Tutorial for Introductory Analysis of Daily Precipitation Data with hydroTSM

Mauricio Zambrano-Bigiarini*

version 0.7, 11-Mar-2020

1 Installation

Installing the latest stable version (from CRAN):
```
install.packages("hydroTSM")
```

Alternatively, you can also try the under-development version (from Github):
```
if (!require(devtools)) install.packages("devtools")
library(devtools)
install_github("hzambran/hydroTSM")
```

2 Setting up the environment

• Loading the hydroTSM library, which contains data and functions used in this analysis.
```
library(hydroTSM)
```

Loading required package: zoo

Attaching package: 'zoo'

The following objects are masked from 'package:base':
as.Date, as.Date.numeric

Loading required package: xts

• Loading daily precipitation data at the station San Martino di Castrozza, Trento Province, Italy, with data from 01/Jan/1921 to 31/Dec/1990.
```
data(SanMartinoPPts)
```

• Selecting only a 6-years time slice for the analysis
```
x <- window(SanMartinoPPts, start=as.Date("1985-01-01"))
```

• Monthly values of precipitation

*mauricio.zambrano@ufrontera.cl
```r
( m <- daily2monthly(x, FUN=sum) )
```

```
## 141.2 7.0 140.6 72.0 175.6 131.4 85.4
## 159.4 27.2 58.4 101.8 54.8 75.8 131.6
## 59.6 237.8 108.2 144.8 81.2 141.0 69.8
## 38.2 44.4 20.4 46.8 111.0 45.6 98.4
## 212.0 153.8 221.8 175.0 90.6 278.8 164.8
## 29.8 118.0 49.8 22.4 100.6 187.4 193.0
## 120.4 149.2 61.2 136.4 10.0 59.4 0.0
## 152.6 46.2 365.4 77.4 241.6 302.8 114.4
## 65.4 12.8 145.0 110.6 51.6 12.4 65.8
## 127.0 74.4 175.0 143.8 90.8 106.0 153.0
## 1990-11-01 1990-12-01
## 326.6 106.0
```

- Dates of the daily values of ‘x’
- Amount of years in ‘x’ (needed for computations)

```
( nyears <- yip(from=start(x), to=end(x), out.type="nmbr" ) )
```

```
## [1] 6
```

3 Basic exploratory data analysis (EDA)

1) Summary statistics

```
smry(x)
```

```
## Index x
## Min. 1985-01-01 0.0000
## 1st Qu. 1988-07-02 0.0000
## Median 1988-01-01 0.0000
## Mean 1988-01-01 3.7470
## 3rd Qu. 1989-07-01 2.6000
## Max. 1990-12-31 122.0000
## IQR <NA> 2.6000
## sd <NA> 10.0428
## cv <NA> 2.6800
## Skewness <NA> 5.3512
## Kurtosis <NA> 39.1619
## NA's <NA> 0.0000
## n <NA> 2191.0000
```
Using the `hydroplot` function, which (by default) plots 9 different graphs: 3 ts plots, 3 boxplots and 3 histograms summarizing 'x'. For this example, only daily and monthly plots are produced, and only data starting on 01-Jan-1987 are plotted.

```r
hydroplot(x, var.type="Precipitation", main="at San Martino", pfreq = "dm", from="1987-01-01")
```

2) Amount of days with information (not NA) per year

```r
dwi(x)
```

365 365 365 366 365 365

3) Amount of days with information (not NA) per month per year

```r
dwi(x, out.unit="mpy")
```

