Package ‘iForecast’

April 26, 2022

Type Package
Title Machine Learning Time Series Forecasting
Version 1.0.5
Date 2022-04-26
Author Ho Tsung-wu
Maintainer Ho Tsung-wu <tsungwu@ntnu.edu.tw>
Description Compute both static onestep and iterative multistep time series forecasts of machine learning models.
License GPL (>= 2)
LazyData TRUE
LazyLoad yes
Depends R (>= 3.5), caret, zoo
Imports magrittr
Suggests data.table, forecast, h2o, keras, kernlab, lubridate, tensorflow, tibble, timeSeries, timeDate, timetk
NeedsCompilation no
Repository CRAN
Date/Publication 2022-04-26 11:20:06 UTC

R topics documented:

data-sets .. 2
iForecast ... 2
rollingWindows ... 4
ttsAutoML .. 5
ttsCaret ... 6
ttsLSTM .. 9
Index 12
data-sets

Economic and Financial Data Sets

Description

ES_15m is 15-min realized absolute variance of e-mini S&P 500. macrodata contains monthly US unemployment(unrate), ES_Daily is daily realized absolute variance of e-mini S&P 500. macrodata contains monthly US unemployment(unrate) and and year-to-year changes in three regional business cycle indices (OECD, NAFTA, and G7). bc contains monthly business cycle data, bc is binary indicator(0=recession, 1=boom) of Taiwan’s business cycle phases, IPI_TWN is industrial production index of Taiwan, LD_OECD, LD_G7, and LD_NAFTA is leading indicators of OECD, G7 and NAFTA regions; all four are monthly rate of changes.

Usage

```
data(ES_15m)
data(macrodata)
data(ES_Daily)
data(bc)
```

Value

an object of class "zoo".

iForecast

Extract predictions and class probabilities from train objects

Description

It generates both the static and recursive time series plots of machine learning prediction object generated by ttsCaret, ttsAutoML and ttsLSTM.

Usage

```
iForecast(Model,newdata,type)
```

Arguments

- **Model**: Object of trained model.
- **newdata**: The dataset for prediction, the column names must be the same as the trained data.
- **type**: If type="staticfit", it computes the direct (static) forecasting values of insample model fit; if type="recursive", it computes the recursive (dynamic) forecasting values of insample model; for recursive forecasts, AR term is required.
Details

This function generates forecasts of `ttsCaret`, `ttsAutoML`, and `ttsLSTM`.

Value

- **prediction**: The forecasted time series target variable. For binary case, it returns both probabilities and class.

Author(s)

Ho Tsung-wu <tsungwu@ntnu.edu.tw>, College of Management, National Taiwan Normal University.

Examples

```r
# Cross-validation takes time, example below is commented.
## Machine Learning by library(caret)
#Case 1. Low frequency, regression type
data("macrodata")
dep <- macrodata[569:669, "unrate", drop=FALSE]
ind <- macrodata[569:669,-1,drop=FALSE]
train.end <- "2018-12-01" # Choosing the end dating of train
models <- c("svm","rf","rpart")[3]
type <- c("none","trend","season","both")[1]
Caret <- ttsCaret(y=dep, x=ind, arOrder=c(1), xregOrder=c(1),
  method=models, tuneLength =1, train.end, type=type,resampling="cv")
testData1 <- window(Caret$data,start="2019-01-01",end=end(Caret$data))
P1 <- iForecast(Model=Caret,newdata=testData1,type="staticfit")
P2 <- iForecast(Model=Caret,newdata=testData1,type="recursive")

tail(cbind(testData1[,1],P1))
tail(cbind(testData1[,1],P2))

#Case 2. Low frequency, binary type
data(bc) #binary dependent variable, business cycle phases
dep=bc[,1,drop=FALSE]
ind=bc[,,-1]
train.end=as.character(rownames(dep))[as.integer(nrow(dep)*0.8)]
test.start=as.character(rownames(dep))[as.integer(nrow(dep)*0.8)+1]
Caret = ttsCaret(y=dep, x=ind, arOrder=c(1), xregOrder=c(1), method=models,
  # tuneLength =10, train.end, type=type)
#testData1=window(Caret$data,start=test.start,end=end(Caret$data))

#head(Caret$dataused)
#P1=iForecast(Model=Caret,newdata=testData1,type="staticfit")
#P2=iForecast(Model=Caret,newdata=testData1,type="recursive")

tail(cbind(testData1[,1],P1),10)
```
rollingWindows

Rolling timeframe for time series analysis

Description
It extracts time stamp from a timeSeries object and separates the time into in-sample training and out-of-sample validation ranges.

