Package ‘iCARH’

August 27, 2020

Version 2.0.2.1
Date 2020-08-23
Title Integrative Conditional Autoregressive Horseshoe Model

Description Implements the integrative conditional autoregressive horseshoe model discussed in Jendoubi, T., Ebbels, T.M. Integrative analysis of time course metabolic data and biomarker discovery. BMC Bioinformatics 21, 11 (2020) <doi:10.1186/s12859-019-3333-0>. The model consists in three levels: Metabolic pathways level modeling interdependencies between variables via a conditional auto-regressive (CAR) component, integrative analysis level to identify potential associations between heterogeneous omic variables via a Horseshoe prior and experimental design level to capture experimental design conditions through a mixed-effects model. The package also provides functions to simulate data from the model, construct pathway matrices, post process and plot model parameters.

Depends rstan, MASS, stats, ggplot2, glue

biocViews

Imports RCurl, KEGGgraph, igraph, reshape2, mc2d, abind, Matrix

Suggests knitr, rmarkdown

VignetteBuilder knitr

License GPL (>= 3)

RoxygenNote 7.1.1

Encoding UTF-8

NeedsCompilation no

Author Takoua Jendoubi [aut, cre], Timothy M.D. Ebbels [aut]

Maintainer Takoua Jendoubi <t.jendoubi14@imperial.ac.uk>

Repository CRAN

Date/Publication 2020-08-27 07:50:07 UTC
iCARH.getBeta

Description

Group of functions to return model parameters of interest

Usage

iCARH.getBeta(fit)
iCARH.getARCoeff(fit)
iCARH.getTreatmentEffect(fit)
iCARH.getPathwaysCoeff(fit, path.names = NULL)
iCARH.getDataImputation(fit)

Arguments

fit Object returned by iCARH.model
path.names pathway names

Value

the iCARH.get[*] functions return an array with corresponding model parameters MCMC draws.

Functions

- iCARH.getBeta: Get beta parameter draws from all chains combined
- iCARH.getARCoeff: return theta coefficients
- iCARH.getTreatmentEffect: return alpha coefficients
- iCARH.getPathwaysCoeff: return phi coefficients
- iCARH.getDataImputation: return complete data (including imputed data)
Builds pathways adjacency matrices

Description

Builds pathways adjacency matrices from specified KEGG identifiers. Returns a list of pathway adjacency matrices based on shortest paths.

Usage

iCARH.getPathwaysMat(keggid, org)

Arguments

keggid KEGG identifiers as specified in KEGG. keggid is list that might contain multiple identifiers per metabolite.
org organism

Value

list of pathway matrices based on shortest paths between two metabolites

Examples

keggid = list("C08363")
iCARH.getPathwaysMat(keggid, "rno")
gc()
keggid = list("Unk1", "C00350",c("C08363", "C01245"))
iCARH.getPathwaysMat(keggid, "rno")
gc()
iCARH.model
Runs the integrative CAR Horseshoe model

Description
Infers treatment effects, association with heterogeneous omic variables, pathway perturbation among other parameters (e.g. time dependence). Regression coefficients (beta parameter) are initialized using a univariate regression ignoring time and metabolite dependence.

Usage
```r
iCARH.model(
  X,
  Y = NULL,
  drug,
  groups = NULL,
  pathways,
  tau = 1.2,
  NA_value = -99999,
  init = T,
  ...
)
```

Arguments
- **X**: the metabolomics time-course data with dimensions timepoints x observations x variables
- **Y**: the additional omic time-course data with dimensions timepoints x observations x variables
- **drug**: treatment effect. Could be either continuous (an administered drug or other external factor) or binary (cases vs controls). In the binary case the groups argument can be safely removed. NA values not allowed in drug. Dimensions are timepoints x observations
- **groups**: grouping vector (binary). Use when drug is continuous.
- **pathways**: pathway adjacency matrices as returned by iCARH.getPathsMat
- **tau**: global sparsity parameter τ as in Jendoubi, T., & Ebbels, T. (2018)
- **NA_value**: NA values are incompatible with stan. This is a wrapper to encode missing values in X and Y. NAs will be replaced by NA_value and will be inferred (only for X and Y data).
- **init**: If TRUE use iCARH provided initialization function. Passed to Stan otherwise. Please see Stan manual on init possible values.
- **...**: additional stan parameters

