Package ‘hybridEnsemble’

May 30, 2015

Type Package
Title Build, Deploy and Evaluate Hybrid Ensembles
Version 1.0.0
Date 2015-05-26
Imports randomForest, kernelFactory, ada, rpart, ROCR, nnet, e1071,
NMOF, GenSA, Rmalschains, pso, AUC, soma, genalg, reportr,
nlsls, quadprog, tabuSearch, rotationForest, FNN, glmnet
Author Michel Ballings, Dauwe Vercamer, and Dirk Van den Poel
Maintainer Michel Ballings <Michel.Ballings@GMail.com>
Description Functions to build and deploy a hybrid ensemble consisting of eight different sub-
ensembles: bagged logistic regressions, random forest, stochastic boosting, kernel fac-
tory, bagged neural networks, bagged support vector machines, rotation forest, and bagged k-
nearest neighbors. Functions to cross-validate the hybrid ensemble and plot and summarize the re-
sults are also provided. There is also a function to assess the importance of the predictors.
License GPL (>= 2)
Suggests testthat
NeedsCompilation no
Repository CRAN
Date/Publication 2015-05-30 16:22:16

R topics documented:

Credit ... 2
CVhybridEnsemble .. 2
hybridEnsemble .. 7
hybridEnsembleNews ... 13
importance.hybridEnsemble 14
plot.CVhybridEnsemble 15
predict.hybridEnsemble 17
summary.CVhybridEnsemble 18

Index 21
cvhybridensemble

Five times twofold cross-validation for the Hybrid Ensemble function

Description

CVHybridEnsemble cross-validates (five times twofold) (hybridEnsemble) and computes performance statistics that can be plotted (plot.CVHybridEnsemble) and summarized (summary.CVHybridEnsemble).
Usage

`CVhybridEnsemble(x = NULL, y = NULL, combine = NULL, eval.measure = "auc", verbose = FALSE, oversample = TRUE, filter = 0.03, LR.size = 10, RF.ntree = 500, AB.iter = 500, AB.maxdepth = 3, RF.cp = 1, RF.rp = round(log(nrow(x), 10)), KF.ntree = 500, NN.rang = 0.1, NN.maxit = 10000, NN.size = c(5, 10, 20), NN.decay = c(0, 0.001, 0.01, 0.1), NN.ens.size = 10, SV.gamma = 2^(-15:3), SV.cost = 2^(-5:13), SV.degree = c(2, 3), SV.kernel = c("radial", "sigmoid", "linear", "polynomial"), SV.size = 10, RoF.L = 10, KNN.K = c(1:150), KNN.size = 10, rbga.popSize = 42, rbga.iters = 500, rbga.mutationChance = 1/rbga.popSize, rbga.elitism = max(1, round(rbgas.popSize * 0.05)), DEopt.nP = 20, DEopt.nG = 500, DEopt.F = 0.9314, DEopt.CR = 0.6938, GenSA.maxit = 500, GenSA.temperature = 0.5, GenSA.visiting.param = 2.7, GenSA.acceptance.param = -5, GenSA.max.call = 1e+07, malschains.popsize = 60, malschains.ls = "cmaes", malschains.istep = 300, malschains.effort = 0.5, malschains.alpha = 0.5, malschains.threshold = 1e-08, malschains.maxEvals = 500, psoptim.maxit = 500, psoptim.maxf = Inf, psoptim.abstol = -Inf, psoptim.reltol = 0, psoptim.s = 40, psoptim.k = 3, psoptim.p = 1 - (1 - 1/psoptim.s)^(psoptim.k), psoptim.w = 1/(2 * log(2)), psoptim.c.p = 0.5 + log(2), psoptim.c.g = 0.5 + log(2), soma.pathLength = 3, soma.stepLength = 0.11, soma.perturbationChance = 0.1, soma.minAbsoluteSep = 0, soma.minRelativeSep = 0.001, soma.nMigrations = 500, soma.populationSize = 10, tabu.iters = 500, tabu.listSize = c(5:12))

