Package ‘iRF’

July 26, 2017

Title iterative Random Forests
Version 2.0.0
Date 2017-07-25
Depends R (>= 3.1.2),
Imports AUC, Matrix, data.table, dplyr, Rcpp, methods, foreach,
doParallel, RColorBrewer
Suggests MASS, rgl
LinkingTo Rcpp
SystemRequirements C++11
Author Sumanta Basu and Karl Kumbier (based on source codes from the R packages FSInter-
 act by Hyun Jik Kim and Rajen D. Shah, randomForest by Andy Liaw and Matthew Wiener, and the original Fort-
 tran codes by Leo Breiman and Adele Cutler)
Description Iteratively grows feature weighted random forests and finds high-
order feature interactions in a stable fashion.
Maintainer Karl Kumbier <kkumbier@berkeley.edu>
License GPL-2
NeedsCompilation yes
Repository CRAN
Date/Publication 2017-07-26 04:57:45 UTC

R topics documented:

classCenter ... 2
combine .. 3
getTree .. 4
grow ... 5
importance ... 6
imports85 ... 7
Prototypes of groups.

Description

Prototypes are ‘representative’ cases of a group of data points, given the similarity matrix among the points. They are very similar to medoids. The function is named ‘classCenter’ to avoid conflict with the function prototype in the methods package.

Usage

classCenter(x, label, prox, nNbr = min(table(label))-1)

Arguments

x a matrix or data frame
label group labels of the rows in x
prox the proximity (or similarity) matrix, assumed to be symmetric with 1 on the diagonal and in [0, 1] off the diagonal (the order of row/column must match that of x)
nNbr number of nearest neighbors used to find the prototypes.
combine

Combine Ensembles of Trees

Description

Combine two or more more ensembles of trees into one.

Usage

combine(...)

Arguments

... two or more objects of class randomForest, to be combined into one.

Value

An object of class randomForest.
Note

The confusion, err.rate, mse and rsq components (as well as the corresponding components in the test component, if exist) of the combined object will be NULL.

Author(s)

Andy Liaw

See Also

randomforest, grow

Examples

data(iris)
rf1 <- randomforest(Species ~ ., iris, ntree=50, norm.votes=FALSE)
rf2 <- randomforest(Species ~ ., iris, ntree=50, norm.votes=FALSE)
rf3 <- randomforest(Species ~ ., iris, ntree=50, norm.votes=FALSE)
rf.all <- combine(rf1, rf2, rf3)
print(rf.all)

getTree

Extract a single tree from a forest.

Description

This function extract the structure of a tree from a randomforest object.

Usage

getAddress(rfobj, k=1, labelVar=FALSE)

Arguments

rfobj a randomForest object.

k which tree to extract?

labelVar Should better labels be used for splitting variables and predicted class?

Details

For numerical predictors, data with values of the variable less than or equal to the splitting point go to the left daughter node.

For categorical predictors, the splitting point is represented by an integer, whose binary expansion gives the identities of the categories that goes to left or right. For example, if a predictor has four categories, and the split point is 13. The binary expansion of 13 is (1, 0, 1, 1) (because $13 = 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$), so cases with categories 1, 3, or 4 in this predictor get sent to the left, and the rest to the right.
Value

A matrix (or data frame, if labelVar=TRUE) with six columns and number of rows equal to total number of nodes in the tree. The six columns are:

- **left daughter**: the row where the left daughter node is; 0 if the node is terminal
- **right daughter**: the row where the right daughter node is; 0 if the node is terminal
- **split var**: which variable was used to split the node; 0 if the node is terminal
- **split point**: where the best split is; see Details for categorical predictor
- **status**: is the node terminal (-1) or not (1)
- **prediction**: the prediction for the node; 0 if the node is not terminal

Author(s)

Andy Liaw

See Also

randomforest

Examples

data(iris)
Look at the third trees in the forest.
getTree(randomForest(iris[, -5], iris[, 5], ntree=10), 3, labelVar=TRUE)

grow

Add trees to an ensemble

Description

Add additional trees to an existing ensemble of trees.

Usage

```r
## S3 method for class 'randomForest'
grow(x, how.many, ...)
```

Arguments

- **x**: an object of class randomForest, which contains a forest component.
- **how.many**: number of trees to add to the randomForest object.
- **...**: currently ignored.

Value

An object of class randomForest, containing how.many additional trees.
importance

Note

The confusion, err.rate, mse and rsq components (as well as the corresponding components in the test component, if exist) of the combined object will be NULL.

Author(s)

Andy Liaw

See Also

combine, randomForest

Examples

data(iris)
iris.rf <- randomforest(Species ~ ., iris, ntree=50, norm.votes=FALSE)
iris.rf <- grow(iris.rf, 50)
print(iris.rf)

importance Extract variable importance measure

Description

This is the extractor function for variable importance measures as produced by randomForest.

Usage

S3 method for class 'randomForest'
importance(x, type=NULL, class=NULL, scale=TRUE, ...)

Arguments

x an object of class randomForest.
type either 1 or 2, specifying the type of importance measure (1=mean decrease in accuracy, 2=mean decrease in node impurity).
class for classification problem, which class-specific measure to return.
scale For permutation based measures, should the measures be divided their “standard errors”?
... not used.
Details

Here are the definitions of the variable importance measures. The first measure is computed from permuting OOB data: For each tree, the prediction error on the out-of-bag portion of the data is recorded (error rate for classification, MSE for regression). Then the same is done after permuting each predictor variable. The difference between the two are then averaged over all trees, and normalized by the standard deviation of the differences. If the standard deviation of the differences is equal to 0 for a variable, the division is not done (but the average is almost always equal to 0 in that case).

The second measure is the total decrease in node impurities from splitting on the variable, averaged over all trees. For classification, the node impurity is measured by the Gini index. For regression, it is measured by residual sum of squares.

Value

A matrix of importance measure, one row for each predictor variable. The column(s) are different importance measures.