Usage
rollingWindows(x, estimation="18m", by = "6m")

Arguments
x
The time series matrix of dependent variable, with timeSeries or zoo format.
estimation
The range of in-sample estimation period, the default is 18 months (18m), where the k-fold cross-section is performed.
by
The range of out-of-sample validation/testing period, the default is 6 months (6m).

Details
This function is similar to the backtesting framework in portfolio analysis. Rolling windows fixes the origin and the training sample grows over time, moving windows can be achieved by placing window() on dependent variable at each iteration.

Value
window
The time labels of from and to

Author(s)
Ho Tsung-wu <tsungwu@ntnu.edu.tw>, College of Management, National Taiwan Normal University.

Examples

data(macrodata)
dep=macrodata[,1,drop=FALSE]
ind=macrodata[,-1,drop=FALSE]

timeframe=rollingWindows(dep, estimation="300m", by = "6m")
FROM=timeframe$from
TO=timeframe$to
ttsAutoML

Train time series by automatic machine learning of h2o provided by H2O.ai

Description

It generates both the static and recursive time series plots of H2O.ai object generated by package h2o provided by H2O.ai.

Usage

ttsAutoML(y,x=NULL,train.end,arOrder=2,xregOrder=0,maxSecs=30)

Arguments

y

The time series vector of target variable, or the dependent variable, with zoo format, must have dimension. y can be either binary or continuous.

x

The time series matrix of input variables, or the independent variables, with zoo format.

train.end

The end date of training data, must be specified. The default dates of train.start and test.end are the start and the end of input data; and the test.start is the 1-period next of train.end.

arOrder

The autoregressive order of the target variable, which may be sequentially specified like arOrder=1:5; or discontinuous lags like arOrder=c(1,3,5); zero is not allowed.

xregOrder

The distributed lag structure of the input variables, which may be sequentially specified like xregOrder=1:5; or discontinuous lags like xregOrder=c(0,3,5); zero is allowed since contemporaneous correlation is allowed.

maxSecs

The maximal run time specified, in seconds. Default=20.
Details

This function calls the h2o.automl function from package h2o to execute automatic machine learning estimation. When execution finished, it computes two types of time series forecasts: static and recursive. The procedure of h2o.automl automatically generates a lot of time features.

Value

<table>
<thead>
<tr>
<th>output</th>
<th>Output object generated by train function of caret.</th>
</tr>
</thead>
<tbody>
<tr>
<td>arOrder</td>
<td>The autoregressive order of the target variable used.</td>
</tr>
<tr>
<td>data</td>
<td>The dataset of imputed.</td>
</tr>
<tr>
<td>dataused</td>
<td>The data used by arOrder, xregOrder</td>
</tr>
</tbody>
</table>

Author(s)

Ho Tsung-wu <tsungwu@ntnu.edu.tw>, College of Management, National Taiwan Normal University.

Examples

```r
# Cross-validation takes time, example below is commented.
data("macrodata")
dep<-macrodata[, "unrate", drop=FALSE]
ind<-macrodata[, -1, drop=FALSE]

# Choosing the dates of training and testing data
train.end<="2008-12-01"

#autoML of H2O.ai

#autoML <- ttsAutoML(y=dep, x=ind, train.end, arOrder=c(2,4),
# xregOrder=c(0,1,3), maxSecs =30)
#testData2 <- window(autoML$dataused,start="2009-01-01",end=end(autoML$data))
#P1<-iForecast(Model=autoML,newdata=testData2,type="staticfit")
#P2<-iForecast(Model=autoML,newdata=testData2,type="recursive")

tail(cbind(testData2[,1],P1))
tail(cbind(testData2[,1],P2))
```

ttsCaret

Train time series by caret and produce two types of time series forecasts: static and recursive

Description

It generates both the static and recursive time series plots of machine learning prediction object generated by package caret.
Usage

ttsCaret(
 y,
 x=NULL,
 method,
 train.end,
 arOrder=2,
 xregOrder=0,
 type,
 tuneLength =10,
 preProcess = NULL,
 resampling="boot",
 Number=NULL,
 Repeat=NULL)

