Package ‘iSFun’

January 3, 2022

Type Package
Title Integrative Dimension Reduction Analysis for Multi-Source Data
Version 1.1.0
Maintainer Rui Ren <xmurr@stu.xmu.edu.cn>
License GPL (>= 2)
Depends R (>= 3.5.0)
Imports caret, graphics, grDevices, irlba, stats
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
NeedsCompilation no
Author Kuangnan Fang [aut],
Rui Ren [aut, cre],
Qingzhao Zhang [aut],
Shuangge Ma [aut]
Repository CRAN
Date/Publication 2022-01-03 17:00:02 UTC

R topics documented:

| iscca | 2 |
Description

This function provides a penalty-based integrative sparse canonical correlation analysis method to handle the multiple datasets with high dimensions generated under similar protocols, which consists of two built-in penalty items for selecting the important variables for users to choose, and two contrasted penalty functions for eliminating the difference (magnitude or sign) between estimators within each group.

Usage

iscca(x, y, L, mu1, mu2, mu3, mu4, eps = 1e-04, pen1 = "homogeneity", pen2 = "magnitude", scale.x = TRUE, scale.y = TRUE, maxstep = 50, submaxstep = 10, trace = FALSE, draw = FALSE)

Arguments

- x: list of data matrices, L datasets of explanatory variables.
- y: list of data matrices, L datasets of dependent variables.
- L: numeric, number of datasets.
- mu1: numeric, sparsity penalty parameter for vector u.
- mu2: numeric, contrasted penalty parameter for vector u.
mu3 numeric, sparsity penalty parameter for vector v.
mu4 numeric, contrasted penalty parameter for vector v.
eps numeric, the threshold at which the algorithm terminates.
pen1 character, "homogeneity" or "heterogeneity" type of the sparsity structure. If not specified, the default is homogeneity.
pen2 character, "magnitude" or "sign" based contrasted penalty. If not specified, the default is magnitude.
scale.x character, "TRUE" or "FALSE", whether or not to scale the variables x. The default is TRUE.
scale.y character, "TRUE" or "FALSE", whether or not to scale the variables y. The default is TRUE.
maxstep numeric, maximum iteration steps. The default value is 50.
submaxstep numeric, maximum iteration steps in the sub-iterations. The default value is 10.
trace character, "TRUE" or "FALSE". If TRUE, prints out its screening results of variables.
draw character, "TRUE" or "FALSE". If TRUE, plot the convergence path of loadings and the heatmap of coefficient beta.

Value

An 'iscca' object that contains the list of the following items.

- x: list of data matrices, L datasets of explanatory variables with centered columns. If scale.x is TRUE, the columns of L datasets are standardized to have mean 0 and standard deviation 1.
- y: list of data matrices, L datasets of dependent variables with centered columns. If scale.y is TRUE, the columns of L datasets are standardized to have mean 0 and standard deviation 1.
- loading.x: the estimated canonical vector of variables x.
- loading.y: the estimated canonical vector of variables y.
- variable.x: the screening results of variables x.
- variable.y: the screening results of variables y.
- meanx: list of numeric vectors, column mean of the original datasets x.
- normx: list of numeric vectors, column standard deviation of the original datasets x.
- meany: list of numeric vectors, column mean of the original datasets y.
- normy: list of numeric vectors, column standard deviation of the original datasets y.

See Also

See Also as preview.cca, iscca.cv, meta.scca, scca.
Examples

Load a list with 3 data sets
library(iSFun)
data("simData.cca")
x <- simData.cca$x
y <- simData.cca$y
L <- length(x)
mu1 <- mu3 <- 0.4
mu2 <- mu4 <- 2.5

prev_cca <- preview.cca(x = x, y = y, L = L, scale.x = TRUE, scale.y = TRUE)
res_homo_m <- iscca(x = x, y = y, L = L, mu1 = mu1, mu2 = mu2, mu3 = mu3, mu4 = mu4,
 eps = 5e-2, maxstep = 50, submaxstep = 10, trace = TRUE, draw = TRUE)

res_homo_s <- iscca(x = x, y = y, L = L, mu1 = mu1, mu2 = mu2, mu3 = mu3, mu4 = mu4,
 eps = 5e-2, pen1 = "homogeneity", pen2 = "sign", scale.x = TRUE,
 scale.y = TRUE, maxstep = 50, submaxstep = 10, trace = FALSE, draw = FALSE)

mu1 <- mu3 <- 0.3
mu2 <- mu4 <- 2
res_hete_m <- iscca(x = x, y = y, L = L, mu1 = mu1, mu2 = mu2, mu3 = mu3, mu4 = mu4,
 eps = 5e-2, pen1 = "heterogeneity", pen2 = "magnitude", scale.x = TRUE,
 scale.y = TRUE, maxstep = 50, submaxstep = 10, trace = FALSE, draw = FALSE)

res_hete_s <- iscca(x = x, y = y, L = L, mu1 = mu1, mu2 = mu2, mu3 = mu3, mu4 = mu4,
 eps = 5e-2, pen1 = "heterogeneity", pen2 = "sign", scale.x = TRUE,
 scale.y = TRUE, maxstep = 50, submaxstep = 10, trace = FALSE, draw = FALSE)

iscca.cv

Cross-validation for iscca

Description

Performs K-fold cross validation for the integrative sparse canonical correlation analysis over a grid of values for the regularization parameter mu1, mu2, mu3 and mu4.