See Also

randomForest, varImpPlot

Examples

data(iris)
set.seed(4543)
iris.rf <- randomForest(Species ~ ., data=iris, importance=TRUE)
importance(iris.rf)

imports85 The Automobile Data

Description

This is the ‘Automobile’ data from the UCI Machine Learning Repository.

Usage

data(imports85)

Format

imports85 is a data frame with 205 cases (rows) and 26 variables (columns). This data set consists of three types of entities: (a) the specification of an auto in terms of various characteristics, (b) its assigned insurance risk rating, (c) its normalized losses in use as compared to other cars. The second rating corresponds to the degree to which the auto is more risky than its price indicates. Cars are initially assigned a risk factor symbol associated with its price. Then, if it is more risky
(or less), this symbol is adjusted by moving it up (or down) the scale. Actuarians call this process ‘symboling’. A value of +3 indicates that the auto is risky, -3 that it is probably pretty safe.

The third factor is the relative average loss payment per insured vehicle year. This value is normalized for all autos within a particular size classification (two-door small, station wagons, sports/speciality, etc...), and represents the average loss per car per year.

Author(s)

Andy Liaw

Source

The original data is at http://www.ics.uci.edu/~mlearn/MLSummary.html.

References

1985 Model Import Car and Truck Specifications, 1985 Ward’s Automotive Yearbook.
Personal Auto Manuals, Insurance Services Office, 160 Water Street, New York, NY 10038
Insurance Collision Report, Insurance Institute for Highway Safety, Watergate 600, Washington, DC 20037

See Also

randomForest

Examples

data(imports85)
head(imports85)

iRF

iteratively grows weighted random forests, finds stable feature interactions

Description

Using repeated calls to `iRF::randomForest`, this function iteratively grows weighted ensembles of decision trees. Optionally, return stable feature interactions for select iterations by analyzing feature usage on decision paths of large leaf nodes. For details on the iRF algorithm, see https://arxiv.org/abs/1706.08457.
Usage

\[
iRF(x, y, xtest=NULL, ytest=NULL,
 n.iter=5,
 ntree=500,
 n.core=1,
 mtry.select.prob = rep(1/ncol(x), ncol(x)),
 keep.impvar.quantile=NULL,
 interactions.return=NULL,
 wt.pred.accuracy=FALSE,
 cutoff.unimp.feature = 0,
 rit.param=list(depth=5, ntree=100, nchild=2,
 class.id=1, class.cut=NULL),
 varnames.grp=NULL,
 n.bootstrap=30,
 bootstrap.forest=TRUE,
 verbose=TRUE,
 ...
)
\]

Arguments

\begin{itemize}
 \item \texttt{x, xtest} \hspace{1cm} numeric matrices of predictors
 \item \texttt{y, ytest} \hspace{1cm} response vectors
 \item \texttt{n.iter} \hspace{1cm} number of weighted random forest iterations
 \item \texttt{ntree} \hspace{1cm} number of trees to grow in each iteration
 \item \texttt{n.core} \hspace{1cm} number of cores across which tree growing and reading should be distributed
 \item \texttt{mtry.select.prob} \hspace{1cm} initial weights specified for first random forest fit, defaults to equal weights
 \item \texttt{keep.impvar.quantile} \hspace{1cm} a nonnegative fraction \(q \). If provided, all the variables with Gini importance in the top \(100\times q \) percentile are retained during random splitting variable selection in the next iteration
 \item \texttt{interactions.return} \hspace{1cm} a numeric vector specifying which iterations to evaluate interactions for. Note: interaction computation is computationally intensive particularly when \texttt{n.bootstrap} is large.
 \item \texttt{wt.pred.accuracy} \hspace{1cm} Should leaf nodes be sampled proportional to both size and accuracy (\texttt{TRUE}) or just size (\texttt{FALSE})?
 \item \texttt{cutoff.unimp.feature} \hspace{1cm} a non-negative fraction \(r \). If provided, only features with Gini importance score in the top \(100\times(1-r) \) percentile are used to find feature interactions
 \item \texttt{rit.param} \hspace{1cm} a named list, containing entries to specify depth: depth of random intersection trees \texttt{ntree} number of random intersection trees \texttt{nchild} number of children in each split of a random intersection tree \texttt{class.id} which class of observations will be used to find class-specific interaction? Choose between 0 or 1. Default
\end{itemize}
is set to 1. Ignored if regression forest. `class.cut`: threshold to determine leaf nodes that are used to find interactions. Any leaf nodes with prediction greater than specified threshold will be used as input to RIT. If `NULL`, all leaf nodes from regression iRF will be used as input to RIT. Ignored if classification forest

`varnames.grp` If features can be grouped based on their demographics or correlation patterns, use the group of features or "hyper-feature"s to conduct random intersection trees

`n.bootstrap` Number of bootstraps replicates used to calculate stability scores of interactions obtained by RIT

`bootstrap.forest` Should a new Random Forest be constructed for each bootstrap sample to evaluate stability? Setting to `FALSE` results in faster runtime.

`verbose` Display progress messages and intermediate outputs on screen?

... additional arguments passed to `iRF::randomForest`

Value

A list containing the following items:

- `rf.list` A list of `n.iter` objects of the class `randomForest`
- `interaction` A list of length `n.iter`. Each element of the list contains a named numeric vector of stability scores, where the names are candidate interactions (feature names separated by "_"). defined as frequently appearing features and feature combinations on the decision paths of large leaf nodes

Author(s)

Sumanta Basu <sumbose@berkeley.edu>, Karl Kumbier <kkumbier@berkeley.edu>

See Also

`randomForest`, `readForest`

margin

Margins of `randomForest` Classifier

Description

Compute or plot the margin of predictions from a randomForest classifier.

Usage

```r
## S3 method for class 'randomForest'
margin(x, ...)
## Default S3 method:
margin(x, observed, ...)
## S3 method for class 'margin'
plot(x, sort=TRUE, ...)
```
Arguments

x an object of class `randomForest`, whose type is not regression, or a matrix of predicted probabilities, one column per class and one row per observation. For the plot method, x should be an object returned by `margin`.

observed the true response corresponding to the data in x.

sort Should the data be sorted by their class labels?