Arguments

y The time series vector of target variable, or the dependent variable, with zoo format, must have dimension. y can be either binary or continuous.

x The time series matrix of input variables, or the independent variables, with zoo format.

method The train_model_list of caret. While using this, make sure that the method allows regression. Methods in c("svm","rf","rpart","gamboost","BstLm","bstSm","blackboost") are feasible.

train.end The end date of training data, must be specified. The default dates of train.start and test.end are the start and the end of input data; and the test.start is the 1-period next of train.end.

arOrder The autoregressive order of the target variable, which may be sequentially specified like arOrder=1:5; or discontinuous lags like arOrder=c(1,3,5); zero is not allowed.

xregOrder The distributed lag structure of the input variables, which may be sequentially specified like xregOrder=0:5; or discontinuous lags like xregOrder=c(0,3,5); zero is allowed since contemporaneous correlation is allowed.

type The additional input variables. We have four selection: "none"=no other variables, "trend"=inclusion of time dummy, "season"=inclusion of seasonal dummies, "both"=inclusion of both trend and season. No default.

tuneLength The same as the length specified in train function of package caret.

preProcess Whether to pre-process the data, current possibilities are "BoxCox", "YeoJohnson", "expoTrans", "center", "scale", "range", "knnImpute", "bagImpute", "medianImpute", "pca", "ica" and "spatialSign". The default is no pre-processing.

resampling The method for resampling, as trainControl function list in package caret. The default is "boot" for bootstrapping with 25 replications. Current choices are
ttsCaret

c("cv","boot","repeatedcv","LOOCV") where "cv" is K-fold CV with a default K=10 or specified by the "Number" below, "LOOCV" denotes the leave-one-out CV

Number
The number of K for K-Fold CV, default (NULL) is 10; for "boot" option, the default number of replications is 25

Repeat
The number for the repetition for "repeatedcv".

Details

This function calls the train function of package caret to execute estimation. When execution finished, we compute two types of time series forecasts: static and recursive.

Value

- **output**
 Output object generated by train function of caret.
- **arOrder**
 The autoregressive order of the target variable used.
- **data**
 The dataset of imputed.
- **dataused**
 The data used by arOrder, xregOrder, and type.
- **training.Pred**
 All tuned prediction values of training data, using besTunes to extract the best prediction.

Author(s)

Ho Tsung-wu <tsungwu@ntnu.edu.tw>, College of Management, National Taiwan Normal University.

Examples

```r
# Cross-validation takes time, example below is commented.
## Machine Learning by library(caret)
library(zoo)
#Case 1. Low frequency
data("macrodata")
dep <- macrodata[569:669,"unrate",drop=FALSE]
ind <- macrodata[569:669,-1,drop=FALSE]
train.end <- "2018-12-01" # Choosing the end dating of train
models <- c("glm","knn","nnet","rpart","rf","svm","enet","gbm","lasso","bridge")[2]
type <- c("none","trend","season","both")[1]
Caret <- ttsCaret(y=dep, x=NULL, arOrder=c(1), xregOrder=c(1),
  method=models, tuneLength =1, train.end, type=type,
  resampling=c("boot","cv","repeatedcv")[2],preProcess = "center")
testData1 <- window(Caret$data,start="2019-01-01",end=end(Caret$data))
P1 <- iForecast(Model=Caret,newdata=testData1,type="staticfit")
P2 <- iForecast(Model=Caret,newdata=testData1,type="recursive")
tail(cbind(testData1[,1],P1,P2))

#Case 2. High frequency
```

#head(ES_15m)
#head(ES_Daily)
#dep <- ES_15m #SP500 15-minute realized absolute variance
#ind <- NULL
#train.end <- as.character(rownames(dep))[as.integer(nrow(dep)*0.9)]

#models<-c("svm","rf","rpart","gamboost","BstLm","bstSsm","blackboost")[1]
#type<-c("none","trend","season","both")[1]
Caret <- ttsCaret(y=dep, x=ind, arOrder=c(3,5), xregOrder=c(0,2,4),
method=models, tuneLength =10, train.end, type=type,
resampling=c("boot","cv","repeatedcv")[2],preProcess = "center")
#testData1<-window(Caret$data,start="2009-01-01",end=end(Caret$data))
#P1<-iForecast(Model=Caret,newdata=testData1,type="staticfit")
#P2<-iForecast(Model=Caret,newdata=testData1,type="recursive")

ttsLSTM

Train time series by LSTM of tensorflow provided by keras

Description

It generates both the static and recursive time series plots of deep learning LSTM object generated by package tensorflow provided by keras.