Usage

iscca.cv(x, y, L, K = 5, mu1, mu2, mu3, mu4, eps = 1e-04,
 pen1 = "homogeneity", pen2 = "magnitude", scale.x = TRUE,
 scale.y = TRUE, maxstep = 50, submaxstep = 10)

Arguments

x
 list of data matrices, L datasets of explanatory variables.

y
 list of data matrices, L datasets of dependent variables.
L
 numeric, number of datasets.

K
 numeric, number of cross-validation folds. Default is 5.

mu1
 numeric, the feasible set of sparsity penalty parameter for vector u.

mu2
 numeric, the feasible set of contrasted penalty parameter for vector u.

mu3
 numeric, the feasible set of sparsity penalty parameter for vector v.

mu4
 numeric, the feasible set of contrasted penalty parameter for vector v.

eps
 numeric, the threshold at which the algorithm terminates.

pen1
 character, "homogeneity" or "heterogeneity" type of the sparsity structure. If not specified, the default is homogeneity.

pen2
 character, "magnitude" or "sign" based contrasted penalty. If not specified, the default is magnitude.

scale.x
 character, "TRUE" or "FALSE", whether or not to scale the variables x. The default is TRUE.

scale.y
 character, "TRUE" or "FALSE", whether or not to scale the variables y. The default is TRUE.

maxstep
 numeric, maximum iteration steps. The default value is 50.

submaxstep
 numeric, maximum iteration steps in the sub-iterations. The default value is 10.

Value

An 'iscca.cv' object that contains the list of the following items.

- x: list of data matrices, L datasets of explanatory variables with centered columns. If scale.x is TRUE, the columns of L datasets are standardized to have mean 0 and standard deviation 1.
- y: list of data matrices, L datasets of dependent variables with centered columns. If scale.y is TRUE, the columns of L datasets are standardized to have mean 0 and standard deviation 1.
- mu1: the sparsity penalty parameter selected from the feasible set of parameter mu1 provided by users.
- mu2: the contrasted penalty parameter selected from the feasible set of parameter mu2 provided by users.
- mu3: the sparsity penalty parameter selected from the feasible set of parameter mu3 provided by users.
- mu4: the contrasted penalty parameter selected from the feasible set of parameter mu4 provided by users.
- fold: The fold assignments for cross-validation for each observation.
- loading.x: the estimated canonical vector of variables x with selected tuning parameters.
- loading.y: the estimated canonical vector of variables y with selected tuning parameters.
- variable.x: the screening results of variables x.
- variable.y: the screening results of variables y.
- meanx: list of numeric vectors, column mean of the original datasets x.
- normx: list of numeric vectors, column standard deviation of the original datasets x.
- meany: list of numeric vectors, column mean of the original datasets y.
- normy: list of numeric vectors, column standard deviation of the original datasets y.
See Also

See Also as iscca.

Examples

Load a list with 3 data sets
library(iSFun)
data("simData.cca")
x <- simData.cca$x
y <- simData.cca$y
L <- length(x)
mu1 <- c(0.2, 0.4)
mu3 <- 0.4
mu2 <- mu4 <- 2.5

res_homo_m <- iscca.cv(x = x, y = y, L = L, K = 5, mu1 = mu1, mu2 = mu2, mu3 = mu3,
 mu4 = mu4, eps = 1e-2, pen1 = "homogeneity", pen2 = "magnitude",
 scale.x = TRUE, scale.y = TRUE, maxstep = 50, submaxstep = 10)

res_homo_s <- iscca.cv(x = x, y = y, L = L, K = 5, mu1 = mu1, mu2 = mu2, mu3 = mu3,
 mu4 = mu4, eps = 1e-2, pen1 = "homogeneity", pen2 = "sign",
 scale.x = TRUE, scale.y = TRUE, maxstep = 50, submaxstep = 10)

mu1 <- mu3 <- c(0.1, 0.3)
mu2 <- mu4 <- 2
res_hete_m <- iscca.cv(x = x, y = y, L = L, K = 5, mu1 = mu1, mu2 = mu2, mu3 = mu3,
 mu4 = mu4, eps = 1e-2, pen1 = "heterogeneity", pen2 = "magnitude",
 scale.x = TRUE, scale.y = TRUE, maxstep = 50, submaxstep = 10)

res_hete_s <- iscca.cv(x = x, y = y, L = L, K = 5, mu1 = mu1, mu2 = mu2, mu3 = mu3,
 mu4 = mu4, eps = 1e-2, pen1 = "heterogeneity", pen2 = "sign",
 scale.x = TRUE, scale.y = TRUE, maxstep = 50, submaxstep = 10)

iscca.plot

Plot the results of iscca

Description

Plot the convergence path graph in the integrative sparse canonical correlation analysis method or show the the first pair of canonical vectors.