Value
- stan object
Examples

data.sim = iCARH.simulate(4, 8, 10, 2, 2, path.probs=0.3, Zgroupeff=c(0,4),
beta.val=c(1,-1,0.5, -0.5))
XX = data.sim$XX
Y = data.sim$Y
Z = data.sim$Z
pathways = data.sim$pathways

rstan_options(auto_write = TRUE)
options(mc.cores = 2)
fit = iCARH.model(XX, Y, Z, groups=rep(c(0,1), each=4), pathways,
control = list(adapt_delta = 0.99, max_treedepth=10), iter = 2, chains = 2)

iCARH.params

Summarize and return model parameters

Description

Group of functions to summarize and return model parameters of interest

Usage

```r
iCARH.params(
  fit,
  pars = c("theta", "alpha", "beta", "phi"),
  path.names = NULL,
  prob = 0.95,
  use_cache = TRUE,
  digits = 2,
  ...
)
```

Arguments

- **fit**: Object returned by `iCARH.model`
- **pars**: Parameters of interest ("theta","alpha","beta","phi"). All parameters by default.
- **path.names**: Specify pathway names.
- **prob**: Confidence level. Defaults to 0.95.
- **use_cache**: passed to stan summary method.
- **digits**: The number of significant digits for printing out the summary; defaults to 2. The effective sample size is always rounded to integers.
- **...**: not used currently
Value
contain summaries for all chains. Included in the summaries are means, standard deviations (Est.Error), effective sample sizes (Eff.Sample), and split Rhats. Monte Carlo standard errors (MC.Error) are also reported.

Functions
• iCARH.params: Summary of model parameters

Examples

```r
data.sim = iCARH.simulate(4, 10, 14, 8, 2, path.probs=0.3, Zgroupeff=c(0,4),
                              beta.val=c(1,-1,0.5, -0.5))
XX = data.sim$XX
Y = data.sim$Y
Z = data.sim$Z
pathways = data.sim$pathways

rstan_options(auto_write = TRUE)
options(mc.cores = 2)
fit = iCARH.model(XX, Y, Z, groups=rep(c(0,1), each=5), pathways,
                   control = list(adapt_delta = 0.99, max_treedepth=10), iter = 2, chains = 2)
if(!is.null(fit$icarh))
iCARH.params(fit)
```

iCARH.plotBeta

Postprocess and plot model parameters

Description
Group of functions to postprocess and plot model parameters of interest, compute WAIC (Watanabe-Akaike Information Criterion) and MADs (Mean Absolute Deviation) for posterior predictive checks and check normality assumptions.

Usage

```r
iCARH.plotBeta(fit, indx = TRUE, indy = TRUE)
iCARH.plotARCoeff(fit, indx = TRUE)
iCARH.plotTreatmentEffect(fit, indx = TRUE)
iCARH.plotPathwayPerturbation(fit, path.names, indpath = TRUE)
iCARH.plotDataImputation(fit, indx = T, indy = T, plotx = T, ploty = T, ...)
```
\textit{iCARH.plotBeta}

\begin{verbatim}
 iCARH.checkRhats(fit)
 iCARH.checkNormality(fit)
 iCARH.waic(fit)
 iCARH.mad(fit)
\end{verbatim}

\textbf{Arguments}

- \texttt{fit}: object returned by \texttt{iCARH.model}
- \texttt{indx}: vector to specify X variables to plot. Selects all variables of X by default.
- \texttt{indy}: vector to specify Y variables to plot. Selects all variables of Y by default.
- \texttt{path.names}: pathway names
- \texttt{indpath}: vector to specify pathways to plot. Selects all pathways by default.
- \texttt{plotx}: plot X data imputation?
- \texttt{ploty}: plot Y data imputation?
- ...: passed to \texttt{ggplot2::geom_violin}

\textbf{Value}

- The \texttt{iCARH.plot[*]}} functions return a ggplot graph object. \texttt{iCARH.checkNormality} returns the normalized data. \texttt{iCARH.waic} and \texttt{iCARH.mad} return corresponding waic (scalar) and mad (vector of $J \times (J + 1)/2$) values. \texttt{iCARH.checkRhats} checks model convergence.