... other graphical parameters to be passed to `plot.default`.

Value

For `margin`, the margin of observations from the `randomForest` classifier (or whatever classifier that produced the predicted probability matrix given to `margin`). The margin of a data point is defined as the proportion of votes for the correct class minus maximum proportion of votes for the other classes. Thus under majority votes, positive margin means correct classification, and vice versa.

Author(s)

Robert Gentlemen, with slight modifications by Andy Liaw

See Also

`randomForest`

MDSplot

Multi-dimensional Scaling Plot of Proximity matrix from randomForest

Description

Plot the scaling coordinates of the proximity matrix from randomForest.

Usage

MDSplot(rf, fac, k=2, palette=NULL, pch=20, ...)

Arguments

rf an object of class `randomForest` that contains the proximity component.

fac a factor that was used as response to train rf.

k number of dimensions for the scaling coordinates.

palette colors to use to distinguish the classes; length must be the equal to the number of levels.

pch plotting symbols to use.

... other graphical parameters.
Value

The output of `cmdscale` on `1 - rf$proximity` is returned invisibly.

Note

If `k > 2`, `pairs` is used to produce the scatterplot matrix of the coordinates.

Author(s)

Robert Gentleman, with slight modifications by Andy Liaw

See Also

`randomForest`

Examples

```r
set.seed(1)
data(iris)
iris.rf <- randomForest(Species ~ ., iris, proximity=TRUE, keep.forest=FALSE)
MDSpplot(iris.rf, iris$Species)
## Using different symbols for the classes:
MDSpplot(iris.rf, iris$Species, palette=rep(1, 3), pch=as.numeric(iris$Species))
```

na.roughfix

Rough Imputation of Missing Values

Description

Impute Missing Values by median/mode.

Usage

```r
na.roughfix(object, ...)
```

Arguments

- `object`: a data frame or numeric matrix.
- `...`: further arguments special methods could require.

Value

A completed data matrix or data frame. For numeric variables, NAs are replaced with column medians. For factor variables, NAs are replaced with the most frequent levels (breaking ties at random). If `object` contains no NAs, it is returned unaltered.
Note

This is used as a starting point for imputing missing values by random forest.

Author(s)

Andy Liaw

See Also

rfImpute, randomForest.

Examples

data(iris)
iris.na <- iris
set.seed(111)
artificially drop some data values.
for (i in 1:4) iris.na[sample(150, sample(20)), i] <- NA
iris.roughfix <- na.roughfix(iris.na)
iris.narf <- randomForest(Species ~ ., iris.na, na.action=na.roughfix)
print(iris.narf)

outlier Compute outlying measures

Description

Compute outlying measures based on a proximity matrix.

Usage

Default S3 method:
outlier(x, cls=NULL, ...)
S3 method for class 'randomForest'
outlier(x, ...)

Arguments

x a proximity matrix (a square matrix with 1 on the diagonal and values between 0 and 1 in the off-diagonal positions); or an object of class randomForest, whose type is not regression.

cls the classes the rows in the proximity matrix belong to. If not given, all data are assumed to come from the same class.

... arguments for other methods.
Value

A numeric vector containing the outlying measures. The outlying measure of a case is computed as \(n / \text{sum(squared proximity)} \), normalized by subtracting the median and divided by the MAD, within each class.

See Also

randomForest

Examples

```r
set.seed(1)
iris.rf <- randomForest(iris[, -5], iris[, 5], proximity=TRUE)
plot(outlier(iris.rf), type="h",
     col=c("red", "green", "blue")[as.numeric(iris$Species)])
```

partialPlot | Partial dependence plot

Description

Partial dependence plot gives a graphical depiction of the marginal effect of a variable on the class probability (classification) or response (regression).

Usage

```r
## S3 method for class 'randomForest'
partialPlot(x, pred.data, x.var, which.class, w, plot = TRUE, add = FALSE,
        n.pt = min(length(unique(pred.data[, xname])), 51),
        rug = TRUE, xlab=deparse(substitute(x.var)), ylab="",
        main=paste("Partial Dependence on", deparse(substitute(x.var))), ...
```

Arguments

- `x`: an object of class `randomForest`, which contains a forest component.
- `pred.data`: a data frame used for constructing the plot, usually the training data used to construct the random forest.
- `x.var`: name of the variable for which partial dependence is to be examined.
- `which.class`: For classification data, the class to focus on (default the first class).
- `w`: weights to be used in averaging; if not supplied, mean is not weighted
- `plot`: whether the plot should be shown on the graphic device.
- `add`: whether to add to existing plot (TRUE).
- `n.pt`: if `x.var` is continuous, the number of points on the grid for evaluating partial dependence.
partialPlot

- **rug**: whether to draw hash marks at the bottom of the plot indicating the deciles of `x.var`.
- **xlab**: label for the x-axis.
- **ylab**: label for the y-axis.
- **main**: main title for the plot.
- **...**: other graphical parameters to be passed on to `plot` or `lines`.

Details

The function being plotted is defined as:

\[
\hat{f}(x) = \frac{1}{n} \sum_{i=1}^{n} f(x, x_{iC}),
\]

where `x` is the variable for which partial dependence is sought, and `x_{iC}` is the other variables in the data. The summand is the predicted regression function for regression, and logits (i.e., log of fraction of votes) for which class for classification:

\[
f(x) = \log p_k(x) - \frac{1}{K} \sum_{j=1}^{K} \log p_j(x),
\]

where `K` is the number of classes, `k` is which class, and `p_j` is the proportion of votes for class `j`.

Value

A list with two components: `x` and `y`, which are the values used in the plot.

Note

The `randomForest` object must contain the `forest` component; i.e., created by setting `keep.forest=TRUE`. This function runs quite slow for large data sets.

