in mg/kg BW.
doses.per.day Number of doses per day.
initial.values  Vector containing the initial concentrations or amounts of the chemical in specified tissues with units corresponding to output.units. Defaults are zero.
plots  Plots all outputs if true.
suppress.messages  Whether or not the output message is suppressed.
species  Species desired (either "Rat", "Rabbit", "Dog", "Mouse", or default "Human").
iv.dose  Simulates a single i.v. dose if true.
input.units  Input units of interest assigned to dosing, defaults to mg/kg BW
output.units  A named vector of output units expected for the model results. Default, NULL, returns model results in units specified in the 'modelinfo' file. See table below for details.
method  Method used by integrator (deSolve).
rtol  Argument passed to integrator (deSolve).
atol  Argument passed to integrator (deSolve).
default.to.human  Substitutes missing animal values with human values if true (hepatic intrinsic clearance or fraction of unbound plasma).
recalc.blood2plasma  Recalculates the ratio of the amount of chemical in the blood to plasma using the input parameters, calculated with hematocrit, Funbound.plasma, and Krbc2pu.
recalc.clearance  Recalculates the the hepatic clearance (Clmetabolism) with new million.cells.per.gliver parameter.
dosing.matrix  Vector of dosing times or a matrix consisting of two columns or rows named "dose" and "time" containing the time and amount, in mg/kg BW, of each dose.
adjusted.Funbound.plasma  Uses adjusted Funbound.plasma when set to TRUE along with partition coefficients calculated with this value.
regression  Whether or not to use the regressions in calculating partition coefficients.
restrictive.clearance  Protein binding not taken into account (set to 1) in liver clearance if FALSE.
minimum.Funbound.plasma  Monte Carlo draws less than this value are set equal to this value (default is 0.0001 – half the lowest measured Fup in our dataset).
...  Additional arguments passed to the integrator.

Details

Note that the model parameters have units of hours while the model output is in days.
Default NULL value for doses.per.day solves for a single dose.
The compartments used in this model are the gutlumen, gut, liver, kidneys, veins, arteries, lungs, and the rest of the body.
The extra compartments include the amounts or concentrations metabolized by the liver and excreted by the kidneys through the tubules.
AUC is the area under the curve of the plasma concentration.

Model Figure

When species is specified as rabbit, dog, or mouse, the function uses the appropriate physiological data (volumes and flows) but substitutes human fraction unbound, partition coefficients, and intrinsic hepatic clearance.
Value
A matrix of class deSolve with a column for time (in days), each compartment, the area under the curve, and plasma concentration and a row for each time point.

Author(s)
John Wambaugh and Robert Pearce

References

See Also
solve_model
parameterize_gas_pbtk
calc_analytic_css_pbtk

Examples
# Multiple doses per day:
head(solve_pbtk(
  chem.name='Bisphenol-A',
  daily.dose=.5,
  days=2.5,
  doses_per_day=2,
  tsteps=2))

# Starting with an initial concentration:
out <- solve_pbtk(
  chem.name='bisphenola',
  dose=0,
  days=2.5,
  output.units="mg/L",
  initial.values=c(Agut=200))

# Working with parameters (rather than having solve_pbtk retrieve them):
params <- parameterize_pbtk(chem.cas="80-05-7")
head(solve_pbtk(parameters=params, days=2.5))

# We can change the parameters given to us by parameterize_pbtk:
params <- parameterize_pbtk(dtxsid="DTXSID4020406", species = "rat")
params["Funbound.plasma"] <- 0.1
out <- solve_pbtk(parameters=params, days=2.5)

# A fifty day simulation:
out <- solve_pbtk(
  chem.name = "Bisphenol A",
  days = 50,
  daily.dose=1,
  doses_per_day = 3)
plot.data <- as.data.frame(out)
css <- calc_analytic_css(chem.name = "Bisphenol A")
library("ggplot2")
c.vs.t <- ggplot(plot.data, aes(time, Cplasma)) +
  geom_line() +
  geom_hline(yintercept = css) +
  ylab("Plasma Concentration (uM)") +
  xlab("Day") +
  theme(
    axis.text = element_text(size = 16),
    axis.title = element_text(size = 16),
    plot.title = element_text(size = 17)) +
  ggtitle("Bisphenol A")
print(c.vs.t)

spleen_mass_children   Predict spleen mass for children

Description
For individuals under 18, predict the spleen mass from height, weight, and gender, using equations from Ogiu et al. (1997)

Usage
spleen_mass_children(height, weight, gender)

Arguments
height       Vector of heights in cm.
weight       Vector of weights in kg.
gender       Vector of genders (either 'Male' or 'Female').

