Package ‘iBATCGH’

July 6, 2015

Version 1.3
Date 2015-07-06
Title Integrative Bayesian Analysis of Transcriptomic and CGH Data
Author Alberto Cassese
Maintainer Alberto Cassese <alberto.cassese@maastrichtuniversity.nl>
Depends R (>= 2.10)
Imports Rcpp (>= 0.11.2), msm
LinkingTo Rcpp, RcppArmadillo
Description Bayesian integrative models of gene expression and comparative genomic hybridization data. The package provides inference on copy number variations and their association with gene expression.
License GPL-2
URL http://www.r-project.org
NeedsCompilation yes
Repository CRAN
Date/Publication 2015-07-06 19:31:05

R topics documented:
iBATCGH-package .. 2
Center ... 3
iBAT ... 4
iBATProbit .. 6
Inference .. 8
InferenceA ... 10
InferenceMu ... 11
InferenceR .. 12
InferenceSd ... 13
InferenceXi .. 14
InitMu ... 15
InitXi .. 16
iBATCGH-package

Description
Bayesian integrative models of gene expression and comparative genomic hybridization data. The package provides inference on copy number variations and their association with gene expression.

Details

Package:	iBATCGH
Type:	Package
Version:	1.3
Date:	2015-07-06
License:	GNU

The package takes as inputs gene expression, Comparative Genomic Hybridization (CGH) data, and the physical distance between CGH probes. It returns posterior probabilities of inclusion for each potential association gene expression - CGH, and inference on the CGH latent states. Two different models have been considered, see references for details. Available functions are classified in four classes: Preprocessing, Main, Postprocessing, Simulated Data.

Author(s)
Alberto Cassese, Marina Vannucci, Michele Guindani, Mahlet G. Tadesse.
Maintainer: Alberto Cassese <alberto.cassese@maastrichtuniversity.nl>

References
Examples

```r
## Not run:
data(NCI_60)

Y <- NCI_60$Affy
X <- NCI_60$aCGH
distance <- NCI_60$distance
disfix <- 146274826
xi <- InitXi(X)
tran <- Tran(xi)
mu <- InitMu()
d=0.2587288

Y <- Center(Y)

res <- iBAT(Y=Y,X=X,distance=distance,disfix=disfix,xi=xi,tran=tran,mu=mu,d=d)

summRes <- Inference(res,G=dim(Y)[2],M=dim(X)[2],niter=niter,burnin=bi,threshold=0.5)

## End(Not run)
```

Description

This function takes as argument a matrix of gene expression measurements Y, and returns the matrix obtained after centering each column with respect to its mean.

Usage

`Center(Y)`

Arguments

- `Y` The matrix of data to be centered.

Details

This function center each column of the gene expression matrix.

Value

The matrix of data obtained after centering each column with respect to its mean.

Author(s)

Alberto Cassese
Examples

```r
data(NCI_60)
Y <- NCI_60$Affy
Y<-Center(Y)
```

Description

Perform MCMC iterations of the model, as described in the reference.