Usage

iscca.plot(x, type)
ispca

Arguments

- **x**: list of "iscca", which is the result of command "iscca".
- **type**: character, "path" or "loading" type, if "path", plot the the convergence path graph of vector u and v in the integrative sparse canonical correlation analysis method, if "loading", show the the first pair of canonical vectors.

Details

See details in `iscca`.

Value

the convergence path graph or the scatter diagrams of the first pair of canonical vectors.

Examples

```r
library(iSFun)
data("simData.cca")
x <- simData.cca$x
y <- simData.cca$y
L <- length(x)
mu1 <- mu3 <- 0.4
mu2 <- mu4 <- 2.5
res_homo_m <- iscca(x = x, y = y, L = L, mu1 = mu1, mu2 = mu2, mu3 = mu3,
                     mu4 = mu4, eps = 5e-2, maxstep = 100, trace = FALSE, draw = FALSE)
iscca.plot(x = res_homo_m, type = "path")
iscca.plot(x = res_homo_m, type = "loading")
```

Description

This function provides a penalty-based integrative sparse principal component analysis method to obtain the direction of first principal component of the multiple datasets with high dimensions generated under similar protocols, which consists of two built-in penalty items for selecting the important variables for users to choose, and two contrasted penalty functions for eliminating the difference (magnitude or sign) between estimators within each group.

Usage

```r
ispca(x, L, mu1, mu2, eps = 1e-04, pen1 = "homogeneity",
      pen2 = "magnitude", scale.x = TRUE, maxstep = 50,
      submaxstep = 10, trace = FALSE, draw = FALSE)
```
Arguments

x list of data matrices, L datasets of explanatory variables.
L numeric, number of data sets.
mu1 numeric, sparsity penalty parameter.
mu2 numeric, contrasted penalty parameter.
eps numeric, the threshold at which the algorithm terminates.
pen1 character, "homogeneity" or "heterogeneity" type of the sparsity structure. If not specified, the default is homogeneity.
pen2 character, "magnitude" or "sign" based contrasted penalty. If not specified, the default is magnitude.
scale.x character, "TRUE" or "FALSE", whether or not to scale the variables x. The default is TRUE.
maxstep numeric, maximum iteration steps. The default value is 50.
submaxstep numeric, maximum iteration steps in the sub-iterations. The default value is 10.
trace character, "TRUE" or "FALSE". If TRUE, prints out its screening results of variables.
draw character, "TRUE" or "FALSE". If TRUE, plot the convergence path of loadings.

Value

An 'ispca' object that contains the list of the following items.

- x: list of data matrices, L datasets of explanatory variables with centered columns. If scale.x is TRUE, the columns of L datasets are standardized to have mean 0 and standard deviation 1.
- eigenvalue: the estimated first eigenvalue.
- eigenvector: the estimated first eigenvector.
- component: the estimated first component.
- variable: the screening results of variables.
- meanx: list of numeric vectors, column mean of the original datasets x.
- normx: list of numeric vectors, column standard deviation of the original datasets x.

References

See Also

See Also as preview.pca, ispca.cv, meta.spca, spca.
Examples

Load a list with 3 data sets
library(isSFun)
data("simData.pca")
x <- simData.pca$x
L <- length(x)

prev_pca <- preview.pca(x = x, L = L, scale.x = TRUE)
res_homo_m <- ispca(x = x, L = L, mu1 = 0.5, mu2 = 0.002, trace = TRUE, draw = TRUE)

res_homo_s <- ispca(x = x, L = L, mu1 = 0.5, mu2 = 0.002,
 pen1 = "homogeneity", pen2 = "sign", scale.x = TRUE,
 maxstep = 50, submaxstep = 10, trace = FALSE, draw = FALSE)

res_hete_m <- ispca(x = x, L = L, mu1 = 0.1, mu2 = 0.05,
 pen1 = "heterogeneity", pen2 = "magnitude", scale.x = TRUE,
 maxstep = 50, submaxstep = 10, trace = FALSE, draw = FALSE)

res_hete_s <- ispca(x = x, L = L, mu1 = 0.1, mu2 = 0.05,
 pen1 = "heterogeneity", pen2 = "sign", scale.x = TRUE,
 maxstep = 50, submaxstep = 10, trace = FALSE, draw = FALSE)

ispca.cv

Cross-validation for ispca

Description

Performs K-fold cross validation for the integrative sparse principal component analysis over a grid of values for the regularization parameter mu1 and mu2.