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1985 31 28 31 30 31 30 31 30 31 30 31
1986 31 28 31 30 31 30 31 30 31 30 31
1987 31 28 31 30 31 30 31 30 31 30 31
1988 31 29 31 30 31 30 31 30 31 30 31
1989 31 28 31 30 31 30 31 30 31 30 31
1990 31 28 31 30 31 30 31 30 31 30 31
4) Plotting the monthly precipitation values for each year, useful for identifying dry/wet months.

```r
# Daily zoo to monthly zoo
m <- daily2monthly(x, FUN=sum, na.rm=TRUE)

# Creating a matrix with monthly values per year in each column
M <- matrix(m, ncol=12, byrow=TRUE)
colnames(M) <- month.abb
rownames(M) <- unique(format(time(m), "%Y"))

# Plotting the monthly precipitation values
require(lattice)
## Loading required package: lattice
print(matrixplot(M, ColorRamp="Precipitation",
main="Monthly precipitation at San Martino st., [mm/month]"))
```

Monthly precipitation at San Martino st., [mm/month]

4 Annual analysis

Annual values of precipitation

```r
daily2annual(x, FUN=sum, na.rm=TRUE)
```

```
## 1154.8 1152.8 1628.4 1207.8 1634.2 1432.4
```

Average annual precipitation

Obvious way:
mean(daily2annual(x, FUN=sum, na.rm=TRUE))

[1] 1368.4

Another way (more useful for streamflows, where FUN=mean):

The function `annualfunction` applies `FUN` twice over `x`:

(i) firstly, over all the elements of `x` belonging to the same year, in order to obtain the corresponding annual values, and (ii) secondly, over all the annual values of `x` previously obtained, in order to obtain a single annual value.

`annualfunction(x, FUN=sum, na.rm=TRUE) / nyears`

value
1368.4

5 Monthly analysis

Median of the monthly values at station ‘x’. Not needed, just for looking at these values in the boxplot.

`monthlyfunction(m, FUN=median, na.rm=TRUE)`

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
63.7 80.4 52.9 113.8 141.9 164.4 132.1 145.1 67.6 97.4 123.4 57.1

Vector with the three-letter abbreviations for the month names

`cmonth <- format(time(m), "%b")`

Creating ordered monthly factors

`months <- factor(cmonth, levels=unique(cmonth), ordered=TRUE)`

Boxplot of the monthly values

`boxplot(coredata(m) ~ months, col="lightblue", main="Monthly Precipitation", ylab="Precipitation, [mm]", xlab="Month")`
6 Seasonal analysis

Average seasonal values of precipitation

```r
seasonalfunction(x, FUN=sum, na.rm=TRUE) / nyears
```

```
## DJF MAM JJA SON
## 213.1333 369.4000 470.8000 315.0667
```

Extracting the seasonal values for each year

```r
DJF <- dm2seasonal(x, season="DJF", FUN=sum)
```

```
## 148.2 262.2 178.2 197.6 212.0 174.6
```

```r
MAM <- dm2seasonal(m, season="MAM", FUN=sum)
```

```
## 388.2 405.6 356.0 310.4 489.0 267.2
```

```r
JJA <- dm2seasonal(m, season="JJA", FUN=sum)
```

```
## 376.2 367.0 550.6 462.6 658.8 409.6
```

```r
SON <- dm2seasonal(m, season="SON", FUN=sum)
```

```
## 187.4 152.4 534.2 207.6 223.2 585.6
```

Plotting the time evolution of the seasonal precipitation values
7 Some extreme indices

Common steps for the analysis of this section:

Loading daily precipitation data at the station San Martino di Castrozza, Trento Province, Italy, with data from 01/Jan/1921 to 31/Dec/1990.

```r
data(SanMartinoPPts)
```

Selecting only a three-year time slice for the analysis

```r
x <- window(SanMartinoPPts, start=as.Date("1988-01-01"))
```

Plotting the selected time series

```r
hydroplot(x, ptype="ts", pfreq="o", var.unit="mm")
```
7.1 Heavy precipitation days (R10mm)

Counting and plotting the number of days in the period where precipitation is > 10 [mm]

\[
\text{R10mm} \leftarrow \text{length}(x[x>10])
\]

[1] 127

7.2 Very wet days (R95p)

- Identifying the wet days (daily precipitation >= 1 mm):

\[
\text{wet.index} \leftarrow \text{which}(x \geq 1)
\]

- Computing the 95th percentile of precipitation on wet days (\(PR_{w95}\)):

\[
\text{PR}_{w95} \leftarrow \text{quantile}(x[\text{wet.index}], \text{probs}=0.95, \text{na.rm}=\text{TRUE})
\]

95%
39.75

Note 1: this computation was carried out for the three-year time period 1988-1990, not the 30-year period 1961-1990 commonly used.