Author(s)

Andy Liaw

References

See Also

`randomForest`

Examples

```R
data(iris)
set.seed(543)
iris.rf <- randomForest(Species~., iris)
partialPlot(iris.rf, iris, Petal.Width, "versicolor")
```
partialPlot2var

creates 3-dimensional surface plots for bivariate partial dependence functions

Description

Given two feature vectors and a response vector, produces surface maps of partial dependence function. Uses R package rgl

Usage

```r
partialPlot2var(x1, x2, y, gridlength=NULL, x1_grid=NULL, x2_grid=NULL, 
x1lab='v1', x2lab='v2', ylab=NA, range.color=NULL, col.palette=c('blue', 
'yellow'), plot_quantile_scale = TRUE, plot.colorbar=TRUE, ...)
```

Arguments

- `x1, x2, y` numeric vectors containing the first, second and the response variable
- `gridlength` If either `x1_grid` or `x2_grid` is missin, a scalar indicating length of grids against which to make the plot
- `x1_grid, x2_grid` grids of points between which the surface map will be constant
- `x1lab, x2lab, ylab` Labels of x, y and z-axis respectively
- `range.color` range of values which should be colored. input in the form (min, max). If not provided, the program automatically sets it to the range of the partial dependence function calculated on grid points
- `col.palette` Color palette, typically a vector of length 2 indicating the range of colors
- `plot_quantile_scale` If TRUE, plots against quantiles of x1 and x2 instead of their raw values
- `plot.colorbar` produce a separate colorbar for the partial dependence plot?
- `...` additional arguments to pass to rgl::persp3d

Value

A RGL plot of type persp3d() of the package rgl

Author(s)

Sumanta Basu <sumbose@berkeley.edu>

See Also

persp3d
plot.randomForest

Plot method for randomForest objects

Description

Plot the error rates or MSE of a randomForest object

Usage

```r
## S3 method for class 'randomForest'
plot(x, type="l", main=deparse(substitute(x)), ...)
```

Arguments

- `x`: an object of class `randomForest`.
- `type`: type of plot.
- `main`: main title of the plot.
- `...`: other graphical parameters.

Value

Invisibly, the error rates or MSE of the `randomForest` object. If the object has a non-null test component, then the returned object is a matrix where the first column is the out-of-bag estimate of error, and the second column is for the test set.

Note

This function does not work for `randomForest` objects that have `type=unsupervised`. If the `x` has a non-null test component, then the test set errors are also plotted.

Author(s)

Andy Liaw

See Also

`randomForest`

Examples

```r
data(iris)
plot(randomForest(Species ~ ., iris, keep.forest=FALSE, ntree=100))
```
predict.randomForest
predict method for random forest objects

Description

Prediction of test data using random forest.

Usage

```r
## S3 method for class 'randomForest'
predict(object, newdata, type="response",
         norm.votes=TRUE, predict.all=FALSE, proximity=FALSE, nodes=FALSE,
         cutoff, ...)
```

Arguments

- `object`: an object of class `randomForest`, as that created by the function `randomForest`.
- `newdata`: a data frame or matrix containing new data. (Note: If not given, the out-of-bag prediction in object is returned.
- `type`: one of `response`, `prob`, or `votes`, indicating the type of output: predicted values, matrix of class probabilities, or matrix of vote counts. `class` is allowed, but automatically converted to "response", for backward compatibility.
- `norm.votes`: Should the vote counts be normalized (i.e., expressed as fractions)? Ignored if `object$type` is `regression`.
- `predict.all`: Should the predictions of all trees be kept?
- `proximity`: Should proximity measures be computed? An error is issued if `object$type` is `regression`.
- `nodes`: Should the terminal node indicators (an n by ntree matrix) be return? If so, it is in the “nodes” attribute of the returned object.
- `cutoff`: (Classification only) A vector of length equal to number of classes. The ‘winning’ class for an observation is the one with the maximum ratio of proportion of votes to cutoff. Default is taken from the `forest$cutoff` component of object (i.e., the setting used when running `randomForest`).
- `...`: not used currently.

Value

If `object$type` is regression, a vector of predicted values is returned. If `predict.all=TRUE`, then the returned object is a list of two components: `aggregate`, which is the vector of predicted values by the forest, and `individual`, which is a matrix where each column contains prediction by a tree in the forest.

If `object$type` is classification, the object returned depends on the argument `type`:

- `response`: predicted classes (the classes with majority vote).
predict.randomForest

prob matrix of class probabilities (one column for each class and one row for each input).
vote matrix of vote counts (one column for each class and one row for each new input); either in raw counts or in fractions (if norm.votes=TRUE).

If predict.all=TRUE, then the individual component of the returned object is a character matrix where each column contains the predicted class by a tree in the forest.
If proximity=TRUE, the returned object is a list with two components: pred is the prediction (as described above) and proximity is the proximity matrix. An error is issued if object$type is regression.
If nodes=TRUE, the returned object has a “nodes” attribute, which is an \(n \times n_{\text{tree}} \) matrix, each column containing the node number that the cases fall in for that tree.

NOTE: If the object inherits from randomForest.formula, then any data with NA are silently omitted from the prediction. The returned value will contain NA correspondingly in the aggregated and individual tree predictions (if requested), but not in the proximity or node matrices.
NOTE2: Any ties are broken at random, so if this is undesirable, avoid it by using odd number \(n_{\text{tree}} \) in randomForest().

Author(s)

Andy Liaw and Matthew Wiener, based on original Fortran code by Leo Breiman and Adele Cutler.

References

See Also

randomForest

Examples

data(iris)
set.seed(111)
ind <- sample(2, nrow(iris), replace = TRUE, prob=c(0.8, 0.2))
iris.rf <- randomForest(Species ~ ., data=iris[ind == 1,])
iris.pred <- predict(iris.rf, iris[ind == 2,])
table(observed = iris[ind==2, "Species"], predicted = iris.pred)
Get prediction for all trees.
predict(iris.rf, iris[ind == 2,], predict.all=TRUE)
Proximities.
predict(iris.rf, iris[ind == 2,], proximity=TRUE)
Nodes matrix.
str(attr(predict(iris.rf, iris[ind == 2,], nodes=TRUE), "nodes"))
randomForest

Classification and Regression with Random Forest

Description

implements a weighted version of Breiman and Cutler’s randomForest algorithm for classification and regression. Grows weighted decision trees by non-uniform sampling of variables during random selection of splitting variables. Not tested for running in unsupervised mode. Source codes and documentations are largely based on the R package randomForest by Andy Liaw and Matthew Weiner.