Usage

ispca.cv(x, L, K = 5, mu1, mu2, eps = 1e-04, pen1 = "homogeneity",
 pen2 = "magnitude", scale.x = TRUE, maxstep = 50,
 submaxstep = 10)

Arguments

x list of data matrices, L datasets of explanatory variables.
L numeric, number of datasets.
K numeric, number of cross-validation folds. Default is 5.
mu1 numeric, the feasible set of sparsity penalty parameter.
mu2 numeric, the feasible set of contrasted penalty parameter.
eps numeric, the threshold at which the algorithm terminates.
pen1 character, "homogeneity" or "heterogeneity" type of the sparsity structure. If not specified, the default is homogeneity.

pen2 character, "magnitude" or "sign" based contrasted penalty. If not specified, the default is magnitude.

scale.x character, "TRUE" or "FALSE", whether or not to scale the variables x. The default is TRUE.

maxstep numeric, maximum iteration steps. The default value is 50.

submaxstep numeric, maximum iteration steps in the sub-iterations. The default value is 10.

Value
An 'ispca.cv' object that contains the list of the following items.

• x: list of data matrices, L datasets of explanatory variables with centered columns. If scale.x is TRUE, the columns of L datasets are standardized to have mean 0 and standard deviation 1.

• y: list of data matrices, L datasets of dependent variables with centered columns. If scale.y is TRUE, the columns of L datasets are standardized to have mean 0 and standard deviation 1.

• mu1: the sparsity penalty parameter selected from the feasible set of parameter mu1 provided by users.

• mu2: the contrasted penalty parameter selected from the feasible set of parameter mu2 provided by users.

• fold: The fold assignments for cross-validation for each observation.

• eigenvalue: the estimated first eigenvalue with selected tuning parameters mu1 and mu2.

• eigenvector: the estimated first eigenvector with selected tuning parameters mu1 and mu2.

• component: the estimated first component with selected tuning parameters mu1 and mu2.

• variable: the screening results of variables.

• meanx: list of numeric vectors, column mean of the original datasets x.

• normx: list of numeric vectors, column standard deviation of the original datasets x.

References

See Also
See Also as ispca.

Examples

Load a list with 3 data sets
library(iSFun)
data("simData.pca")
x <- simData.pca$x
L <- length(x)
ispca.plot

Plot the results of ispca

Description
Plot the convergence path graph or estimated value of the first eigenvector u in the integrative sparse principal component analysis method.

Usage
ispca.plot(x, type)

Arguments

x
list of "ispca", which is the result of command "ispca".

type
character, "path" or "loading" type, if "path", plot the the convergence path graph of the first eigenvector u in the integrative sparse principal component analysis method, if "loading", plot the first eigenvector.

Details
See details in ispca.

Value
the convergence path graph or the scatter diagrams of the first eigenvector u.
Examples

```r
library(iSFun)
data("simData.pca")
x <- simData.pca$x
L <- length(x)
res_homo_m <- ispca(x = x, L = L, mu1 = 0.5, mu2 = 0.002, trace = FALSE, draw = FALSE)
ispca.plot(x = res_homo_m, type = "path")
ispca.plot(x = res_homo_m, type = "loading")
```

ispls

Integrative sparse partial least squares

Description

This function provides a penalty-based integrative sparse partial least squares method to handle the multiple datasets with high dimensions generated under similar protocols, which consists of two built-in penalty items for selecting the important variables for users to choose, and two contrasted penalty functions for eliminating the difference (magnitude or sign) between estimators within each group.

Usage

```r
ispls(x, y, L, mu1, mu2, eps = 1e-04, kappa = 0.05,
pen1 = "homogeneity", pen2 = "magnitude", scale.x = TRUE,
scale.y = TRUE, maxstep = 50, submaxstep = 10, trace = FALSE,
draw = FALSE)
```

Arguments

- `x`: list of data matrices, L datasets of explanatory variables.
- `y`: list of data matrices, L datasets of dependent variables.
- `L`: numeric, number of datasets.
- `mu1`: numeric, sparsity penalty parameter.
- `mu2`: numeric, contrasted penalty parameter.
- `eps`: numeric, the threshold at which the algorithm terminates.
- `kappa`: numeric, 0 < kappa < 0.5 and the parameter reduces the effect of the concave part of objective function.
- `pen1`: character, "homogeneity" or "heterogeneity" type of the sparsity structure. If not specified, the default is homogeneity.
- `pen2`: character, "magnitude" or "sign" based contrasted penalty. If not specified, the default is magnitude.
- `scale.x`: character, "TRUE" or "FALSE", whether or not to scale the variables x. The default is TRUE.
scale.y character, "TRUE" or "FALSE", whether or not to scale the variables y. The default is TRUE.

maxstep numeric, maximum iteration steps. The default value is 50.

submaxstep numeric, maximum iteration steps in the sub-iterations. The default value is 10.

trace character, "TRUE" or "FALSE". If TRUE, prints out its screening results of variables.

draw character, "TRUE" or "FALSE". If TRUE, plot the convergence path of loadings.