Arguments

- **x**: A data frame of predictors. Categorical variables need to be transformed to binary (dummy) factors.
- **y**: A factor of observed class labels (responses) with the only allowed values {0,1}.
- **eval.measure**: Evaluation measure for the following combination methods: authority-based method, single best, "rbga", "DEopt", "GenSA", "malschains", "psoptim", "soma", "tabu". Default is the area under the receiver operator characteristic curve 'auc'. The area under the sensitivity curve ('sens') and the area under the specificity curve ('spec') are also supported.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>verbose</td>
<td>TRUE or FALSE. Should information be printed to the screen while estimating the Hybrid Ensemble.</td>
</tr>
<tr>
<td>oversample</td>
<td>TRUE or FALSE. Should oversampling be used? Setting oversample to TRUE helps avoid computational problems related to the subsetting process.</td>
</tr>
<tr>
<td>filter</td>
<td>either NULL (deactivate) or a percentage denoting the minimum class size of dummy predictors. This parameter is used to remove near constants. For example if nrow(xTRAIN)=100, and filter=0.01 then all dummy predictors with any class size equal to 1 will be removed. Set this higher (e.g., 0.05 or 0.10) in case of errors.</td>
</tr>
<tr>
<td>LR.size</td>
<td>Logistic Regression parameter. Ensemble size of the bagged logistic regression sub-ensemble.</td>
</tr>
<tr>
<td>RF.ntree</td>
<td>Random Forest parameter. Number of trees to grow.</td>
</tr>
<tr>
<td>AB.iter</td>
<td>Stochastic AdaBoost parameter. Number of boosting iterations to perform.</td>
</tr>
<tr>
<td>AB.maxdepth</td>
<td>Stochastic AdaBoost parameter. The maximum depth of any node of the final tree, with the root node counted as depth 0.</td>
</tr>
<tr>
<td>KF.cp</td>
<td>Kernel Factory parameter. The number of column partitions.</td>
</tr>
<tr>
<td>KF rp</td>
<td>Kernel Factory parameter. The number of row partitions.</td>
</tr>
<tr>
<td>KF.ntree</td>
<td>Kernel Factory parameter. Number of trees to grow.</td>
</tr>
<tr>
<td>NN.rang</td>
<td>Neural Network parameter. Initial random weights on [-rang, rang].</td>
</tr>
<tr>
<td>NN.maxit</td>
<td>Neural Network parameter. Maximum number of iterations.</td>
</tr>
<tr>
<td>NN.size</td>
<td>Neural Network parameter. Number of units in the single hidden layer. Can be multiple values that need to be optimized.</td>
</tr>
<tr>
<td>NN.decay</td>
<td>Neural Network parameter. Weight decay. Can be multiple values that need to be optimized.</td>
</tr>
<tr>
<td>NN.ens.size</td>
<td>Neural Network parameter. Ensemble size of the neural network sub-ensemble.</td>
</tr>
<tr>
<td>SV.gamma</td>
<td>Support Vector Machines parameter. Width of the Guassian for radial basis and sigmoid kernel. Can be multiple values that need to be optimized.</td>
</tr>
<tr>
<td>SV.cost</td>
<td>Support Vector Machines parameter. Penalty (soft margin constant). Can be multiple values that need to be optimized.</td>
</tr>
<tr>
<td>SV.degree</td>
<td>Support Vector Machines parameter. Degree of the polynomial kernel. Can be multiple values that need to be optimized.</td>
</tr>
<tr>
<td>SV.kernel</td>
<td>Support Vector Machines parameter. Kernels to try. Can be one or more of: 'radial','sigmoid','linear','polynomial'. Can be multiple values that need to be optimized.</td>
</tr>
<tr>
<td>SV.size</td>
<td>Support Vector Machines parameter. Ensemble size of the SVM sub-ensemble.</td>
</tr>
<tr>
<td>RoF.L</td>
<td>Rotation Forest parameter. Number of trees to grow.</td>
</tr>
<tr>
<td>KNN.K</td>
<td>K-Nearest Neighbors parameter. Number of nearest neighbors to try. For example c(10,20,30). The optimal K will be selected. If larger than nrow(xTRAIN) the maximum K will be reset to 50% of nrow(xTRAIN). Can be multiple values that need to be optimized.</td>
</tr>
<tr>
<td>KNN.size</td>
<td>K-Nearest Neighbors parameter. Ensemble size of the K-nearest neighbor sub-ensemble.</td>
</tr>
</tbody>
</table>

rbga.iters Genetic Algorithm parameter. Number of iterations.

rbga.mutationChance Genetic Algorithm parameter. The chance that a gene in the chromosome mutates.

rbga.elitism Genetic Algorithm parameter. Number of chromosomes that are kept into the next generation.

DEopt.nG Differential Evolutionary Algorithm parameter. Number of generations.

DEopt.F Differential Evolutionary Algorithm parameter. Step size.

DEopt.CR Differential Evolutionary Algorithm parameter. Probability of crossover.

GenSA.maxit Generalized Simulated Annealing. Maximum number of iterations.

GenSA.temperature Generalized Simulated Annealing. Initial value for temperature.

GenSA.acceptance.param Generalized Simulated Annealing. Parameter for acceptance distribution.