Value
A vector of spleen masses in kg.

Author(s)
Caroline Ring

References
**supptab1_Linakis2020**  
Supplementary output from Linakis 2020 vignette analysis.

**Description**

Supplementary output from Linakis 2020 vignette analysis.

**Usage**

`supptab1_Linakis2020`

**Format**

A data.frame containing x rows and y columns.

**Author(s)**

Matt Linakis

**Source**

Matt Linakis

**References**

DSStox database (https://www.epa.gov/nct/dsstox)

---

**supptab2_Linakis2020**  
More supplementary output from Linakis 2020 vignette analysis.

**Description**

More supplementary output from Linakis 2020 vignette analysis.

**Usage**

`supptab2_Linakis2020`

**Format**

A data.frame containing x rows and y columns.

**Author(s)**

Matt Linakis

**Source**

Matt Linakis

**References**

DSStox database (https://www.epa.gov/nct/dsstox)
Tables.Rdata.stamp  

*Description*

The Tables.RData file is separately created as part of building a new release of HTTK. This time stamp indicates the script used to build the file and when it was run.

*Usage*

Tables.Rdata.stamp

*Format*

An object of class `character` of length 1.

*Author(s)*

John Wambaugh

tissue.data  

*Description*

This data set contains values from Schmitt (2008) and Ruark et al. (2014) describing the composition of specific tissues and from Birnbaum et al. (1994) describing volumes of and blood flows to those tissues, allowing parameterization of toxicokinetic models for human, mouse, rat, dog, or rabbit. Tissue volumes were calculated by converting the fractional mass of each tissue with its density (both from ICRP), lumping the remaining tissues into the rest-of-body, excluding the mass of the gastrointestinal contents.

*Usage*

tissue.data

*Format*

A data.frame containing 13 rows and 20 columns.

*Details*

New tissues can be added to this table to generate their partition coefficients. The tissue data needed for calculating partition coefficients include: cellular and water fractions of total volume, lipid and protein fractions of cellular volume, lipid fractions of the total lipid volume, the pH of each tissue, and the fractional volume of protein in plasma.

*Author(s)*

John Wambaugh, Robert Pearce, and Nisha Sipes
tissue_masses_flows

Source

Pearce et al. (2017), in preparation,

References


See Also

predict_partitioning_schmitt

Examples

# We can add thyroid to the tissue data by making a row containing
# its data, subtracting the volumes and flows from the rest-of-body,
# and binding the row to tissue.data. Here we assume it contains the same
# partition coefficient data as the spleen and a tenth of the volume and
# blood flow:
new.tissue <- subset(tissue.data,Tissue == "spleen")
new.tissue[, "Tissue"] <- "thyroid"
new.tissue[new.tissue$variable %in% c("Vol (L/kg)",
  "Flow (mL/min/kg"^(3/4)"),"value"] <- new.tissue[new.tissue$variable %in% c("Vol (L/kg)","Flow (mL/min/kg"^(3/4)"),"value"] / 10
new.tissue.data[new.tissue.data$Tissue == "rest", "value"] <-
new.tissue.data[new.tissue.data$Tissue == "rest", "value"] -
new.tissue[new.tissue$variable %in% c("Vol (L/kg)",
  "Flow (mL/min/kg"^(3/4)"),"value"]
tissue.data <- rbind(tissue.data, new.tissue)

---

tissue_masses_flows

Given a data.table describing a virtual population by the NHANES quantities, generates HTTK physiological parameters for each individual.

Description

Given a data.table describing a virtual population by the NHANES quantities, generates HTTK physiological parameters for each individual.
tissue_scale

Usage

tissue_masses_flows(tmf_dt)

Arguments

tmf_dt A data.table generated by gen_age_height_weight(), containing variables gender, reth, age_months, age_years, weight, and height.