Usage

```r
ibat(Y, X, distance, disfix, intercept=1, xi,
R=-1, tran, mu, sigma=((rgamma(4,1,1))^-0.5)),
cmu=1/1000000, c=10, delta=3, e=0.001, f=0.999,
alpha=20, deltak=c(-1,0,0.58,1), tauk=c(1,1,1,2),
upp_bounds=c(-0.1, 0.1, 0.73, Inf),
low_bounds=c(-Inf, -0.1, 0.1, 0.73),
alpha_IG=c(1,1,1,1), beta_IG=c(1,1,1,1),
low_IG=c(0.41,0,0.41,0.41,1), a=c(1,1,1,1),
niter=500000, burnin=200000, Cout=1000,
phi=0.5, pR=0.4, selection=gh=-1, pXI=0.6, indep=0)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Matrix of gene expression data</td>
</tr>
<tr>
<td>X</td>
<td>Matrix of CGH data</td>
</tr>
<tr>
<td>distance</td>
<td>Vector of distance between CGH probes</td>
</tr>
<tr>
<td>disfix</td>
<td>Length of the chromosome under investigation</td>
</tr>
<tr>
<td>intercept</td>
<td>If set to one an intercept is included in the regression model</td>
</tr>
<tr>
<td>xi</td>
<td>Initialized matrix of latent states</td>
</tr>
<tr>
<td>R</td>
<td>Initialized association matrix in a vector form. Default set to -1, that automatically creates a vector with all the positions set to zero</td>
</tr>
<tr>
<td>tran</td>
<td>Initialized transition matrix</td>
</tr>
<tr>
<td>mu</td>
<td>Initialized state specific mean vector</td>
</tr>
<tr>
<td>sigma</td>
<td>Initialized state specific standard deviation vector</td>
</tr>
<tr>
<td>cmu</td>
<td>Parameter that controls the variance of the prior on the intercept</td>
</tr>
<tr>
<td>c</td>
<td>Parameter that determines the shrinkage in the model</td>
</tr>
<tr>
<td>delta</td>
<td>Parameter of the Inverse-Gamma prior on the error variance</td>
</tr>
<tr>
<td>d</td>
<td>Parameter of the Inverse-Gamma prior on the error variance</td>
</tr>
<tr>
<td>e</td>
<td>Parameter of the Beta prior on the inclusion probability</td>
</tr>
</tbody>
</table>
Parameter of the Beta prior on the inclusion probability

Parameter that regulates the strength of the independent part of the mixture

Vector of mean of the prior on the state specific mean

Vector of sd of the prior on the state specific mean

Vector of upper bounds of the prior on the state specific mean

Vector of lower bounds of the prior on the state specific mean

Vector of parameters of the prior on the state specific mean

Vector of parameters of the prior on the state specific standard deviation

Vector of parameters of the prior on the state specific standard deviation

Truncation of the prior on the state specific standard deviation

Vector of parameters of the prior on the transition matrix

Number of Monte Carlo Markov Chain iterations

Burn-in

Print the number of iterations ran every Cout iterations

Probability of an A/D step

Parameter of the distribution used to select the rows to be updated at every MCMC iteration

Number of samples not in neutral state in order to consider a CGH as a potential candidate for association with gene expression. Default set to -1 that automatically set it to 10% of the samples

Parameter of the distribution used to select the rows to be updated at every MCMC iteration

If set to an integer different from zero, run the analysis with an independent prior, see reference.

The output consists of an R list composed by 4*niter+3 elements objects, where niter is the number of MCMC iterations. The first niter objects of the list are vectors, each containing the positions of the association matrix set to one, at the corresponding MCMC iteration. Each of the following niter objects of the list are the transition matrices at the corresponding MCMC iteration, while the third and the fourth set of niter objects are the vectors of state specific mean and state specific variance, respectively. The last three objects of the list consist of three matrices counting the number of times the corresponding latent state has been set to 1,3 and 4, respectively.

Author(s)

Alberto Cassese

References

Examples

```r
## Not run:
data(NCI_60)

Y <- NCI_60$Affy
X <- NCI_60$aCGH
distance <- NCI_60$distance
disfix <- 146274826
xi <- InitXi(X)
tran <- Tran(xi)
mu <- InitMu()
d=0.2587288

Y <- Center(Y)
res <- iBAT(Y=Y,X=X,distance=distance,disfix=disfix,xi=xi,tran=tran,mu=mu,d=d)

summRes <- Inference(res,G=dim(Y)[[2]],M=dim(X)[[2]],niter=niter,burnin=bi,threshold=0.5)

## End(Not run)
```

iBATProbit

Main - Probit selection prior

Description

Perform MCMC iterations of the model described in the reference.

Usage