GenSA.max.call Generalized Simulated Annealing. Maximum number of calls of the objective function.

malschains.popsize Memetic Algorithm with Local Search Chains parameter. Population size.

malschains.ls Memetic Algorithm with Local Search Chains parameter. Local search method.

malschains.istep Memetic Algorithm with Local Search Chains parameter. Number of iterations of the local search.

malschains.effort Memetic Algorithm with Local Search Chains parameter. Value between 0 and 1. The ratio between the number of evaluations for the local search and for the evolutionary algorithm. A higher effort means more evaluations for the evolutionary algorithm.

malschains.alpha Memetic Algorithm with Local Search Chains parameter. Crossover BLX-alpha. Lower values (<0.3) reduce diversity and a higher value increases diversity.

malschains.threshold Memetic Algorithm with Local Search Chains parameter. Threshold that defines how much improvement in the local search is considered to be no improvement.

malschains.maxEvals Memetic Algorithm with Local Search Chains parameter. Maximum number of evaluations.

psoptim.maxit Particle Swarm Optimization parameter. Maximum number of iterations.

psoptim.maxf Particle Swarm Optimization parameter. Maximum number of function evaluations.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>psoptim.abstol</code></td>
<td>Particle Swarm Optimization parameter. Absolute convergence tolerance.</td>
</tr>
<tr>
<td><code>psoptim.reltol</code></td>
<td>Particle Swarm Optimization parameter. Tolerance for restarting.</td>
</tr>
<tr>
<td><code>psoptim.s</code></td>
<td>Particle Swarm Optimization parameter. Swarm size.</td>
</tr>
<tr>
<td><code>psoptim.k</code></td>
<td>Particle Swarm Optimization parameter. Exponent for calculating number of informants.</td>
</tr>
<tr>
<td><code>psoptim.p</code></td>
<td>Particle Swarm Optimization parameter. Average percentage of informants for each particle.</td>
</tr>
<tr>
<td><code>psoptim.w</code></td>
<td>Particle Swarm Optimization parameter. Exploitation constant.</td>
</tr>
<tr>
<td><code>psoptim.c.p</code></td>
<td>Particle Swarm Optimization parameter. Local exploration constant.</td>
</tr>
<tr>
<td><code>psoptim.c.g</code></td>
<td>Particle Swarm Optimization parameter. Global exploration constant.</td>
</tr>
<tr>
<td><code>soma.pathLength</code></td>
<td>Self-Organising Migrating Algorithm parameter. Distance (towards the leader) that individuals may migrate.</td>
</tr>
<tr>
<td><code>soma.stepLength</code></td>
<td>Self-Organising Migrating Algorithm parameter. Granularity at which potential steps are evaluated.</td>
</tr>
<tr>
<td><code>soma.perturbationChance</code></td>
<td>Self-Organising Migrating Algorithm parameter. Probability that individual parameters are changed on any given step.</td>
</tr>
<tr>
<td><code>soma.minAbsoluteSep</code></td>
<td>Self-Organising Migrating Algorithm parameter. Smallest absolute difference between maximum and minimum cost function values. Below this minimum the algorithm will terminate.</td>
</tr>
<tr>
<td><code>soma.minRelativeSep</code></td>
<td>Self-Organising Migrating Algorithm parameter. Smallest relative difference between maximum and minimum cost function values. Below this minimum the algorithm will terminate.</td>
</tr>
<tr>
<td><code>soma.nMigrations</code></td>
<td>Self-Organising Migrating Algorithm parameter. Maximum number of migrations to complete.</td>
</tr>
<tr>
<td><code>tabu.itors</code></td>
<td>Number of iterations in the preliminary search of the algorithm.</td>
</tr>
<tr>
<td><code>tabu.listSize</code></td>
<td>Tabu list size.</td>
</tr>
</tbody>
</table>

Value

A list of class `CVhybridEnsemble` containing the following elements:

MEAN

For the simple mean combination method: A list containing the median and inter quartile range of the performance evaluations, the performance evaluations on each fold, and the predictions and response vectors for each fold.

AUTHORITY

For the authority combination method: A list containing the median and inter quartile range of the performance evaluations, the performance evaluations on each fold, and the predictions and response vectors for each fold.
For the single best: A list containing the median and inter quartile range of the performance evaluations, the performance evaluations on each fold, and the predictions and response vectors for each fold.

eval.measure The performance measure that was used

..and all the combination methods that are requested.

Author(s)

Michel Ballings, Dauwe Vercamer, and Dirk Van den Poel, Maintainer: <michel.ballings@gmail.com>

References

Ballings, M., Vercamer, D., Van den Poel, D., Hybrid Ensemble: Many Ensembles is Better Than One, Forthcoming.

See Also

hybridEnsemble, predict.hybridEnsemble, importance.hybridEnsemble, plot.CVhybridEnsemble, summary.CVhybridEnsemble

Examples

data(Credit)

Not run:
CVhE <- CVhybridEnsemble(x=Credit[1:200, names(Credit) != 'Response'],
y=Credit$Response[1:200],
verbose=TRUE,
KF rp=1,
RF ntree=50,
AB iter=50,
NN size=5,
NN decay=0,
SV gamma = 2^-15,
SV cost = 2^-5,
SV degree=2,
SV kernel='radial')