Value

An 'ispls' object that contains the list of the following items.

- x: list of data matrices, L datasets of explanatory variables with centered columns. If scale.x is TRUE, the columns of L datasets are standardized to have mean 0 and standard deviation 1.
- y: list of data matrices, L datasets of dependent variables with centered columns. If scale.y is TRUE, the columns of L datasets are standardized to have mean 0 and standard deviation 1.
- betahat: the estimated regression coefficients.
- loading: the estimated first direction vector.
- variable: the screening results of variables x.
- meanx: list of numeric vectors, column mean of the original datasets x.
- normx: list of numeric vectors, column standard deviation of the original datasets x.
- meany: list of numeric vectors, column mean of the original datasets y.
- normy: list of numeric vectors, column standard deviation of the original datasets y.

References

See Also

See Also as preview.pls, ispls.cv, meta.spls, spls.

Examples

```r
# Load a list with 3 data sets
library(iSFun)
data("simData.pls")
x <- simData.pls$x
y <- simData.pls$y
L <- length(x)

prev_pls <- preview.pls(x, y, L, scale.x = TRUE, scale.y = TRUE)
res_homo_m <- ispls(x = x, y = y, L = L, mu1 = 0.05, mu2 = 0.25, eps = 5e-2, trace = TRUE, draw = TRUE)
```
res_homo_s <- ispls(x = x, y = y, L = L, mu1 = 0.05, mu2 = 0.25,
 eps = 5e-2, kappa = 0.05, pen1 = "homogeneity",
 pen2 = "sign", scale.x = TRUE, scale.y = TRUE,
 maxstep = 50, submaxstep = 10, trace = FALSE, draw = FALSE)

res_hete_m <- ispls(x = x, y = y, L = L, mu1 = 0.05, mu2 = 0.25,
 eps = 5e-2, kappa = 0.05, pen1 = "heterogeneity",
 pen2 = "magnitude", scale.x = TRUE, scale.y = TRUE,
 maxstep = 50, submaxstep = 10, trace = FALSE, draw = FALSE)

res_hete_s <- ispls(x = x, y = y, L = L, mu1 = 0.05, mu2 = 0.25,
 eps = 5e-2, kappa = 0.05, pen1 = "heterogeneity",
 pen2 = "sign", scale.x = TRUE, scale.y = TRUE,
 maxstep = 50, submaxstep = 10, trace = FALSE, draw = FALSE)

ispls.cv

Cross-validation for ispls

Description

Performs K-fold cross validation for the integrative sparse partial least squares over a grid of values for the regularization parameter mu1 and mu2.

Usage

ispls.cv(x, y, L, K, mu1, mu2, eps = 1e-04, kappa = 0.05,
 pen1 = "homogeneity", pen2 = "magnitude", scale.x = TRUE,
 scale.y = TRUE, maxstep = 50, submaxstep = 10)

Arguments

- x: list of data matrices, L datasets of explanatory variables.
- y: list of data matrices, L datasets of dependent variables.
- L: numeric, number of datasets.
- K: numeric, number of cross-validation folds. Default is 5.
- mu1: numeric, the feasible set of sparsity penalty parameter.
- mu2: numeric, the feasible set of contrasted penalty parameter.
- eps: numeric, the threshold at which the algorithm terminates.
- kappa: numeric, 0 < kappa < 0.5 and the parameter reduces the effect of the concave part of objective function.
- pen1: character, "homogeneity" or "heterogeneity" type of the sparsity structure. If not specified, the default is homogeneity.
- pen2: character, "magnitude" or "sign" based contrasted penalty. If not specified, the default is magnitude.
scale.x character, "TRUE" or "FALSE", whether or not to scale the variables x. The default is TRUE.

scale.y character, "TRUE" or "FALSE", whether or not to scale the variables y. The default is TRUE.

maxstep numeric, maximum iteration steps. The default value is 50.

submaxstep numeric, maximum iteration steps in the sub-iterations. The default value is 10.

Value

An 'ispls.cv' object that contains the list of the following items.