```r
iBATProbit(Y, X, distance, disfix, intercept=1, xi, R=-1, tran, mu, sigma=(rgamma(4,1,1))^(-0.5)),
cmu=1/1000000, c=10, delta=3, d, alpha0=2.32,
alpha1=1, deltak=c(-1,0,0.58,1), tauk=c(1,1,1,2),
upp_bounds=c(-0.1, 0.1, 0.73, Inf),
low_bounds=c(-Inf, -0.1, 0.1, 0.73),
alpha_ig=c(1,1,1,1), beta_ig=c(1,1,1,1),
low_ig=c(0.41,0.41,0.41,1), a=c(1,1,1,1),
niter=500000, burnin=200000, Cout=1000,
phi=0.5, pR=0.4, selectioncgh=-1, pXI=0.6)
```

Arguments

- **Y** Matrix of gene expression data
- **X** Matrix of CGH data
- **distance** Vector of distance between CGH probes
- **disfix** Length of the chromosome under investigation
intercept If set to one an intercept is included in the regression model
xi Initialized matrix of latent states
R Initialized association matrix in a vector form. Default set to -1, that automatically creates a vector with all the positions set to zero
tran Initialized transition matrix
mu Initialized state specific mean vector
sigma Initialized state specific standard deviation vector
cmu Parameter that controls the variance of the prior on the intercept
c Parameter that determines the shrinkage in the model
delta Parameter of the Inverse-Gamma prior on the error variance
d Parameter of the Inverse-Gamma prior on the error variance
alpha0 Baseline intercept of the selection prior
alpha1 Parameter that regulates the strength of the spatially informed dependence
deltak Vector of mean of the prior on the state specific mean
tauk Vector of sd of the prior on the state specific mean
upp_bounds Vector of upper bounds of the prior on the state specific mean
low_bounds Vector of lower bounds of the prior on the state specific mean
alpha_lIG Parameter of the prior on the state specific standard deviation
beta_lIG Parameter of the on the state specific standard deviation
low_lIG Truncation of the prior on the state specific standard deviation
a Vector of parameters of the prior on the transition matrix
niter Number of Monte Carlo Markov Chain iteration
burnin Burn-in
Cout Print the number of iterations ran every Cout iterations
phi Probability of an A/D step
pR Parameter of the distribution used to select the rows to be updated at every MCMC iteration
selectioncgh Number of samples not in neutral state in order to consider a CGH as a potential candidate for association with gene expression. Default set to -1 that automatically set it to 10% of the samples
pxI Parameter of the distribution used to select the rows to be updated at every MCMC iteration

Value

The output consists of an R list composed by 4*niter+3 objects, where niter is the number of MCMC iterations. The first niter objects of the list are vectors, each containing the positions of the association matrix set to one, at the corresponding MCMC iteration. Each of the following niter objects of the list are the transition matrices at the corresponding MCMC iteration, while the third and the fourth set of niter objects are the vectors of state specific mean and state specific variance, respectively. The last three objects of the list consist of three matrices counting the number of times the corresponding latent state has been set to 1,3 and 4, respectively.
Inference

Author(s)
Alberto Cassese

References

Examples
Not run:
data(TCGA_lung)

Y <- TCGA_lung$Affy
X <- TCGA_lung$aCGH
distance <- TCGA_lung$distance
disfix <- 199446827
xi <- InitXi(X)
tran <- Tran(xi)
mu <- InitMu()
d=0.2587288

Y <- Center(Y)

res <- iBATProbit(Y=Y,X=X,distance=distance,disfix=disfix,xi=xi,tran=tran,mu=mu,d=d)

summRes <- inference(res,G=dim(Y)[[2]],M=dim(X)[[2]],niter=niter,burnin=bi,threshold=0.5)

End(Not run)

Inference Postprocessing - Posterior Inference

Description
Performs posterior inference on the output of the main function

Usage
Inference(listComplete, G, M, niter, burnin, threshold = 0.5)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>listComplete</td>
<td>Output of the main function</td>
</tr>
<tr>
<td>G</td>
<td>Number of gene expression probes</td>
</tr>
<tr>
<td>M</td>
<td>Number of CGH probes</td>
</tr>
<tr>
<td>niter</td>
<td>Number of Monte Carlo Markov Chain iterations</td>
</tr>
<tr>
<td>burnin</td>
<td>Burn-in</td>
</tr>
<tr>
<td>threshold</td>
<td>Threshold on the posterior probabilities of inclusion of the association matrix</td>
</tr>
</tbody>
</table>
Details

Wrapper function which calls InferenceR, InferenceXi, InferenceA, InferenceMu, InferenceSd on the output of the main function.

Value

A list made by the following items

- **R**: Binary matrix of estimated association
- **Xi**: Matrix of estimated copy number states
- **A**: Estimated transition matrix
- **Mu**: Estimated vector of state specific means
- **Sd**: Estimated vector of state specific standard deviations

Author(s)

Alberto Cassese

References

See Also

See Also InferenceR, InferenceXi

Examples

```r
## Not run:
data(NCI_60)

Y <- NCI_60$Affy
X <- NCI_60$aCGH
distance <- NCI_60$distance
disfix <- 146274826
xi <- InitXi(X)
tran <- Tran(xi)
mu <- InitMu()
d=0.2587288