End(Not run)

hybridEnsemble Binary classification with Hybrid Ensemble

Description

hybridEnsemble builds an ensemble consisting of seven different sub-ensembles: Bagged Logistic Regressions, Random Forest, Stochastic AdaBoost, Kernel Factory, Bagged Neural Networks, Bagged Support Vector Machines, and Rotation Forest.
Usage

```r
hybridEnsemble(x = NULL, y = NULL, combine = NULL, eval.measure = "auc",
   verbose = FALSE, oversample = TRUE, filter = 0.01, LR.size = 10,
   RF.ntree = 500, AB.iter = 500, AB.maxdepth = 3, KF.cp = 1,
   KF.rp = round(log(nrow(x), 10)), RF.ntree = 500, NN.rang = 0.1,
   NN.maxit = 10000, NN.size = c(5, 10, 20), NN.decay = c(0, 0.001, 0.01,
   0.1), NN.ens.size = 10, SV.gamma = 2^(-5:13), SV.cost = 2^(-5:13),
   SV.degree = c(2, 3), SV.kernel = c("radial", "sigmoid", "linear",
   "polynomial"), SV.size = 10, RoF.L = 10, KNN.K = c(1:150),
   KNN.size = 10, rbga.popSize = 42, rbga.iters = 300,
   rbga.mutationChance = 1/rbga.popSize, rbga.elitism = max(1,
   round(rbga.popSize * 0.05)), DEopt.nP = 20, DEopt.nG = 300,
   DEopt.F = 0.9314, DEopt.CR = 0.6938, GenSA.maxit = 300,
   GenSA.temperature = 0.5, GenSA.visiting.param = 2.7,
   GenSA.acceptance.param = -5, GenSA.max.call = 1e+07,
   malschains.popsize = 60, malschains.ls = "cmaes",
   malschains.istep = 300, malschains.effort = 0.5, malschains.alpha = 0.5,
   malschains.threshold = 1e-08, malschains.maxEvals = 300,
   psoptim.maxit = 300, psoptim.maxf = Inf, psoptim.abstol = -Inf,
   psoptim.reltol = 0, psoptim.s = 40, psoptim.k = 3, psoptim.p = 1 - (1
   - 1/psoptim.s)^psoptim.k, psoptim.w = 1/(2 * log(2)), psoptim.c.p = 0.5 +
   log(2), psoptim.c.g = 0.5 + log(2), soma.pathLength = 3,
   soma.steplength = 0.11, soma.perturbationChance = 0.1,
   soma.minAbsoluteSep = 0, soma.minRelativeSep = 0.001,
   soma.nMigrations = 300, soma.populationSize = 10, tabu.iters = 300,
   tabu.listSize = c(5:12))
```

Arguments

- **x**: A data frame of predictors. Categorical variables need to be transformed to binary (dummy) factors.

- **y**: A factor of observed class labels (responses) with the only allowed values \{0,1\}.