Value

The same data.table, with additional variables describing tissue masses and flows.

Author(s)

Caroline Ring

References


tissue_scale

Allometric scaling.

Description

Allometrically scale a tissue mass or flow based on height^{3/4}.

Usage

tissue_scale(height_ref, height_indiv, tissue_mean_ref)

Arguments

height_ref Reference height in cm.
height_indiv Individual height in cm.
tissue_mean_ref Reference tissue mass or flow.

Value

Allometrically scaled tissue mass or flow, in the same units as tissue_mean_ref.
Author(s)
Caroline Ring

References

Description
These data are the new HTTK in vitro data for chemicals reported in Wambaugh et al. (2019). They are the processed values used to make the figures in that manuscript. These data summarize the results of Bayesian analysis of the in vitro toxicokinetic experiments conducted by Cyprotex to characterize fraction unbound in the presence of pooled human plasma protein and the intrinsic hepatic clearance of the chemical by pooled human hepatocytes.

Usage

Format
A data frame with 496 rows and 17 variables:

- **Compound**  The name of the chemical
- **CAS**  The Chemical Abstracts Service Registry Number
- **Human.Clint**  Median of Bayesian credible interval for intrinsic hepatic clearance (uL/min/million hepatocytes)
- **Human.Clint.pValue**  Probability that there is no clearance
- **Human.Funbound.plasma**  Median of Bayesian credible interval for fraction of chemical free in the presence of plasma
- **pKa_Accept**  pH(s) at which hydrogen acceptor sites (if any) are at equilibrium
- **pKa_Donor**  pH(s) at which hydrogen donor sites (if any) are at equilibrium
- **DSSTox_Substance_Id**  Identifier for CompTox Chemical Dashboard
- **SMILES**  Simplified Molecular-Input Line-Entry System structure description
- **Human.Clint.Low95**  Lower 95th percentile of Bayesian credible interval for intrinsic hepatic clearance (uL/min/million hepatocytes)
- **Human.Clint.High95**  Upper 95th percentile of Bayesian credible interval for intrinsic hepatic clearance (uL/min/million hepatocytes)
- **Human.Clint.Point**  Point estimate of intrinsic hepatic clearance (uL/min/million hepatocytes)
- **Human.Funbound.plasma.Low95**  Lower 95th percentile of Bayesian credible interval for fraction of chemical free in the presence of plasma
- **Human.Funbound.plasma.High95**  Upper 95th percentile of Bayesian credible interval for fraction of chemical free in the presence of plasma
**Human.Funbound.plasma.Point** Point estimate of the fraction of chemical free in the presence of plasma

**MW** Molecular weight (Daltons)

**logP** log base ten of octanol:water partition coefficient

**Author(s)**

John Wambaugh

**Source**

Wambaugh et al. (2019)

**References**


---

**wambaugh2019.nhanes**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>These data are a subset of the Bayesian inferences reported by Ring et al. (2017) from the U.S. Centers for Disease Control and Prevention (CDC) National Health and Nutrition Examination Survey (NHANES). They reflect the population median intake rate (mg/kg body weight/day), with uncertainty.</td>
</tr>
</tbody>
</table>

**Usage**

wambaugh2019.nhanes

---

**Format**

A data frame with 20 rows and 4 variables:

**IP** The median of the Bayesian credible interval for median population intake rate (mg/kg bodyweight/day)

**IP.min** The lower 95th percentile of the Bayesian credible interval for median population intake rate (mg/kg bodyweight/day)

**IP.max** The upper 95th percentile of the Bayesian credible interval for median population intake rate (mg/kg bodyweight/day)

**CASRN** The Chemical Abstracts Service Registry Number

**Author(s)**

John Wambaugh

**Source**

Wambaugh et al. (2019)
References


Description

These data are the new HTTK in vitro data for chemicals reported in Wambaugh et al. (2019). They are the output of different Bayesian models evaluated to compare using a single protein concentration vs. the new three concentration titration protocol. These data summarize the results of Bayesian analysis of the in vitro toxicokinetic experiments conducted by Cyprotex to characterize fraction unbound in the presence of pooled human plasma protein and the intrinsic hepatic clearance of the chemical by pooled human hepatocytes. This file includes replicates (different Compound-Name id’s but same chemical)