Usage

```r
library(ttsLSTM)

# Time series data
y <- zoo(c(1, 2, 3, 4, 5), order.by = as.Date("2020-01-01", "2020-01-05"))
ind <- NULL

# Train end date
train.end <- c(4)

# LSTM model parameters
models <- c("svm","rf","rpart","gamboost","BstLm","bstSsm","blackboost")[1]

# Caret model
Caret <- ttsCaret(y, x, arOrder = c(3,5), xregOrder = c(0,2,4),
                  method = models, tuneLength = 10, train.end, type = type,
                  resampling = c("boot", "cv", "repeatedcv"),
                  preProcess = "center")

# Forecast models
P1 <- iForecast(Model = Caret, newdata = testData1, type = "staticfit")
P2 <- iForecast(Model = Caret, newdata = testData1, type = "recursive")
```

Arguments

- **y**: The time series vector of target variable, or the dependent variable, with zoo format, must have dimension. Currently, y can be both continuous and discrete.
- **x**: The time series matrix of input variables, or the independent variables, with zoo format.
- **train.end**: The end date of training data, must be specified. The default dates of train.start and test.end are the start and the end of input data; and the test.start is the 1-period next of train.end.
arOrder The autoregressive order of the target variable, which may be sequentially specified like arOrder=1:5; or discontinuous lags like arOrder=c(1,3,5); zero is not allowed. Default is 1.

xregOrder The distributed lag structure of the input variables, which may be sequentially specified like xregOrder=1:5; or discontinuous lags like xregOrder=c(0,3,5); zero is allowed since contemporaneous correlation is allowed.

type The additional input variables. We have four selection: "none"=no other variables, "trend"=inclusion of time dummy, "season"=inclusion of seasonal dummies, "both"=inclusion of both trend and season. No default.

memoryLoops Length of LSTM learning network loop, to achieve better learning results, this not is suggested to be the same as the length of data row. Default is 10.0.

shape The second dimension of LSTM array. If NULL, then it will use the number of columns of complete dataset.

dim3 The third dimension of LSTM array. Default is 5.

batch.range The range of search batch.size. The code selects the first that satisfies exact division with the rows of data used.

batch.size The number of batch size for LSTM layer. Default is NULL determined by searching among the batch.range.

Details

This function calls the function fit of package tensorflow to execute Long-Short Term Memory (LSTM) estimation. When execution finished, it computes two types of time series forecasts: static and recursive.

Value

output The batch.size used for LSTM network.

batch.size The third dimension of array in LSTM network.

k The shape size of array in LSTM network.

SHAPEx The dataset of used.

data The data used by arOrder, xregOrder, and type

dataused

Author(s)

Ho Tsung-wu <tsungwu@ntnu.edu.tw>, College of Management, National Taiwan Normal University.
Examples

Cross-validation takes time, example below is commented.
data("macrodata")
dep<-macrodata[,"unrate",drop=FALSE]
ind<-macrodata[,,-1,drop=FALSE]

Choosing the dates of training and testing data
train.end<-"2008-12-01"

ttsLSTM(y=dep, x=ind, train.end, arOrder=c(2,4), xregOrder=c(1,4),
memoryLoops=5, type=c("none","trend","season","both")[4],
batch.range=2:7,batch.size=NULL)

testData3<-window(LSTM$dataused,start="2009-01-01",end=end(LSTM$data))
P1<-iForecast(Model=LSTM,newdata=testData3,type="staticfit")
P2<-iForecast(Model=LSTM,newdata=testData3,type="recursive")

tail(cbind(testData3[,1],P1,P2))
Index

* datasets
 data-sets, 2
bc (data-sets), 2
data-sets, 2
ES_15m (data-sets), 2
ES_Daily (data-sets), 2
iForecast, 2
macrodata (data-sets), 2
rollingWindows, 4
ttsAutoML, 5
ttsCaret, 6
ttsLSTM, 9