- **eval.measure**: Evaluation measure for the following combination methods: authority-based method, single best, "rbga", "DEopt", "GenSA", "malschains", "psoptim", "soma", "tabu". Default is the area under the receiver operator characteristic curve 'auc'. The area under the sensitivity curve ('sens') and the area under the specificity curve ('spec') are also supported.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>verbose</td>
<td>TRUE or FALSE. Should information be printed to the screen while estimating the Hybrid Ensemble.</td>
</tr>
<tr>
<td>oversample</td>
<td>TRUE or FALSE. Should oversampling be used? Setting oversample to TRUE helps avoid computational problems related to the subsetting process.</td>
</tr>
<tr>
<td>filter</td>
<td>either NULL (deactivate) or a percentage denoting the minimum class size of dummy predictors. This parameter is used to remove near constants. For example if nrow(xTRAIN)=100, and filter=0.01 then all dummy predictors with any class size equal to 1 will be removed. Set this higher (e.g., 0.05 or 0.10) in case of errors.</td>
</tr>
<tr>
<td>LR.size</td>
<td>Logistic Regression parameter. Ensemble size of the bagged logistic regression sub-ensemble.</td>
</tr>
<tr>
<td>RF.ntree</td>
<td>Random Forest parameter. Number of trees to grow.</td>
</tr>
<tr>
<td>AB.iter</td>
<td>Stochastic AdaBoost parameter. Number of boosting iterations to perform.</td>
</tr>
<tr>
<td>AB.maxdepth</td>
<td>Stochastic AdaBoost parameter. The maximum depth of any node of the final tree, with the root node counted as depth 0.</td>
</tr>
<tr>
<td>KF.cp</td>
<td>Kernel Factory parameter. The number of column partitions.</td>
</tr>
<tr>
<td>KF,rp</td>
<td>Kernel Factory parameter. The number of row partitions.</td>
</tr>
<tr>
<td>KF.ntree</td>
<td>Kernel Factory parameter. Number of trees to grow.</td>
</tr>
<tr>
<td>NN.rang</td>
<td>Neural Network parameter. Initial random weights on [-rang, rang].</td>
</tr>
<tr>
<td>NN.maxit</td>
<td>Neural Network parameter. Maximum number of iterations.</td>
</tr>
<tr>
<td>NN.size</td>
<td>Neural Network parameter. Number of units in the single hidden layer. Can be multiple values that need to be optimized.</td>
</tr>
<tr>
<td>NN.decay</td>
<td>Neural Network parameter. Weight decay. Can be multiple values that need to be optimized.</td>
</tr>
<tr>
<td>NN.ens.size</td>
<td>Neural Network parameter. Ensemble size of the neural network sub-ensemble.</td>
</tr>
<tr>
<td>SV.gamma</td>
<td>Support Vector Machines parameter. Width of the Gaussian for radial basis and sigmoid kernel. Can be multiple values that need to be optimized.</td>
</tr>
<tr>
<td>SV.cost</td>
<td>Support Vector Machines parameter. Penalty (soft margin constant). Can be multiple values that need to be optimized.</td>
</tr>
<tr>
<td>SV.degree</td>
<td>Support Vector Machines parameter. Degree of the polynomial kernel. Can be multiple values that need to be optimized.</td>
</tr>
<tr>
<td>SV.kernel</td>
<td>Support Vector Machines parameter. Kernels to try. Can be one or more of: 'radial', 'sigmoid', 'linear', 'polynomial'. Can be multiple values that need to be optimized.</td>
</tr>
<tr>
<td>SV.size</td>
<td>Support Vector Machines parameter. Ensemble size of the SVM sub-ensemble.</td>
</tr>
<tr>
<td>RoF.L</td>
<td>Rotation Forest parameter. Number of trees to grow.</td>
</tr>
<tr>
<td>KNN.K</td>
<td>K-Nearest Neighbors parameter. Number of nearest neighbors to try. For example c(10,20,30). The optimal K will be selected. If larger than nrow(xTRAIN) the maximum K will be reset to 50% of nrow(xTRAIN). Can be multiple values that need to be optimized.</td>
</tr>
<tr>
<td>KNN.size</td>
<td>K-Nearest Neighbors parameter. Ensemble size of the K-nearest neighbor sub-ensemble.</td>
</tr>
</tbody>
</table>
brgba.ites Genetic Algorithm parameter. Number of iterations.
brgba.mutationChance Genetic Algorithm parameter. The chance that a gene in the chromosome mutate.
brgba.elitism Genetic Algorithm parameter. Number of chromosomes that are kept into the next generation.
DEopt.nG Differential Evolutionary Algorithm parameter. Number of generations.
DEopt.F Differential Evolutionary Algorithm parameter. Step size.
GenSA.maxit Generalized Simulated Annealing. Maximum number of iterations.
GenSA.temperature Generalized Simulated Annealing. Initial value for temperature.
GenSA.max.call Generalized Simulated Annealing. Maximum number of calls of the objective function.
malschains.ls Memetic Algorithm with Local Search Chains parameter. Local search method.
malschains.istep Memetic Algorithm with Local Search Chains parameter. Number of iterations of the local search.
malschains.effort Memetic Algorithm with Local Search Chains parameter. Value between 0 and 1. The ratio between the number of evaluations for the local search and for the evolutionary algorithm. A higher effort means more evaluations for the evolutionary algorithm.
malschains.alpha Memetic Algorithm with Local Search Chains parameter. Crossover BLX-alpha. Lower values (<0.3) reduce diversity and a higher value increases diversity.
malschains.threshold Memetic Algorithm with Local Search Chains parameter. Threshold that defines how much improvement in the local search is considered to be no improvement.
malschains.maxEvals Memetic Algorithm with Local Search Chains parameter. Maximum number of evaluations.
psoptim.maxit Particle Swarm Optimization parameter. Maximum number of iterations.
psoptim.maxf Particle Swarm Optimization parameter. Maximum number of function evaluations.
psoptim.abstol Particle Swarm Optimization parameter. Absolute convergence tolerance.
psoptim.reltol Particle Swarm Optimization parameter. Tolerance for restarting.
psoptim.s Particle Swarm Optimization parameter. Swarm size.
psoptim.k Particle Swarm Optimization parameter. Exponent for calculating number of informants.
psoptim.p Particle Swarm Optimization parameter. Average percentage of informants for each particle.
psoptim.w Particle Swarm Optimization parameter. Exploitation constant.
psoptim.c.p Particle Swarm Optimization parameter. Local exploration constant.
psoptim.c.g Particle Swarm Optimization parameter. Global exploration constant.
soma.pathLength Self-Organising Migrating Algorithm parameter. Distance (towards the leader) that individuals may migrate.
soma.stepLength Self-Organising Migrating Algorithm parameter. Granularity at which potential steps are evaluated.
soma.perturbationChance Self-Organising Migrating Algorithm parameter. Probability that individual parameters are changed on any given step.
soma.minAbsoluteSep Self-Organising Migrating Algorithm parameter. Smallest absolute difference between maximum and minimum cost function values. Below this minimum the algorithm will terminate.
soma.minRelativeSep Self-Organising Migrating Algorithm parameter. Smallest relative difference between maximum and minimum cost function values. Below this minimum the algorithm will terminate.
soma.nMigrations Self-Organising Migrating Algorithm parameter. Maximum number of migrations to complete.
tabu.itors Number of iterations in the preliminary search of the algorithm.
tabu.listSize Tabu list size.