Usage

wambaugh2019.raw

Format

A data frame with 530 rows and 28 variables:

- **DTXSID**: Identifier for CompTox Chemical Dashboard
- **Name**: The name of the chemical
- **CAS**: The Chemical Abstracts Service Registry Number
- **CompoundName**: Sample name provided by EPA to Cyprotex
- **Fup.point**: Point estimate of the fraction of chemical free in the presence of plasma
- **Base.Fup.Med**: Median of Bayesian credible interval for fraction of chemical free in the presence of plasma for analysis of 100 physiological plasma protein data only (base model)
- **Base.Fup.Low**: Lower 95th percentile of Bayesian credible interval for fraction of chemical free in the presence of plasma for analysis of 100 physiological plasma protein data only (base model)
- **Base.Fup.High**: Upper 95th percentile of Bayesian credible interval for fraction of chemical free in the presence of plasma for analysis of 100 physiological plasma protein data only (base model)
- **Affinity.Fup.Med**: Median of Bayesian credible interval for fraction of chemical free in the presence of plasma for analysis of protein titration protocol data (affinity model)
- **Affinity.Fup.Low**: Lower 95th percentile of Bayesian credible interval for fraction of chemical free in the presence of plasma for analysis of protein titration protocol data (affinity model)
- **Affinity.Fup.High**: Upper 95th percentile of Bayesian credible interval for fraction of chemical free in the presence of plasma for analysis of protein titration protocol data (affinity model)
Affinity.Kd.Med Median of Bayesian credible interval for protein binding affinity from analysis of protein titration protocol data (affinity model)

Affinity.Kd.Low Lower 95th percentile of Bayesian credible interval for protein binding affinity from analysis of protein titration protocol data (affinity model)

Affinity.Kd.High Upper 95th percentile of Bayesian credible interval for protein binding affinity from analysis of protein titration protocol data (affinity model)

Decreases.Prob Probability that the chemical concentration decreased systematically during hepatic clearance assay.

Saturates.Prob Probability that the rate of chemical concentration decrease varied between the 1 and 10 uM hepatic clearance experiments.

Slope.1uM.Median Estimated slope for chemical concentration decrease in the 1 uM hepatic clearance assay.

Slope.10uM.Median Estimated slope for chemical concentration decrease in the 10 uM hepatic clearance assay.

CLint.1uM.Median Median of Bayesian credible interval for intrinsic hepatic clearance at 1 uM initial chemical concentration (uL/min/million hepatocytes)

CLint.1uM.Low95th Lower 95th percentile of Bayesian credible interval for intrinsic hepatic clearance at 1 uM initial chemical concentration (uL/min/million hepatocytes)

CLint.1uM.High95th Upper 95th percentile of Bayesian credible interval for intrinsic hepatic clearance at 1 uM initial chemical concentration (uL/min/million hepatocytes)

CLint.10uM.Median Median of Bayesian credible interval for intrinsic hepatic clearance at 10 uM initial chemical concentration (uL/min/million hepatocytes)

CLint.10uM.Low95th Lower 95th percentile of Bayesian credible interval for intrinsic hepatic clearance at 10 uM initial chemical concentration (uL/min/million hepatocytes)

CLint.10uM.High95th Upper 95th percentile of Bayesian credible interval for intrinsic hepatic clearance at 10 uM initial chemical concentration (uL/min/million hepatocytes)

CLint.1uM.Point Point estimate of intrinsic hepatic clearance (uL/min/million hepatocytes) for 1 uM initial chemical concentration

CLint.10uM.Point Point estimate of intrinsic hepatic clearance (uL/min/million hepatocytes) for 10 uM initial chemical concentration

Fit Classification of clearance observed

SMILES Simplified Molecular-Input Line-Entry System structure description

Author(s)

John Wambaugh

Source

Wambaugh et al. (2019)

References

wambaugh2019.seem3  

**ExpoCast SEEM3 Consensus Exposure Model Predictions for Chemical Intake Rates**

**Description**

These data are a subset of the Bayesian inferences reported by Ring et al. (2019) for a consensus model of twelve exposure predictors. The predictors were calibrated based upon their ability to predict intake rates inferred National Health and Nutrition Examination Survey (NHANES). They reflect the population median intake rate (mg/kg body weight/day), with uncertainty.