Y <- Center(Y)

res <- iBAT(Y=Y,X=X,distance=distance,disfix=disfix,xi=xi,tran=tran,mu=mu,d=d)

summRes <- Inference(res,G=dim(Y)[[2]],M=dim(X)[[2]],niter=niter,burnin=bi,threshold=0.5)
```
Postprocessing - Inference on the transition matrix

Description

This function returns a matrix obtained as the elementwise mean of the association matrices, output of the Monte Carlo Markov Chain iterations, after removing burn-in.

Usage

inferencea(listA, niter, burnin)

Arguments

listA Second niter objects of the output of the main function
niter Number of Monte Carlo Markov Chain iterations
burnin Burn-in

Value

Estimated transition matrix.

Author(s)

Alberto Cassese

References

See Also

See Also as inference

Examples

See inference
InferenceMu

Postprocessing - Inference on the vector of state specific mean

Description

This function returns a vector obtained as the elementwise mean of the vectors of state specific mean, output of the Monte Carlo Markov Chain iterations, after removing burn-in.

Usage

InferenceMu(listMu, niter, burnin)

Arguments

- listMu: Third niter objects of the output of the main function
- niter: Number of Monte Carlo Markov Chain iteration
- burnin: Burn-in

Value

Estimated vector of state specific mean.

Author(s)

Alberto Cassese

References

See Also

See Also as Inference

Examples

See Inference
InferenceR

Postprocessing - Inference on the association matrix

Description

This function performs posterior inference on the association matrix, returning the matrix of posterior probabilities of inclusion for each association gene expression - CGH. It also returns the binary matrix of significant links that exceed a threshold given as argument.

Usage

```r
InferenceR(listR, G, M, niter, burnin, threshold = 0.5)
```

Arguments

- `listR`: First `niter` objects of the output of the main function
- `G`: Number of gene expression probes
- `M`: Number of aCGH probes
- `niter`: Number of Monte Carlo Markov Chains iterations
- `burnin`: Burn-in
- `threshold`: Threshold on the posterior probability of inclusion

Value

A list made of the following items

- `FreqMat`: Matrix of posterior probabilities of inclusion
- `final`: Binary association matrix

Author(s)

Alberto Cassese

References

See Also

See Also as `Inference`

Examples

```r
# See Inference
```
InferenceSd

Postprocessing - Inference on the vector of state specific sd

Description

This function returns a vector obtained as the elementwise mean of the vectors of state specific standard deviation, output of the Monte Carlo Markov Chain iterations, after removing burn-in.

Usage

```r
InferenceSd(listSd, niter, burnin)
```

Arguments

- `listSd` Fourth niter objects of the output of the main function
- `niter` Number of Monte Carlo Markov Chain iterations
- `burnin` Burn-in

Value

Estimated vector of state specific sd.

Author(s)

Alberto Cassese

References

See Also

See Also as `Inference`

Examples

```r
# See Inference
```
Description

This function returns the modal latent states.

Usage

inferencexi(listxi, niter, burnin)

Arguments

listxi Last three objects of the output of the main function
niter Number of Monte Carlo Markov Chain iterations
burnin Burn-in

Details

Must use the same burn-in as in the main function.

Value

Matrix of modal latent states, i.e. estimated Copy Number Variants. A four class classification is considered:

1. Loss
2. Neutral
3. Gain
4. Amplification

Author(s)

Alberto Cassese

References

See Also

See Also as Inference
Examples

##See Inference

InitMu

Preprocessing - Initialize state specific mean vector

Description

Initializes the state specific mean vector, by sampling each element independently from its prior, i.e. truncated normal distribution.

Usage

```r
InitMu(deltak = c(-1, 0, 0.58, 1), tauk = c(1, 1, 1, 2),
low_bounds = c(-Inf, -0.1, 0.1, 0.73), upp_bounds = c(-0.1, 0.1, 0.73, Inf))
```

Arguments

- **deltak**: Vector of means of the truncated Normal distributions
- **tauk**: Vector of standard deviations of the truncated Normal distributions
- **low_bounds**: Vector of lower bounds of the truncated Normal distributions
- **upp_bounds**: Vector of upper bounds of the truncated Normal distributions

Value

A vector of state specific mean, that could be used as input of the main function.

Author(s)

Alberto Cassese

References

Examples

```r
mu <- InitMu()
```
Description

This function takes a matrix of CGH data as the only argument and returns a crude estimate of the corresponding latent copy number states.

Usage

```
initXi(X, bounds = c(-0.5, 0.29, 0.79))
```

Arguments

- `X` Matrix of aCGH data
- `bounds` Vector of threshold used to estimate the latent states

Details

Given as argument a vector of threshold bounds the function simply applies the thresholding to the data and groups them into four subsets. Each subset is associated to a specific latent state.

Value

Return a matrix of estimated latent states, that could be used as input of the main function.

Author(s)

Alberto Cassese

References

See Also

See Also `Tran`

Examples