Value

A list of class hybridEnsemble containing the following elements:

LR Bagged Logistic Regression model
LR.lambda Shrinkage parameter
RF Random Forest model
AB Stochastic AdaBoost model
KF Kernel Factory model
NN Neural Network model
SV Bagged Support Vector Machines model
SB A label denoting which sub-ensemble was the single best
KNN.K Optimal number of nearest neighbors
x_KNN The full data set for finding the nearest neighbors in the deployment phase
y_KNN The full response vector to compute the response of the nearest neighbors
KNN.size Size of the nearest neighbor sub-ensemble
weightsAUTHORITY The weights for the authority-based weighting method
combine Combination methods used
constants A vector denoting which predictors are constants
minima Minimum values of the predictors required for preprocessing the data for the Neural Network
maxima Maximum values of the predictors required for preprocessing the data for the Neural Network
calibratorLR The calibrator for the Bagged Logistic Regression model
calibratorRF The calibrator for the Random Forest model
calibratorAB The calibrator for the Stochastic AdaBoost model
calibratorKF The calibrator for the Kernel Factory model
calibratorNN The calibrator for the Neural Network model
calibratorSV The calibrator for the Bagged Support Vector Machines model
calibratorKNN The calibrator for the Bagged Nearest Neighbors
xVALIDATE Predictors of the validation sample
predictions The separate predictions by the sub-ensembles
yVALIDATE Response variable of the validation sample
eval.measure The evaluation measure that was used

Author(s)
Michel Ballings, Dauwe Vercamer, and Dirk Van den Poel, Maintainer: <Michel.Ballings@GMail.com>

References
Ballings, M., Vercamer, D., Van den Poel, D., Hybrid Ensemble: Many Ensembles is Better Than One, Forthcoming.

See Also
predict.hybridEnsemble, importance.hybridEnsemble, CVhybridEnsemble, plot.CVhybridEnsemble, summary.CVhybridEnsemble
Examples

data(Credit)

Not run:
he <- hybridEnsemble(x=Credit[1:100, names(Credit) != 'Response'],
y=Credit$Response[1:100],
RF.ntree=50,
AB.iter=50,
NN.size=5,
NN.decay=0,
SV.gamma = 2^-15,
SV.cost = 2^-5,
SV.degree=2,
SV.kernel='radial')

End(Not run)

hybridEnsembleNews Display the NEWS file

Description

hybridEnsembleNews shows the NEWS file of the hybridEnsemble package.

Usage

hybridEnsembleNews()

Value

None.

Author(s)

Michel Ballings, Dauwe Vercamer, and Dirk Van den Poel, Maintainer: <Michel.Ballings@GMail.com>

References

Ballings, M., Vercamer, D., Van den Poel, D., Hybrid Ensemble: Many Ensembles is Better Than One, Forthcoming.

See Also

hybridEnsemble, predict.hybridEnsemble, importance.hybridEnsemble, CVhybridEnsemble, plot.CVhybridEnsemble, summary.CVhybridEnsemble

Examples

hybridEnsembleNews()
importance.hybridEnsemble

Importance method for hybridEnsemble objects

Description

Assess the importance of new data using a hybridEnsemble model. The importance is computed as follows. For each variable, compute the AUC of the model before permuting that variable and after. Next, subtract the latter from the former. This is called the decrease in AUC. If CV is greater than one, the mean is taken from all runs.

Usage

```r
## S3 method for class 'hybridEnsemble'
importance(x = NULL, xdata = NULL, ydata = NULL,
            method = "MEAN", CV = 1, sort = TRUE)
```

Arguments

- **x**: An object of class hybridEnsemble created by the function `hybridEnsemble`
- **xdata**: A test data frame with the same predictors as in the training data
- **ydata**: A test factor of observed class labels (responses) with the only allowed values `{0,1}`.
- **method**: One of 'RBGA' (Genetic Algorithm), 'DEOPT' (Differential Evolution), 'GENSA' (Generalized Simulated Annealing), 'MALSCHAINS' (Memetic Algorithm), 'PSOPTIM' (Particle Swarm), 'SOMA' (Self Organizing Migrating Algorithm), 'TABU' (Tabu Search), 'LHNNLS' (Lawson-Hanson Non-negative least squares), 'GINNLS' (Goldfarb-Idnani Non-negative least squares), 'NNloglik' (Non-negative binomial likelihood), 'MEAN' (Simple Mean), 'SB' (Single Best), 'AUTHORITY' (Authority Based method)
- **CV**: An integer indicating the number of cross-validation runs
- **sort**: TRUE or FALSE. Should the predictors be sorted with the most important ones on top?