**Usage**

wambaugh2019.seem3

**Format**

A data frame with 385 rows and 38 variables:

**Author(s)**

John Wambaugh

**Source**

Wambaugh et al. (2019)

**References**


---

wambaugh2019.tox21  

**Tox21 2015 Active Hit Calls (EPA)**

**Description**

The ToxCast and Tox21 research programs employ batteries of high-throughput assays to assess chemical bioactivity in vitro. Not every chemical is tested through every assay. Most assays are conducted in concentration response, and each corresponding assay endpoint is analyzed statistically to determine if there is a concentration-dependent response or "hit" using the ToxCast Pipeline. Most assay endpoint-chemical combinations are non-responsive. Here, only the hits are treated as potential indicators of bioactivity. This bioactivity does not have a direct toxicological interpretation. The October 2015 release (invitrodb_v2) of the ToxCast and Tox21 data were used for this analysis. This object contains just the chemicals in Wambaugh et al. (2019) and only the quantiles across all assays for the ACC.
### Usage

*Usage*

wang2018

### Format

*Format*

A data.table with 401 rows and 6 columns

### Author(s)

*Author(s)*

John Wambaugh

### Source

*Source*


### References


### Description

**Wang et al. 2018**  
Wang et al. (2018) screened the blood of 75 pregnant women for the presence of environmental organic acids (EOAs) and identified mass spectral features corresponding to 453 chemical formulae of which 48 could be mapped to likely structures. Of the 48 with tentative structures the identity of six were confirmed with available chemical standards.

### Usage

*Usage*

wang2018
well_param

Format
data.frame

Source
Kapraun et al. 2021 (submitted)

References

well_param  | Microtiter Plate Well Descriptions for Armitage et al. (2014) Model

Description
Microtiter Plate Well Descriptions for Armitage et al. (2014) model from Honda et al. (2019)

Usage
well_param

Format
A data frame / data table with 11 rows and 8 variables:
sysID  Identifier for each multi-well plate system
well_desc  Well description
well_number  Number of wells on plate
area_bottom  Area of well bottom in mm^2
cell_yield  Number of cells
diam  Diameter of well in mm
v_total  Total volume of well in uL
v_working  Working volume of well in uL

Author(s)
Greg Honda

Source

References
Wetmore2012

Published toxicokinetic predictions based on in vitro data from Wetmore et al. 2012.

Description

This data set overlaps with Wetmore.data and is used only in Vignette 4 for steady state concentration.

Usage

Wetmore2012

Format

A data.frame containing 13 rows and 15 columns.

References


wf1

WHO weight-for-length charts

Description

Charts giving weight-for-length percentiles for boys and girls under age 2.

Usage

wf1

Format

A data.table with 262 rows and 4 variables:

Sex  "Male" or "Female"
Length  Recumbent length in cm
P2.3  The 2.3rd percentile weight in kg for the corresponding sex and recumbent length
P97.7  The 97.7th percentile weight in kg for the corresponding sex and recumbent length

Details

For infants under age 2, weight class depends on weight for length percentile. #'

Underweight  <2.3rd percentile
Normal weight  2.3rd-97.7th percentile
Obese  >=97.7th percentile
Source

Index

* 1compartment
  - calc_analytic_css_1comp, 30
  - calc_elimination_rate, 40
  - calc_half_life, 49
  - calc_total_clearance, 81
  - calc_vdist, 82
  - convert_httkpop_1comp, 96
  - parameterize_1comp, 173
  - propagate_invitrouv_1comp, 200
  - solve_1comp, 209

* 3compartment
  - calc_analytic_css_3comp, 31
  - parameterize_3comp, 175
  - propagate_invitrouv_3comp, 200
  - solve_3comp, 213