```
data(NCI_60)
X <- NCI_60$aCGH
xi <- initXi(X)
```
NCI_60

NCI-60 cancer cell lines data

Description
Processed and filtered NCI-60 cancer cell lines data, as described in the reference.

Usage
data(NCI_60)

Format
The format is a list of 3 objects
$ aCGH
$ Affy
$ distance

Source
Full matrix of data downloaded from discover.nci.nih.gov/cellminer.

References

Examples
data <- data(NCI_60)

RListToVector Internal function

Description
Internal function

Usage
RListToVector(xList, G, T)
Arguments

xlist List of included associations (C format)
G Number of gene expression probes
T Number of CGH probes

Details

This is an internal function.

Value

Returns a vector whose elements are the number of times, across the MCMC iterations, the corresponding position of the transition matrix has been set to one.

Author(s)

Alberto Cassese

Scenario1 Simulated data - Scenario 1

Description

Simulates the data as described in the reference provided below (Scenario 1).

Usage

Scenario1(sigmak = 0.1)

Arguments

sigmak Standard deviation of the error term

Value

Return a list made of the following items

Y Matrix of simulated gene expression
X Matrix of simulated CGH
Xi True matrix of hidden states
A Empirical transition matrix
mu True vector of state specific mean
sd True vector of state specific sd
coeff True matrix of association coefficients between gene expression and CGH probes
distance Vector of distance between CGH probes
disfix Length of the chromosome
Author(s)
Alberto Cassese

References

Examples
data <- Scenario1(sigmak = 0.1)

Simulated data - Scenario 2

Description
Simulates the data as described in the reference provided below (Scenario 2).

Usage
Scenario2(sigmak = 0.1)

Arguments
sigmak Standard deviation of the error term

Value
Return a list made of the following items
Y Matrix of simulated gene expression
X Matrix of simulated CGH
Xi True matrix of hidden states
A Empirical transition matrix
mu True vector of state specific mean
sd True vector of state specific sd
coeff True matrix of association coefficients between gene expression and CGH probes
distance Vector of distance between CGH probes
disfix Length of the chromosome
Author(s)
Alberto Cassese

References

Examples
data <- Scenario2(sigmak = 0.1)

TCGA_lung

TCGA lung squamous cell carcinoma data

Description
Processed and filtered TCGA lung squamous cell carcinoma data, as described in the reference.

Usage
data(TCGA_lung)

Format
The format is a list of 3 objects
$aCGH$
$Affy$
$distance$

Source
Full matrix of data obtained from https://tcga-data.nci.nih.gov/tcga/.

References

Examples
data <- data(TCGA_lung)
Description

This function computes the transition matrix corresponding to a specific matrix of latent states.

Usage

\[\text{Tran}(x_i) \]

Arguments

- \(x_i \): Matrix of estimated latent states

Details

The matrix of latent states must consider only 4 states:

1. Loss
2. Neutral
3. Gain
4. Amplification

Value

A 4 by 4 matrix with transition probabilities derived from the input matrix of latent states.

Author(s)

Alberto Cassese

References

Examples

```r
data(NCI_68)
X <- NCI_68$acgh
xi <- InitXi(X)
tran <- Tran(xi)
```
Index

*Topic** Main
 iBAT, 4
 iBATProbit, 6

*Topic** Package
 iBATCGH-package, 2

*Topic** Postprocessing
 Inference, 8
 InferenceA, 10
 InferenceMu, 11
 InferenceR, 12
 InferenceSd, 13
 InferenceXi, 14

*Topic** Preprocessing
 Center, 3
 Tran, 21

*Topic** Prerocessing
 InitMu, 15

*Topic** Simulated data
 Scenario1, 18
 Scenario2, 19

*Topic** datasets
 NCI_60, 17
 TCGA_lung, 20

Center, 3

iBAT, 4
iBATCGH (iBATCGH-package), 2
iBATCGH-package, 2
iBATProbit, 6
Inference, 8, 10–14
InferenceA, 10
InferenceMu, 11
InferenceR, 9, 12
InferenceSd, 13
InferenceXi, 9, 14
InitMu, 15
InitXi, 16

NCI_60, 17

RListToVector, 17
Scenario1, 18
Scenario2, 19
TCGA_lung, 20
Tran, 16, 21