Usage

```r
## S3 method for class 'formula'
randomForest(formula, data=NULL, ..., subset, na.action=na.fail)
## Default S3 method:
randomForest(x, y=NULL, xtest=NULL, ytest=NULL, ntree=500,
  mtry=if (is.null(y) && !is.factor(y))
    max(floor(ncol(x)/3), 1) else floor(sqrt(ncol(x))),
  mtry.select.prob = rep(1/ncol(x), ncol(x)),
  keep.subset.var = NULL,
  replace=TRUE, classwt= NULL, cutoff, strata,
  sampsize = if (replace) nrow(x) else ceiling(.632*nrow(x)),
  nodesize = if (!is.null(y) && !is.factor(y)) 5 else 1,
  maxnodes = NULL,
  importance=FALSE, localImp=FALSE, nPerm=1,
  proximity, oob.prox=proximity,
  norm.votes=TRUE, do.trace=FALSE,
  keep.forest=!is.null(y) && !is.null(xtest), corr.bias=FALSE,
  keep.inbag=FALSE,
  track.nodes=FALSE,
  ...
)
## S3 method for class 'randomForest'
print(x, ...)
```

Arguments

data

an optional data frame containing the variables in the model. By default the variables are taken from the environment which randomForest is called from.

subset

an index vector indicating which rows should be used. (NOTE: If given, this argument must be named.)

na.action

A function to specify the action to be taken if NAs are found. (NOTE: If given, this argument must be named.)

x, formula

a data frame or a matrix of predictors, or a formula describing the model to be fitted (for the print method, an randomForest object).
randomForest

y A response vector. If a factor, classification is assumed, otherwise regression is assumed. If omitted, `randomForest` will run in unsupervised mode.

xtest a matrix (like x) containing predictors for the test set.

ytest response for the test set.

ntree Number of trees to grow. This should not be set to too small a number, to ensure that every input row gets predicted at least a few times.

mtry Number of variables randomly sampled as candidates at each split. Note that the default values are different for classification (\(\sqrt{p}\) where \(p\) is number of variables in \(x\)) and regression (\(p/3\))

mtry.select.prob A p-dimensional vector of nonnegative weights (need not sum to one), to be used for importance sampling during random selection of splitting variables at nodes

keep.subset.var (optional) a subset of variables to be used during every node split, in addition to the mtry selected variables. If specified, the corresponding weights in mtry_select_prob are ignored, and importance sampling is carried out on the rest of the variables.

replace Should sampling of cases be done with or without replacement?

classwt Priors of the classes. Need not add up to one. Ignored for regression.

cutoff (Classification only) A vector of length equal to number of classes. The ‘winning’ class for an observation is the one with the maximum ratio of proportion of votes to cutoff. Default is 1/k where k is the number of classes (i.e., majority vote wins).

strata A (factor) variable that is used for stratified sampling.

sampsize Size(s) of sample to draw. For classification, if sampsize is a vector of the length the number of strata, then sampling is stratified by strata, and the elements of sampsize indicate the numbers to be drawn from the strata.

nodesize Minimum size of terminal nodes. Setting this number larger causes smaller trees to be grown (and thus take less time). Note that the default values are different for classification (1) and regression (5).

maxnodes Maximum number of terminal nodes trees in the forest can have. If not given, trees are grown to the maximum possible (subject to limits by nodesize). If set larger than maximum possible, a warning is issued.

importance Should importance of predictors be assessed?

localImp Should casewise importance measure be computed? (Setting this to `TRUE` will override importance.)

nPerm Number of times the OOB data are permuted per tree for assessing variable importance. Number larger than 1 gives slightly more stable estimate, but not very effective. Currently only implemented for regression.

proximity Should proximity measure among the rows be calculated?

oob.prox Should proximity be calculated only on “out-of-bag” data?
norm.votes If TRUE (default), the final result of votes are expressed as fractions. If FALSE, raw vote counts are returned (useful for combining results from different runs). Ignored for regression.

do.trace If set to TRUE, give a more verbose output as randomForest is run. If set to some integer, then running output is printed for every do.trace trees.

keep.forest If set to FALSE, the forest will not be retained in the output object. If xtest is given, defaults to FALSE.

corr.bias perform bias correction for regression? Note: Experimental. Use at your own risk.

keep.inbag Should an n by ntree matrix be returned that keeps track of which samples are “in-bag” in which trees (but not how many times, if sampling with replacement)

track.nodes if TRUE, will keep track of the leaf nodes that each observation falls in for each tree.

... optional parameters to be passed to the low level function randomForest.default.

Value

An object of class randomForest, which is a list with the following components:

call the original call to randomForest

type one of regression, classification, or unsupervised.

predicted the predicted values of the input data based on out-of-bag samples.

importance a matrix with nclass + 2 (for classification) or two (for regression) columns. For classification, the first nclass columns are the class-specific measures computed as mean decrease in accuracy. The nclass + 1st column is the mean decrease in accuracy over all classes. The last column is the mean decrease in Gini index. For Regression, the first column is the mean decrease in accuracy and the second the mean decrease in MSE. If importance=FALSE, the last measure is still returned as a vector.

importanceSD The “standard errors” of the permutation-based importance measure. For classification, a p by nclass + 1 matrix corresponding to the first nclass + 1 columns of the importance matrix. For regression, a length p vector.

localImp a p by n matrix containing the casewise importance measures, the [i,j] element of which is the importance of i-th variable on the j-th case. NULL if localImp=FALSE.

ntree number of trees grown.

mtry number of predictors sampled for splitting at each node.

forest (a list that contains the entire forest; NULL if randomForest is run in unsupervised mode or if keep.forest=FALSE.

err.rate (classification only) vector error rates of the prediction on the input data, the i-th element being the (OOB) error rate for all trees up to the i-th.

classification (classification only) the confusion matrix of the prediction (based on OOB data).