* 3compss
  - calc_analytic_css_3compss, 33

* Dynamic
  - scale_dosing, 204

* Export
  - export_pbtk_jarnac, 107
  - export_pbtk_sbml, 108

* Literature
  - get_lit_cheminfo, 122
  - get_lit_css, 123
  - get_lit_oral_equiv, 124
  - get_wetmore_cheminfo, 129
  - get_wetmore_css, 130
  - get_wetmore_oral_equiv, 131

* Monte-Carlo
  - calc_mc_css, 62
  - calc_mc_oral equival, 68
  - calc_mc_tk, 72
  - create_mc_samples, 100
  - get_lit_css, 123
  - get_lit_oral equival, 124
  - get_wetmore_css, 130
  - get_wetmore_oral equival, 131
  - monte_carlo, 170

* Parameter
  - available_rblood2plasma, 20
  - calc_dow, 38
  - calc_elimination_rate, 40
  - calc_fetal phys, 41
  - calc_half_life, 49
  - calc_hep clearance, 53
  - calc_hepatic clearance, 50
  - calc_ionization, 56
  - calc_krbc2pu, 59
  - calc_maternal bw, 61
  - calc_rblood2plasma, 75
  - calc_total clearance, 81
  - calc_vdist, 82
  - get_clint, 118
  - get_fup, 119
  - get_rblood2plasma, 127
  - lump_tissues, 164
  - parameterize_1comp, 173
  - parameterize_3comp, 175
  - parameterize_fetal_pbtk, 178
  - parameterize_gas_pbtk, 181
  - parameterize_pbtk, 185
  - parameterize_schmitt, 188
  - predict_partitioning_schmitt, 197

* Retrieval
  - get_cheminfo, 114
  - get_lit_cheminfo, 122
  - get_wetmore_cheminfo, 129

* Solve
  - calc_analytic_css, 27
  - calc_stats, 77
  - calc_tkstats, 79
  - honda.ivive, 135
  - solve_1comp, 209
  - solve_3comp, 213
  - solve_fetal_pbtk, 217
  - solve_gas_pbtk, 220
  - solve_model, 226
  - solve_pbtk, 229

* Statistics
  - calc_stats, 77
  - calc_tkstats, 79

* Steady-State
  - calc_css, 36
  - calc_mc_css, 62
  - calc_mc_oral equival, 68

248
* cheminformatics
  get_chem_id, 117

* datasets
  EPA.ref, 103
  Tables.Rdata.stamp, 236
  wfl, 246

* data
  armitage_input, 18
  aylward2014, 22
  bmiage, 24
  chem.invivo.PK.aggregate.data, 84
  chem.invivo.PK.data, 85
  chem.invivo.PK.summary.data, 88
  chem.physical_and_invitro.data, 91
  concentration_data_Linakis2020, 95
  dawson2021, 103
  example.seem, 106
  example.toxcast, 107
  fetalpcs, 109
  Frank2018invivo, 110
  hct_h, 133
  howgate, 136
  hw_h, 151
  johnson, 159
  kapraun2019, 159
  mcnally_dt, 167
  mcdt, 168
  metabolism_data_Linakis2020, 169
  Obach2008, 171
  onlyp, 172
  pc.data, 193
  pearce2017regression, 194
  pharma, 194
  physiology.data, 195
  pksim.pcs, 196
  pradeep2020, 196
  pregnonpregaucs, 199
  scr_h, 205
  supptab1_Linakis2020, 235
  supptab2_Linakis2020, 235
  tissue.data, 236
  wambaugh2019, 239
  wambaugh2019.nhanes, 240
  wambaugh2019.raw, 241
  wambaugh2019.seem3, 243
  wambaugh2019.tox21, 243
  wang2018, 244
  well_param, 245
  Wetmore2012, 246