- x: list of data matrices, L datasets of explanatory variables with centered columns. If scale.x is TRUE, the columns of L datasets are standardized to have mean 0 and standard deviation 1.
- y: list of data matrices, L datasets of dependent variables with centered columns. If scale.y is TRUE, the columns of L datasets are standardized to have mean 0 and standard deviation 1.
- mu1: the sparsity penalty parameter selected from the feasible set of parameter mu1 provided by users.
- mu2: the contrasted penalty parameter selected from the feasible set of parameter mu2 provided by users.
- fold: The fold assignments for cross-validation for each observation.
- betahat: the estimated regression coefficients with selected tuning parameters mu1 and mu2.
- loading: the estimated first direction vector with selected tuning parameters mu1 and mu2.
- variable: the screening results of variables x.
- meanx: list of numeric vectors, column mean of the original datasets x.
- normx: list of numeric vectors, column standard deviation of the original datasets x.
- meany: list of numeric vectors, column mean of the original datasets y.
- normy: list of numeric vectors, column standard deviation of the original datasets y.

References

See Also

See Also as ispls.

Examples

```r
# Load a list with 3 data sets
library(iSFun)
data("simData.pls")
x <- simData.pls$x
y <- simData.pls$y
L <- length(x)
```
mu1 <- c(0.04, 0.05)
mu2 <- 0.25

res_homo_m <- ispls.cv(x = x, y = y, L = L, K = 5, mu1 = mu1, mu2 = mu2, eps = 1e-2,
 kappa = 0.05, pen1 = "homogeneity", pen2 = "magnitude",
 scale.x = TRUE, scale.y = TRUE, maxstep = 50, submaxstep = 10)

res_homo_s <- ispls.cv(x = x, y = y, L = L, K = 5, mu1 = mu1, mu2 = mu2, eps = 1e-2,
 kappa = 0.05, pen1 = "homogeneity", pen2 = "sign",
 scale.x = TRUE, scale.y = TRUE, maxstep = 50, submaxstep = 10)

res_hete_m <- ispls.cv(x = x, y = y, L = L, K = 5, mu1 = mu1, mu2 = mu2, eps = 1e-2,
 kappa = 0.05, pen1 = "heterogeneity", pen2 = "magnitude",
 scale.x = TRUE, scale.y = TRUE, maxstep = 50, submaxstep = 10)

res_hete_s <- ispls.cv(x = x, y = y, L = L, K = 5, mu1 = mu1, mu2 = mu2, eps = 1e-2,
 kappa = 0.05, pen1 = "heterogeneity", pen2 = "sign",
 scale.x = TRUE, scale.y = TRUE, maxstep = 50, submaxstep = 10)

ispls.plot

Plot the results of ispls

Description

Plot the convergence path graph of the first direction vector w in the integrative sparse partial least squares model or show the regression coefficients.

Usage

ispls.plot(x, type)

Arguments

x list of "ispls", which is the result of command "ispls".

type character, "path", "loading" or "heatmap" type, if "path", plot the the convergence path graph of vector w in the integrative sparse partial least squares model, if "loading", plot the the first direction vectors, if "heatmap", show the heatmap of regression coefficients among different datasets.

Details

See details in ispls.

Value

show the convergence path graph of the first direction vector w or the regression coefficients.
Examples

```r
library(iSFun)
data("simData.pls")
x <- simData.pls$x
y <- simData.pls$y
L <- length(x)

res_homo_m <- ispls(x = x, y = y, L = L, mu1 = 0.05, mu2 = 0.25,
                    eps = 5e-2, trace = FALSE, draw = FALSE)
ispls.plot(x = res_homo_m, type = "path")
ispls.plot(x = res_homo_m, type = "loading")
ispls.plot(x = res_homo_m, type = "heatmap")
```

meta.scca

Meta-analytic sparse canonical correlation analysis method in integrative study

Description

This function provides penalty-based sparse canonical correlation meta-analytic method to handle the multiple datasets with high dimensions generated under similar protocols, which is based on the principle of maximizing the summary statistics S.

Usage

```r
meta.scca(x, y, L, mu1, mu2, eps = 1e-04, scale.x = TRUE,
          scale.y = TRUE, maxstep = 50, trace = FALSE)
```

Arguments

- `x` list of data matrices, L datasets of explanatory variables.
- `y` list of data matrices, L datasets of dependent variables.
- `L` numeric, number of datasets.
- `mu1` numeric, sparsity penalty parameter for vector u.
- `mu2` numeric, sparsity penalty parameter for vector v.
- `eps` numeric, the threshold at which the algorithm terminates.
- `scale.x` character, "TRUE" or "FALSE", whether or not to scale the variables x. The default is TRUE.
- `scale.y` character, "TRUE" or "FALSE", whether or not to scale the variables y. The default is TRUE.
- `maxstep` numeric, maximum iteration steps. The default value is 50.
- `trace` character, "TRUE" or "FALSE". If TRUE, prints out its screening results of variables.
Value

A 'meta.scca' object that contains the list of the following items.