votes (classification only) a matrix with one row for each input data point and one column for each class, giving the fraction or number of (OOB) ‘votes’ from the random forest.
randomForest

oob.times number of times cases are ‘out-of-bag’ (and thus used in computing OOB error estimate)

proximity if proximity=TRUE when randomForest is called, a matrix of proximity measures among the input (based on the frequency that pairs of data points are in the same terminal nodes).

mse (regression only) vector of mean square errors: sum of squared residuals divided by n.

rsq (regression only) “pseudo R-squared”: 1 - mse / Var(y).

obs.nodes a matrix with nrow(x) rows and ntree columns indicating the leaf node index for each observation in each tree.

test if test set is given (through the xtest or additionally ytest arguments), this component is a list which contains the corresponding predicted, err.rate, confusion, votes (for classification) or predicted, mse and rsq (for regression) for the test set. If proximity=TRUE, there is also a component, proximity, which contains the proximity among the test set as well as proximity between test and training data.

Note

The forest structure is slightly different between classification and regression. For details on how the trees are stored, see the help page for getTree.

If xtest is given, prediction of the test set is done “in place” as the trees are grown. If ytest is also given, and do.trace is set to some positive integer, then for every do.trace trees, the test set error is printed. Results for the test set is returned in the test component of the resulting randomForest object. For classification, the votes component (for training or test set data) contain the votes the cases received for the classes. If norm.votes=TRUE, the fraction is given, which can be taken as predicted probabilities for the classes.

For large data sets, especially those with large number of variables, calling randomForest via the formula interface is not advised: There may be too much overhead in handling the formula.

The “local” (or casewise) variable importance is computed as follows: For classification, it is the increase in percent of times a case is OOB and misclassified when the variable is permuted. For regression, it is the average increase in squared OOB residuals when the variable is permuted.

Author(s)

Sumanta Basu <sumbose@berkeley.edu>, Karl Kumbier <kkumbier@berkeley.edu>, based on source codes from the R package randomForest by Andy Liaw and Matthew Weiner.

References

See Also

predict.randomForest, varImpPlot
Examples

```r
## Classification:
data(iris)
set.seed(71)
iris.rf <- randomForest(Species ~ ., data=iris, importance=TRUE,
                        proximity=TRUE)
print(iris.rf)
## Look at variable importance:
round(importance(iris.rf), 2)
## Do MDS on 1 – proximity:
iris.mds <- cmdscale(1 - iris.rf$proximity, eig=TRUE)
op <- par(pty="s")
pairs(cbind(iris[,1:4], iris.mds$points), cex=0.6, gap=0,
      col=c("red", "green", "blue")[as.numeric(iris$Species)],
      main="Iris Data: Predictors and MDS of Proximity Based on RandomForest")
par(op)
print(iris.mds$GOF)

## The 'unsupervised' case:
set.seed(17)
iris.urf <- randomForest(iris[, -5])
MDSpplot(iris.urf, iris$Species)

## Stratified sampling: draw 20, 30, and 20 of the species to grow each tree.
(iris.rf2 <- randomForest(iris[1:4], iris$Species,
                          sampsize=c(20, 30, 20)))

## Regression:
## "x" can be a matrix instead of a data frame:
set.seed(17)
x <- matrix(runif(5e2), 100)
y <- gl(2, 50)
(myrf <- randomForest(x, y))
(predict(myrf, x))

## Grow no more than 4 nodes per tree:
iris.rf3 <- randomForest(iris[1:4], iris$Species, maxnodes=4, ntree=25)
(treesize(iris.rf3))
```

readForest

Pass data through a fitted forest, record node characteristics [works for binary classification with continuous variables]

Description

Passes a feature matrix (and optionally a label vector) through a fitted random forest object, records size (and Gini impurity) of each node. Optionally, for every node, returns the features used to define the rule and the data points falling in that node. Uses `mclapply` function to distribute computation across available cores.
Usage

readForest(rfobj, x, y=NULL, return.node.feature=TRUE, wt.pred.accuracy=FALSE, n.core=1)

Arguments

rfobj a fitted randomForest object with the forest component in it
x numeric matrix with the same number of predictors used in rfobj fit
y a numeric vector specifying response values
return.node.feature if TRUE, returns a matrix containing features used to define the decision rule associated with a node
wt.pred.accuracy Should leaf nodes be sampled proportional to both size and decrease in variability of responses?
n.core number of cores across which tree reading will be distributed

Value

A list containing the following items:

tree.info a data frame with number of rows equal to total number of nodes in the forest, giving node level attributes: prediction (predicted response of leaf node), node.idx (the forest level node index of the leaf), parent (index of parent node), size.node (number of data points falling in a node), tree (index of the tree in the forest in which the node lives), dec.purity (if wt.pred.accuracy=TRUE, the decrease in standard deviation of responses relative to the full data).

node.feature if return.node.feature = TRUE, returns a sparse matrix with ncol(x) columns, each row corresponding to a leaf node in the forest. The entries indicate which features were used to define the decision rule associated with a node

Author(s)

Sumanta Basu <sumbose@berkeley.edu>, Karl Kumbier <kkumbier@berkeley.edu>

See Also

getTree

Examples

n = 50; p = 10
X = array(rnorm(n*p), c(n, p))
Y = (X[,1]>0.35 & X[,2]>0.35)|(X[,5]>0.35 & X[,7]>0.35)
Y = as.factor(as.numeric(Y>0))

train.id = 1:(n/2)
test.id = setdiff(1:n, train.id)
rf <- randomForest(x=X, y=Y, keep.forest=TRUE, track.nodes=TRUE, ntree=100)
rforest <- readForest(rfobj=rf, x=X, n.core=2)
head(rforest$tree_info)

count number of leaf nodes with at least 5 observations
sum(rforest$tree.info$size.node > 5)

rfcv
Random Forest Cross-Validation for feature selection

Description

This function shows the cross-validated prediction performance of models with sequentially reduced number of predictors (ranked by variable importance) via a nested cross-validation procedure.