\textbf{Functions}

- \texttt{iCARH.plotBeta}: Plot boxplots of posterior densities of β coefficients.
- \texttt{iCARH.plotARCoef}: Plot boxplots of posterior densities of theta (time effect) coefficients.
- \texttt{iCARH.plotTreatmentEffect}: Plot boxplots of posterior densities of treatment effect coefficients.
- \texttt{iCARH.plotPathwayPerturbation}: Plot posterior densities of pathway perturbation parameters
- \texttt{iCARH.plotDataImputation}: Plot imputed values
- \texttt{iCARH.checkRhats}: check model convergence and return Rhat coefficients
- \texttt{iCARH.checkNormality}: Check normality assumptions. Returns normalized data and performs quantile-quantile plot
- \texttt{iCARH.waic}: Compute Watanabe-Akaike Information Criterion (WAIC)
- \texttt{iCARH.mad}: Compute MADs (Mean Absolute Deviation) between true covariance matrix and inferred covariance matrix for posterior predictive checks
Examples

data.sim = iCARH.simulate(4, 10, 14, 8, 2, path.probs=0.3, Zgroupeff=c(0,4),
beta.val=c(1,-1,0.5, -0.5))
XX = data.sim$XX
Y = data.sim$Y
Z = data.sim$Z
pathways = data.sim$pathways

rstan_options(auto_write = TRUE)
options(mc.cores = 2)
fit = iCARH.model(XX, Y, Z, groups=rep(c(0,1), each=5), pathways,
control = list(adapt_delta = 0.99, max_treedepth=10), iter = 2, chains = 2)
if(!is.null(fit$icarh))
gplot = iCARH.plotBeta(fit, indx=1:3, indy=1:2)

iCARH.simulate

Simulates longitudinal data based on the iCARH model.

Description

Simulates longitudinal data based on the iCARH model. Returns two types of datasets with relevant parameters (see below).

Usage

iCARH.simulate(
 Tp,
 N,
 J,
 P,
 K,
 path.names = NULL,
 path.probs = FALSE,
 pathway.perturb.ratio = 0.5,
 Ygroupeff = NULL,
 Zgroupeff = NULL,
 fe = 0,
 num.corr.y = 0,
 beta.val = NULL,
 sigma2 = 1,
 arz = 0.7,
 sdx = 0.01
)
iCARH.simulate

Arguments

Tp number of time points
N number of samples (by default first N/2 controls and last N/2 cases)
J number of metabolites
P number of pathways (will probably change)
K number of bacteria profiles (Y variables)
path.names pathways to sample from as specified in KEGG. If not specified, path.probs will be considered.
path.probs if TRUE, KEGG like density of pathways per metabolite is used to sample from. If scalar, path.probs is the expected ratio of metabolites in each pathway. Needs to be specified if path.names is not.
pathway.perturb.ratio expected ratio of perturbed pathways
Ygroup eff vector of 2xK variables (treatment effect on Y variables)
Zgroup eff vector of 2 variables for treatment effect
fe fixed effect
num.corr.y number of correlated Y variables. The last num.corr.y will be highly correlated to the first num.corr.y variables
beta.val beta values (regression coefficients) to sample from. Values will be randomly sampled if not specified.
sigma2 individual variance of metabolites
arz autoregressive coefficient for treatment simulation
sdx noise for autoregressive process, recommended value is 0.01

Value

list with the following objects:

XX metabolomics data, X data
Y additional omic data, Y data
Z treatment
beta effects of Y variables on X variables, column K+1 represents effect of treatment on X variables
pathways pathway adjacency matrices
path.perturb which pathways are perturbed?
phi "spatial" dependence parameter, indicative of pathway perturbation
arx autoregressive coefficients for X data
ary autoregressive coefficients for Y data

Examples

data.sim = iCARH.simulate(4, 8, 10, 2, 2, path.probs=0.3, Zgroup eff=c(0,4),
beta.val=c(1,-1,0.5, -0.5))
Index

iCARH.checkNormality (iCARH.plotBeta), 6
iCARH.checkRhats (iCARH.plotBeta), 6
iCARH.getARCoeff (iCARH.getBeta), 2
iCARH.getBeta, 2
iCARH.getDataImputation
 (iCARH.getBeta), 2
iCARH.getPathwaysCoeff (iCARH.getBeta), 2
iCARH.getPathwaysMat, 3
iCARH.getTreatmentEffect
 (iCARH.getBeta), 2
iCARH.mad (iCARH.plotBeta), 6
iCARH.model, 4
iCARH.params, 5
iCARH.plotARCoeff (iCARH.plotBeta), 6
iCARH.plotBeta, 6
iCARH.plotDataImputation
 (iCARH.plotBeta), 6
iCARH.plotPathwayPerturbation
 (iCARH.plotBeta), 6
iCARH.plotTreatmentEffect
 (iCARH.plotBeta), 6
iCARH.simulate, 8
iCARH.waic (iCARH.plotBeta), 6