Note 2: missing values are removed from the computation.

- Identifying the very wet days (daily precipitation >= \(PR_{w95}\))

\[
\text{very.wet.index} \leftarrow \text{which}(x \geq \text{PR}_{w95})
\]

[1] 30 92 234 287 422 423 461 550 551 674 676 719 939 950 998
[16] 1058 1061 1075

- Computing the total precipitation on the very wet days:
Note 3: this computation was carried out for the three-year time period 1988-1990, not the 30-year period 1961-1990 commonly used.

7.3 5-day total precipitation

Computing the 5-day total (accumulated) precipitation

```r
x.5max <- rollapply(data=x, width=5, FUN=sum, fill=NA, partial= TRUE, align="center")
hydroplot(x.5max, ptype="ts+boxplot", pfreq="o", var.unit="mm")
```

[Note: pfreq='o' => ptype has been changed to 'ts']

![Time series plot of 5-day total precipitation](image)

Maximum annual value of 5-day total precipitation

```r
(x.5max.annual <- daily2annual(x.5max, FUN=max, na.rm=TRUE))
```

113.2 170.8 237.2

Note 1: for this computation, a moving window centred in the current day is used. If the user wants the 5-day total precipitation accumulated in the 4 days before the current day + the precipitation in the current day, the user have to modify the moving window.

Note 2: For the first two and last two values, the width of the window is adapted to ignore values not within the time series.
8 Climograph

Since v0.5-0, hydroTSM includes a function to plot a climograph, considering not only precipitation but air temperature data as well:

```r
# Loading daily ts of precipitation, maximum and minimum temperature
data(MaquehueTemuco)

# extracting individual ts of precipitation, maximum and minimum temperature
pcp <- MaquehueTemuco[, 1]
tmx <- MaquehueTemuco[, 2]
tmn <- MaquehueTemuco[, 3]

# Plotting the climograph
m <- climograph(pcp=pcp, tmx=tmx, tmn=tmn, na.rm=TRUE)
```

9 Software Details

This tutorial was built under:

```r
## [1] "x86_64-pc-linux-gnu (64-bit)"
## [1] "R Under development (unstable) (2020-03-11 r77925)"
## [1] "hydroTSM 0.6-0"
```
10 Version history

- v0.7: Mar 2020
- v0.6: Aug 2017
- v0.5: May 2013
- v0.4: Aug 2011
- v0.3: Apr 2011
- v0.2: Oct 2010
- v0.1: 30-May-2013

11 Appendix

In order to make easier the use of hydroTSM for users not familiar with R, in this section a minimal set of information is provided to guide the user in the R world.

11.1 Editors, GUI

- GNU/Linux only: Redit, ESS
- Windows only: Tinn-R, NppToR
- Multi-platform: RStudio

11.2 Importing data

- ?read.table, ?write.table: allow the user to read/write a file (in table format) and create a data frame from it. Related functions are ?read.csv, ?write.csv, ?read.csv2, ?write.csv2.
- foreign: read data stored in several R-external formats (dBase, Minitab, S, SAS, SPSS, Stata, Systat, Weka, ...)
- ?zoo::read.zoo, ?zoo::write.zoo: functions for reading and writing time series from/to text files, respectively.
- R Data Import/Export
- some examples

11.3 Useful Websites

- Quick R
- Time series in R
- Quick reference for the zoo package