Usage

```
rfcv(trainx, trainy, cv.fold=5, scale="log", step=0.5,
     mtry=function(p) max(1, floor(sqrt(p))), recursive=FALSE, ...)
```

Arguments

- `trainx`
 matrix or data frame containing columns of predictor variables

- `trainy`
 vector of response, must have length equal to the number of rows in `trainx`

- `cv.fold`
 number of folds in the cross-validation

- `scale`
 if "log", reduce a fixed proportion (step) of variables at each step, otherwise reduce step variables at a time

- `step`
 if log=TRUE, the fraction of variables to remove at each step, else remove this many variables at a time

- `mtry`
 a function of number of remaining predictor variables to use as the `mtry` parameter in the `randomForest` call

- `recursive`
 whether variable importance is (re-)assessed at each step of variable reduction

- `...`
 other arguments passed on to `randomForest`

Value

A list with the following components:

- `n.var`
 vector of number of variables used at each step

- `error.cv`
 corresponding vector of error rates or MSEs at each step

- `predicted`
 list of `n.var` components, each containing the predicted values from the cross-validation
rfImpute

Author(s)

Andy Liaw

References

See Also

randomForest, importance

Examples

```r
set.seed(647)
myiris <- cbind(iris[,1:4], matrix(runif(96 * nrow(iris)), nrow(iris), 96))
result <- rfcv(myiris, iris$Species, cv.fold=3)
with(result, plot(n.var, error.cv, log="x", type="o", lwd=2))

## The following can take a while to run, so if you really want to try
## it, copy and paste the code into R.

## Not run:
result <- replicate(5, rfcv(myiris, iris$Species), simplify=FALSE)
error.cv <- sapply(result, "[[", "error.cv")
matplot(result[[1]][, n.var, cbind(rowMeans(error.cv), error.cv), type="l",
  lwd=c(2, rep(1, ncol(error.cv))), col=1, lty=1, log="x",
  xlab="Number of variables", ylab="CV Error")

## End(Not run)
```

rfImpute

Missing Value Imputations by randomForest

Description

Impute missing values in predictor data using proximity from randomForest.

Usage

```r
## Default S3 method:
rfImpute(x, y, iter=5, ntree=300, ...)
## S3 method for class 'formula'
rfImpute(x, data, ..., subset)
```
Arguments

- **x**: A data frame or matrix of predictors, some containing NAs, or a formula.
- **y**: Response vector (NA’s not allowed).
- **data**: A data frame containing the predictors and response.
- **iter**: Number of iterations to run the imputation.
- **ntree**: Number of trees to grow in each iteration of randomForest.
- **...**: Other arguments to be passed to randomForest.
- **subset**: A logical vector indicating which observations to use.

Details

The algorithm starts by imputing NAs using `na.roughfix`. Then `randomForest` is called with the completed data. The proximity matrix from the randomForest is used to update the imputation of the NAs. For continuous predictors, the imputed value is the weighted average of the non-missing observations, where the weights are the proximities. For categorical predictors, the imputed value is the category with the largest average proximity. This process is iterated `iter` times.

Note: Imputation has not (yet) been implemented for the unsupervised case. Also, Breiman (2003) notes that the OOB estimate of error from randomForest tend to be optimistic when run on the data matrix with imputed values.

Value

A data frame or matrix containing the completed data matrix, where NAs are imputed using proximity from randomForest. The first column contains the response.

Author(s)

Andy Liaw

See Also

`na.roughfix`.

Examples

data(iris)
iris.na <- iris
set.seed(111)
artificially drop some data values.
for (i in 1:4) iris.na[sample(150, sample(20)), i] <- NA
set.seed(222)
iris.imputed <- rfImpute(Species ~ ., iris.na)
set.seed(333)
iris.rf <- randomForest(Species ~ ., iris.imputed)
print(iris.rf)
Show the NEWS file of the randomForest package.

Usage

rfNews()

Value

None.

Description

Function to perform random intersection trees. When two binary data matrices \(z \) (class 1) and \(z0 \) (class 0) are supplied, it searches for interactions. More precisely, since the data matrices are binary, each row of each matrix can be represented by the set of column indices with non-zero entries. The function searches for sets (interactions) that are more prevalent in class 1 than class 0, and then sets that are more prevalent in class 0 than class 1. When given a single binary matrix \(z \) with the argument \(z0 \) omitted, the function simply finds sets with high prevalence. Prevalences of interactions returned are estimated using min-wise hashing.

Usage

RIT(z, z0, weights=rep(1, nrow(z)), branch = 5, depth = 10L, n_trees = 100L, theta0 = 0.5, theta1 = theta0, min_inter_sz = 2L, L = 100L, n_cores = 1L, output_list = FALSE)

Arguments

\(z \) data matrix where each row corresponds to an observation and columns correspond to variables. Can be in sparse matrix format (inherit from class "sparseMatrix" in the Matrix package).
\(z0 \) optional second data matrix with the same number of columns as \(z \).
weights weighting vector specifying the sampling probability for each observation in \(z \).
branch average number of branches to use when creating each tree.
depth maximum depth of trees.
n_trees number of trees to be constructed.
when searching for sets of variables that are more prevalent in class 1 than class 0, the maximum threshold for prevalence in class 0.

\theta_1

as above but with class 1 and class 0 interchanged.

\min_inter_sz

minimum size of the interactions to be returned

\text{L}

number of rows of the min-wise hash matrix used to estimate prevalences. A larger value will result in more accurate estimates, but computation time will increase linearly with \text{L}.

\text{n_cores}

number of cores for parallel processing. Only used when openMP is installed.

\text{output_list}

if FALSE returns each interaction set as a string with variable indices separated by spaces. If TRUE returns each interaction set as an integer vector.

Details

There are two tasks which can be performed with this function depending on whether or not \(z_P \) is supplied (note \(z \) must always be supplied).

1. If \(z_P \) is omitted, the function finds prevalent sets in \(z \) and \(\theta_0 \) and \(\theta_1 \) are ignored.

2. If \(z_P \) is supplied, it searches for sets that are prevalent in \(z \) but have prevalence at most \(\theta_0 \) in \(z_P \). Next sets that are prevalent in \(z \) but have prevalence in \(z \) at most \(\theta_1 \) are found.