Value

A data frame with two columns: the variable name and the importance of the variable.

Author(s)

Michel Ballings, Dauwe Vercamer, and Dirk Van den Poel, Maintainer: <Michei.Ballings@GMail.com>

References

Ballings, M., Vercamer, D., Van den Poel, D., Hybrid Ensemble: Many Ensembles is Better Than One, Forthcoming.
See Also

hybridensemble, predict.hybridEnsemble, CVhybridEnsemble, plot.CVhybridEnsemble

Examples

data(Credit)

Not run:
he <- hybridEnsemble(x=Credit[1:100, names(Credit) != 'Response'],
y=Credit$Response[1:100],
RF.ntree=50,
AB.iter=50,
NN.size=5,
NN.decay=0,
SV.gamma = 2^-15,
SV.cost = 2^-5,
SV.degree=2,
SV.kernel='radial')

importance(he,
 xdata=Credit[1:100, names(Credit) != 'Response'],
ydata=Credit$Response[1:100])

End(Not run)

plot.CVhybridEnsemble Plot the performance of the cross-validated Hybrid Ensemble

Description

This function plots the averaged ROC curve per combination method or the median predictive performance (Area under the ROC, sensitivity or specificity curve depending on what was used in the cvhybridensemble function).

Usage

S3 method for class 'CVhybridEnsemble'
plot(x, y = NULL, ROCcurve = FALSE,
 averaging = "threshold", ...)

Arguments

x An object of class CVhybridEnsemble
y Not used
ROCcurve TRUE or FALSE. Should the ROC curve be plotted or the median predictive performances?
averaging For the ROC curve: "threshold" averaging, "horizontal" averaging, or "vertical" averaging.
... Not used
Details

In the output: 'RBGA' (Genetic Algorithm), 'DEOPT' (Differential Evolution), 'GENSA' (Generalized Simulated Annealing), 'MALSCHAINS' (Memetic Algorithm), 'PSOPTIM' (Particle Swarm), 'SOMA' (Self Organizing Migrating Algorithm), 'TABU' (Tabue Search), 'LHNLS' (Lawson-Hanson Non-negative least squares), 'GINNLS' (Goldfarb-Idnani Non-negative least squares), 'NNloglik' (Non-negative binomial likelihood), 'MEAN' (Simple Mean), 'SB' (Single Best), 'AUTHORITY' (Authority Based method). SB names denote the single best for all cross-validation runs: RF= Random Forest, SV= Bagged Support Vector Machines, KF= Kernel Factory, AB=AdaBoost, LR=Bagged Logistic Regression, NN=Bagged Neural Networks, RoF= Rotation Forest, KN= K-Nearest Neighbors.

Author(s)

Michel Ballings and Dirk Van den Poel, Maintainer: <michel.Ballings@gmail.com>

References

Ballings, M., Vercamer, D., Van den Poel, D., Hybrid Ensemble: Many Ensembles is Better Than One, Forthcoming.

See Also

hybridensemble, predict.hybridEnsemble, importance.hybridEnsemble, CVHybridEnsemble, summary.CVHybridEnsemble

Examples

data(Credit)

Not run:
CVhE <- CVHybridEnsemble(x=Credit[1:200],names(Credit) != 'Response'],
 y=Credit$Response[1:200],
 verbose=TRUE,
 RF.ntree=50,
 KF.rp=1,
 AB.iter=50,
 NN.size=5,
 NN.decay=0,
 SV.gamma = 2^-15,
 SV.cost = 2^-5,
 SV.degree=2,
 SV.kernel='radial')

plot(x=CVhE,ROCCurve= FALSE)
plot(x=CVhE,ROCCurve= TRUE)

End(Not run)
predict.hybridEnsemble

Predict method for hybridEnsemble objects

Description

Prediction of new data using a hybridEnsemble model.

Usage

```r
## S3 method for class 'hybridEnsemble'
predict(object, newdata, verbose = FALSE, ...)
```

Arguments

- `object`: An object of class hybridEnsemble created by the function hybridEnsemble
- `newdata`: A data frame with the same predictors as in the training data
- `verbose`: TRUE or FALSE. Should information be printed to the screen
- `...`: Not currently used

Value

A list containing the following vectors:

- `predmean`: Predictions combined by the simple mean
- `predSB`: Predictions by the single best
- `predAUTHORITY`: Predictions combined by authority

..and all the combination methods that are requested in the hybridEnsemble function.

Author(s)

Michel Ballings, Dauwe Vercamer, and Dirk Van den Poel, Maintainer: <Michel.Ballings@GMail.com>

References

Ballings, M., Vercamer, D., Van den Poel, D., Hybrid Ensemble: Many Ensembles is Better Than One, Forthcoming.