- **x**: list of data matrices, L datasets of explanatory variables with centered columns. If scale.x is TRUE, the columns of L datasets are standardized to have mean 0 and standard deviation 1.
- **y**: list of data matrices, L datasets of dependent variables with centered columns. If scale.y is TRUE, the columns of L datasets are standardized to have mean 0 and standard deviation 1.
- **loading.x**: the estimated canonical vector of variables x.
- **loading.y**: the estimated canonical vector of variables y.
- **variable.x**: the screening results of variables x.
- **variable.y**: the screening results of variables y.
- **meanx**: list of numeric vectors, column mean of the original datasets x.
- **normx**: list of numeric vectors, column standard deviation of the original datasets x.
- **meany**: list of numeric vectors, column mean of the original datasets y.
- **normy**: list of numeric vectors, column standard deviation of the original datasets y.

References

See Also

See Also as *iscca, scca.*

Examples

```r
# Load a list with 3 data sets
library(iSFun)
data("simData.cca")
x <- simData.cca$x
y <- simData.cca$y
L <- length(x)
mu1 <- 0.08
mu2 <- 0.08

res <- meta.scca(x = x, y = y, L = L, mu1 = mu1, mu2 = mu2, trace = TRUE)
```
Description

This function provides penalty-based sparse principal component meta-analytic method to handle the multiple datasets with high dimensions generated under similar protocols, which is based on the principle of maximizing the summary statistics S.

Usage

```r
meta.spca(x, L, mu1, eps = 1e-04, scale.x = TRUE, maxstep = 50, trace = FALSE)
```

Arguments

- `x`: list of data matrices, L datasets of explanatory variables.
- `L`: numeric, number of datasets.
- `mu1`: numeric, sparsity penalty parameter.
- `eps`: numeric, the threshold at which the algorithm terminates.
- `scale.x`: character, "TRUE" or "FALSE", whether or not to scale the variables `x`. The default is TRUE.
- `maxstep`: numeric, maximum iteration steps. The default value is 50.
- `trace`: character, "TRUE" or "FALSE". If TRUE, prints out its screening results of variables.

Value

A `meta.spca` object that contains the list of the following items.

- `x`: list of data matrices, L datasets of explanatory variables with centered columns. If `scale.x` is TRUE, the columns of L datasets are standardized to have mean 0 and standard deviation 1.
- `eigenvalue`: the estimated first eigenvalue.
- `eigenvector`: the estimated first eigenvector.
- `component`: the estimated first component.
- `variable`: the screening results of variables.
- `meanx`: list of numeric vectors, column mean of the original datasets x.
- `normx`: list of numeric vectors, column standard deviation of the original datasets x.

References

See Also

See Also as `ispca`, `spca`.

Examples

```r
library(iSFun)
data("simData.pca")
x <- simData.pca$x
L <- length(x)
res <- meta.spla(x = x, L = L, mu1 = 0.5, trace = TRUE)
```

meta.spls

Meta-analytic sparse partial least squares method in integrative study

Description

This function provides penalty-based sparse canonical correlation meta-analytic method to handle the multiple datasets with high dimensions generated under similar protocols, which is based on the principle of maximizing the summary statistics.

Usage

```r
meta.spls(x, y, L, mu1, eps = 1e-04, kappa = 0.05, scale.x = TRUE,
          scale.y = TRUE, maxstep = 50, trace = FALSE)
```

Arguments

- `x`: list of data matrices, L datasets of explanatory variables.
- `y`: list of data matrices, L datasets of dependent variables.
- `L`: numeric, number of datasets.
- `mu1`: numeric, sparsity penalty parameter.
- `eps`: numeric, the threshold at which the algorithm terminates.
- `kappa`: numeric, 0 < kappa < 0.5 and the parameter reduces the effect of the concave part of objective function.
- `scale.x`: character, "TRUE" or "FALSE", whether or not to scale the variables x. The default is TRUE.
- `scale.y`: character, "TRUE" or "FALSE", whether or not to scale the variables y. The default is TRUE.
- `maxstep`: numeric, maximum iteration steps. The default value is 50.
- `trace`: character, "TRUE" or "FALSE". If TRUE, prints out its screening results of variables.
Value

A 'meta.spls' object that contains the list of the following items.

- `x`: list of data matrices, L datasets of explanatory variables with centered columns. If `scale.x` is TRUE, the columns of L datasets are standardized to have mean 0 and standard deviation 1.
- `y`: list of data matrices, L datasets of dependent variables with centered columns. If `scale.y` is TRUE, the columns of L datasets are standardized to have mean 0 and standard deviation 1.
- `betahat`: the estimated regression coefficients.
- `loading`: the estimated first direction vector.
- `variable`: the screening results of variables x.
- `meanx`: list of numeric vectors, column mean of the original datasets x.
- `normx`: list of numeric vectors, column standard deviation of the original datasets x.
- `meany`: list of numeric vectors, column mean of the original datasets y.
- `normy`: list of numeric vectors, column standard deviation of the original datasets y.