Value

If output_list is FALSE (the default), the output is either a data frame (if \(z_P \) is omitted) or list of two data frames (if \(z_P \) is supplied). The data frames have first column a character vector of interaction sets with the variables in the sets separated by spaces, and second column the estimated prevalences. When \(z_P \) is supplied, the interactions in the first component of the list named Class1 are those which are prevalent in \(z \) and their prevalences in \(z \) are reported. The second component named named Class0 contains those interactions prevalent in \(z_P \) and their prevalences in \(z_P \).

When output_list is TRUE, each interaction is reported as an integer vector and so the collection of interactions is a list of such vectors.

Author(s)

Hyun Jik Kim, Rajen D. Shah with slight modifications by Karl Kumbier

References

Examples

```r
## Generate two binary matrices
z <- matrix(rbinom(250*500, 1, 0.3), 250, 500)
z0 <- matrix(rbinom(250*500, 1, 0.3), 250, 500)

## Make the first and second cols of z identical
## so the set 1, 2 has prevalence roughly 0.3 compared
## to roughly 0.09 for any other pair of columns
```
treesize

Size of trees in an ensemble

Description
Size of trees (number of nodes) in and ensemble.

Usage

treesize(x, terminal=TRUE)

Arguments

- **x**: an object of class `randomForest`, which contains a forest component.
- **terminal**: count terminal nodes only (TRUE) or all nodes (FALSE)

Value
A vector containing number of nodes for the trees in the `randomForest` object.

Note
The `randomForest` object must contain the forest component; i.e., created with `randomForest(..., keep.forest=TRUE)`.

Author(s)
Andy Liaw
See Also

randomForest

Examples

```r
data(iris)
iris.rf <- randomforest(Species ~ ., iris)
hist(treesize(iris.rf))
```

tuneRF

Tune randomForest for the optimal mtry parameter

Description

Starting with the default value of mtry, search for the optimal value (with respect to Out-of-Bag error estimate) of mtry for randomForest.

Usage

```r
tuneRF(x, y, mtryStart, ntreeTry=50, stepFactor=2, improve=0.05, trace=TRUE, plot=TRUE, doBest=FALSE, ...)
```

Arguments

- `x`: matrix or data frame of predictor variables
- `y`: response vector (factor for classification, numeric for regression)
- `mtryStart`: starting value of mtry; default is the same as in `randomForest`
- `ntreeTry`: number of trees used at the tuning step
- `stepFactor`: at each iteration, mtry is inflated (or deflated) by this value
- `improve`: the (relative) improvement in OOB error must be by this much for the search to continue
- `trace`: whether to print the progress of the search
- `plot`: whether to plot the OOB error as function of mtry
- `doBest`: whether to run a forest using the optimal mtry found
- `...`: options to be given to `randomForest`

Value

If `doBest=FALSE` (default), it returns a matrix whose first column contains the mtry values searched, and the second column the corresponding OOB error.

If `doBest=TRUE`, it returns the `randomForest` object produced with the optimal `mtry`.

See Also

randomForest
Examples

```r
data(fgl, package="MASS")
fgl.res <- tuneRF(fgl[,-10], fgl[,10], stepFactor=1.5)
```

```
set.seed(4543)
data(iris)
iris.rf <- randomForest(Species ~ ., data=iris, importance=TRUE)
varImpPlot(iris.rf)
```
varUsed

Variables used in a random forest

Description

Find out which predictor variables are actually used in the random forest.

Usage

varUsed(x, by.tree=FALSE, count=TRUE)

Arguments

x
 An object of class randomForest.

by.tree
 Should the list of variables used be broken down by trees in the forest?

count
 Should the frequencies that variables appear in trees be returned?

Value

If count=TRUE and by.tree=FALSE, a integer vector containing frequencies that variables are used in the forest. If by.tree=TRUE, a matrix is returned, breaking down the counts by tree (each column corresponding to one tree and each row to a variable).

If count=FALSE and by.tree=TRUE, a list of integer indices is returned giving the variables used in the trees, else if by.tree=FALSE, a vector of integer indices giving the variables used in the entire forest.

Author(s)

Andy Liaw

See Also

randomForest

Examples

data(iris)
set.seed(17)
varUsed(randomForest(Species~., iris, ntree=100))
Index

*Topic NA
na.roughfix, 12

*Topic classif
classCenter, 2
combine, 3
grow, 5
importance, 6
margin, 10
MDSPlot, 11
outlier, 13
partialPlot, 14
plot.randomForest, 17
predict.randomForest, 18
randomForest, 20
rfcv, 26
rfImpute, 27
rfNews, 29
treesize, 31
tuneRF, 32
varImpPlot, 33

*Topic datasets
imports85, 7

*Topic regression
combine, 3
grow, 5
importance, 6
partialPlot, 14
plot.randomForest, 17
predict.randomForest, 18
randomForest, 20
rfcv, 26
rfImpute, 27
treesize, 31
varImpPlot, 33

*Topic tree
getTree, 4
importance, 6
MDSPlot, 11
partialPlot, 14
plot.randomForest, 17
randomForest, 20
rfImpute, 27
tuneRF, 32
varImpPlot, 33
varUsed, 34
classCenter, 2
cmdscale, 12
combine, 3, 6
dotchart, 33
getTree, 4, 23, 25
grow, 4, 5
importance, 6, 27, 33
imports85, 7
iRF, 8
margin, 10
MDSPlot, 3, 11
na.roughfix, 12, 28
outlier, 13
pairs, 12
partialPlot, 14
partialPlot2var, 16
persp3d, 16
plot.margins (margin), 10
plot.randomForest, 17
predict.randomForest, 18, 23
print.randomForest (randomForest), 20
randomForest, 3–8, 11–15, 17–19, 20, 27, 28, 32–34
readForest, 24
rfcv, 26
rfImpute, 13, 27
rfNews, 29
RIT, 29

treesize, 31
tuneRF, 32

varImpPlot, 7, 23, 33
varUsed, 34