See Also

hybridEnsemble, CVhybridEnsemble, importance.hybridEnsemble, plot.CVhybridEnsemble, summary.CVhybridEnsemble
summary.CVhybridEnsemble

Examples

data(Credit)

Not run:

hE <- hybridensemble(x=Credit[,1:100], names(Credit) != 'Response',
y=Credit$Response[1:100],
RF.ntree=50,
AB.iter=50,
NN.size=5,
NN.decay=0,
SV.gamma = 2^-15,
SV.cost = 2^-5,
SV.degree=2,
SV.kernel='radial')

predictions <- predict(hE, newdata=Credit[1:100], names(Credit) != 'Response'))

End(Not run)

summary.CVhybridEnsemble

Summarize the performance of the cross-validated Hybrid Ensemble

Description

This function produces summary results per combination method.

Usage

S3 method for class 'CVhybridEnsemble'

summary(object, name = '', stat = "median",
 LateX = FALSE, toppart = FALSE, bottompart = FALSE, ...)

Arguments

table

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>An object of class CVhybridEnsemble</td>
</tr>
<tr>
<td>name</td>
<td>Name of the dataset. Default is blank.</td>
</tr>
<tr>
<td>stat</td>
<td>'median' or 'IQR' (inter quartile range) of the performance measure used in the CVhybridEnsemble object</td>
</tr>
<tr>
<td>LateX</td>
<td>TRUE or FALSE. If true LateX code is printed to the screen. Otherwise a data frame.</td>
</tr>
<tr>
<td>toppart</td>
<td>TRUE or FALSE. For the LateX table. Should the top part of the table be printed. Useful for concatenating multiple runs of the summary function (see examples).</td>
</tr>
<tr>
<td>bottompart</td>
<td>TRUE or FALSE. For the LateX table. Should the bottom part of the table be printed. Useful for concatenating multiple runs of the summary function (see examples).</td>
</tr>
<tr>
<td>...</td>
<td>Not used</td>
</tr>
</tbody>
</table>
Details

In the output: 'RBGA' (Genetic Algorithm), 'DEOPT' (Differential Evolution), 'GENSA' (Generalized Simulated Annealing), 'MALSCHAINS' (Memetic Algorithm), 'PSOPTIM' (Particle Swarm), 'SOMA' (Self Organizing Migrating Algorithm), 'TABU' (Tabue Search), 'LHNNLS' (Lawson-Hanson Non-negative least squares), 'GINNLS' (Goldfarb-Idnani Non-negative least squares), 'NNloglik' (Non-negative binomial likelihood), 'MEAN' (Simple Mean), 'SB' (Single Best), 'AUTHORITY' (Authority Based method). SB names denote the single best for all cross-validation runs: RF= Random Forest, SV= Bagged Support Vector Machines, KF= Kernel Factory, AB=AdaBoost, LR=Bagged Logistic Regression, NN=Bagged Neural Networks, RoF= Rotation Forest, KN= K-Nearest Neighbors.

Author(s)

Michel Ballings and Dirk Van den Poel, Maintainer: <Michel.Ballings@GMail.com>

References

Ballings, M., Vercamer, D., Van den Poel, D., Hybrid Ensemble: Many Ensembles is Better Than One, Forthcoming.

See Also

hybridensemble, predict.hybridensemble, importance.hybridensemble, CVhybridEnsemble, plot.CVhybridEnsemble

Examples

data(Credit)

Not run:
CVhE <- CVhybridEnsemble(x=Credit[1:200],names(Credit) != 'Response'),
y=Credit$Response[1:200],
verbose=TRUE,
RF.ntree=50,
KF.rp=1,
AB.iter=50,
NN.size=5,
NN.decay=8,
SV.gamma = 2^-15,
SV.cost = 2^-5,
SV.degree=2,
SV.kernel='radial')

summary(object=CVhE,stat='median')
summary(object=CVhE,stat='IQR')

#LaTeX table
#This code example shows how toppart and bottompart can be convenient if you want
to concatenate multiple datasets (here six time the same dataset).
#Paste the output of this code in your LateX document:
cat
summary(object=CVhE, name="Credit", Latex=TRUE, toppart=TRUE),
summary(object=CVhE, name="Credit", Latex=TRUE),
summary(object=CVhE, name="Credit", Latex=TRUE),
summary(object=CVhE, name="Credit", Latex=TRUE),
summary(object=CVhE, name="Credit", Latex=TRUE, bottompart=TRUE))

End(Not run)
Index

*Topic datasets
 Credit, 2

Credit, 2
CVhybridEnsemble, 2, 12, 13, 15–17, 19

hybridEnsemble, 2, 7, 7, 13, 15–17, 19
hybridEnsembleNews, 13

importance.hybridEnsemble, 7, 12, 13, 14,
 16, 17, 19

plot.CVhybridEnsemble, 2, 7, 12, 13, 15, 15,
 17, 19
predict.hybridEnsemble, 7, 12, 13, 15, 16,
 17, 19

summary.CVhybridEnsemble, 2, 7, 12, 13, 16,
 17, 18