* dynamic
  calc_mc_tk, 72

* httk-pop
  age_draw_smooth, 9
  blood_mass_correct, 22
  blood_weight, 23
  bmiage, 24
  body_surface_area, 25
  bone_mass_age, 25
  brain_mass, 26
  ckd_epi_eq, 94
  convert_httkpop_1comp, 96
  estimate_gfr, 104
  estimate_gfr_ped, 105
  estimate_hematocrit, 105
  gen_age_height_weight, 111
  gen_height_weight, 112
  gen_serum_creatinine, 113
  get_gfr_category, 120
  get_weight_class, 128
  hct_h, 133
  hematocrit_inflants, 134
  httkpop, 136
  httkpop_biotophys_default, 141
  httkpop_direct_resample, 142
  httkpop_direct_resample_inner, 143
  httkpop_generate, 145
  httkpop_mc, 149
  httkpop_virtual_indiv, 150
  hw_H, 151
  is_in_inclusive, 158
  kidney_mass_children, 160
  liver_mass_children, 161
  lung_mass_children, 167
  mcnally_dt, 167
  mcdt, 168
  pancreas_mass_children, 172
  rfun, 202
  rmed0non0u95, 203
  scr_h, 205
  skeletal_muscle_mass, 207
  skeletal_muscle_mass_children, 208
  skin_mass_bosgra, 208
  spleen_mass_children, 234
  tissue_masses_flows, 237
  tissue_scale, 238

* in-vitro
  apply_clint_adjustment, 10
  apply_fup_adjustment, 11
  calc_fup_correction, 47
  calc_hep_fu, 54
  calc_ma, 60
  get_clint, 118
  get_fup, 119
  invitro_mc, 154
<table>
<thead>
<tr>
<th>Function</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>calc_kair</td>
<td>58</td>
</tr>
<tr>
<td>calc_mc_tk</td>
<td>72</td>
</tr>
<tr>
<td>calc_hep_bioavailability</td>
<td>52</td>
</tr>
<tr>
<td>parameterize_schmitt</td>
<td>188</td>
</tr>
<tr>
<td>CAS.checksum</td>
<td>84</td>
</tr>
<tr>
<td>concentration_data_Linakis2020</td>
<td>95</td>
</tr>
<tr>
<td>convert_httkpop_1comp</td>
<td>96</td>
</tr>
<tr>
<td>convert_solve_x</td>
<td>96</td>
</tr>
<tr>
<td>convert_units</td>
<td>97, 98, 99</td>
</tr>
<tr>
<td>create_mc_samples</td>
<td>100</td>
</tr>
<tr>
<td>Dawson2021</td>
<td>(dawson2021)</td>
</tr>
<tr>
<td>dawson2021</td>
<td>103</td>
</tr>
<tr>
<td>EPA.ref</td>
<td>103</td>
</tr>
<tr>
<td>estimate_gfr</td>
<td>104</td>
</tr>
<tr>
<td>estimate_gfr_ped</td>
<td>105</td>
</tr>
<tr>
<td>estimate_hematocrit</td>
<td>105, 133</td>
</tr>
<tr>
<td>example.seem</td>
<td>106</td>
</tr>
<tr>
<td>example.toxcast</td>
<td>107</td>
</tr>
<tr>
<td>export_pbtk_jarnac</td>
<td>107</td>
</tr>
<tr>
<td>export_pbtk_sbml</td>
<td>108</td>
</tr>
<tr>
<td>fetalPCs</td>
<td>109</td>
</tr>
<tr>
<td>fetalpcs</td>
<td>109</td>
</tr>
<tr>
<td>Frank2018invivo</td>
<td>110</td>
</tr>
</tbody>
</table>
INDEX

skin_mass_bosgra, 208
solve_1comp, 175, 209
solve_3comp, 175, 178, 213
solve_fetal_pbtk, 180, 217
solve_gas_pbtk, 181, 184, 220
solve_model, 73, 213, 217, 220, 225, 226, 233
solve_pbtk, 37, 186, 188, 229
spleen_mass_children, 234
supptab1_Linakis2020, 235
supptab2_Linakis2020, 235
svydesign, 10, 106, 111–113, 143, 144, 151

Tables.Rdata.stamp, 236
tissue.data, 83, 165, 166, 175, 178, 180,
184, 185, 188, 190, 192, 197, 199,
236
tissue_masses_flows, 237
tissue_scale, 238

wambaugh2019, 239
wambaugh2019.nhanes, 240
wambaugh2019.raw, 241
wambaugh2019.seem3, 243
wambaugh2019.tox21, 243
Wang2018 (wang2018), 244
wang2018, 244
well_param, 245
Wetmore2012, 246
wfl, 246