See Also

See Also as `ispls`, `spls`.

Examples

```r
library(iSFun)
data("simData.pls")
x <- simData.pls$x
y <- simData.pls$y
L <- length(x)

res <- meta.spls(x = x, y = y, L = L, mu1 = 0.03, trace = TRUE)
```

Description

The function describes the basic statistical information of the data, including sample mean, sample variance of X and Y, and the first pair of canonical vectors.

Usage

```r
preview.cca(x, y, L, scale.x = TRUE, scale.y = TRUE)
```
Arguments

x list of data matrices, L datasets of explanatory variables.

y list of data matrices, L datasets of dependent variables.

L numeric, number of datasets.

scale.x character, "TRUE" or "FALSE", whether or not to scale the variables x. The default is TRUE.

scale.y character, "TRUE" or "FALSE", whether or not to scale the variables y. The default is TRUE.

Value

An 'preview.cca' object that contains the list of the following items.

- `x`: list of data matrices, L datasets of explanatory variables with centered columns. If `scale.x` is TRUE, the columns of L datasets are standardized to have mean 0 and standard deviation 1.
- `y`: list of data matrices, L datasets of dependent variables with centered columns. If `scale.y` is TRUE, the columns of L datasets are standardized to have mean 0 and standard deviation 1.
- `loading.x`: the estimated canonical vector of variables x.
- `loading.y`: the estimated canonical vector of variables y.
- `meanx`: list of numeric vectors, column mean of the original datasets x.
- `normx`: list of numeric vectors, column standard deviation of the original datasets x.
- `meany`: list of numeric vectors, column mean of the original datasets y.
- `normy`: list of numeric vectors, column standard deviation of the original datasets y.

See Also

See Also as `iscca`.

Examples

Load a list with 3 data sets
library(iSFun)
data("simData.cca")
x <- simData.cca$x
y <- simData.cca$y
L <- length(x)

prev_cca <- preview.cca(x = x, y = y, L = L, scale.x = TRUE, scale.y = TRUE)
Description

The function describes the basic statistical information of the data, including sample mean, sample co-variance of X and Y, the first eigenvector, eigenvalue and principal component, etc.

Usage

```r
preview.pca(x, L, scale.x = TRUE)
```

Arguments

- `x` list of data matrices, L datasets of explanatory variables.
- `L` numeric, number of data sets.
- `scale.x` character, "TRUE" or "FALSE", whether or not to scale the variables x. The default is TRUE.

Value

An 'preview.pca' object that contains the list of the following items.

- `x`: list of data matrices, L datasets of explanatory variables with centered columns. If `scale.x` is TRUE, the columns of L datasets are standardized to have mean 0 and standard deviation 1.
- `eigenvalue`: the estimated first eigenvalue.
- `eigenvector`: the estimated first eigenvector.
- `component`: the estimated first component.
- `meanx`: list of numeric vectors, column mean of the original datasets x.
- `normx`: list of numeric vectors, column standard deviation of the original datasets x.

See Also

See Also as `ispca`.

Examples

```r
# Load a list with 3 data sets
library(iSFun)
data("simData.pca")
x <- simData.pca$x
L <- length(x)

prev.pca <- preview.pca(x = x, L = L, scale.x = TRUE)
```
preview.pls Statistical description before using function ispls

Description

The function describes the basic statistical information of the data, including sample mean, sample variance of X and Y, the first direction of partial least squares method, etc.

Usage

preview.pls(x, y, L, scale.x = TRUE, scale.y = TRUE)

Arguments

x list of data matrices, L datasets of explanatory variables.
y list of data matrices, L datasets of dependent variables.
L numeric, number of datasets.
scale.x character, "TRUE" or "FALSE", whether or not to scale the variables x. The default is TRUE.
scale.y character, "TRUE" or "FALSE", whether or not to scale the variables y. The default is TRUE.

Value

A `preview.pls` object that contains the list of the following items.

- x: list of data matrices, L datasets of explanatory variables with centered columns. If scale.x is TRUE, the columns of L datasets are standardized to have mean 0 and standard deviation 1.
- y: list of data matrices, L datasets of dependent variables with centered columns. If scale.y is TRUE, the columns of L datasets are standardized to have mean 0 and standard deviation 1.
- loading: the estimated first direction vector.
- meanx: list of numeric vectors, column mean of the original datasets x.
- normx: list of numeric vectors, column standard deviation of the original datasets x.
- meany: list of numeric vectors, column mean of the original datasets y.
- normy: list of numeric vectors, column standard deviation of the original datasets y.

See Also

See Also as `ispls`.
Examples

```r
library(iSFun)
data("simData.pls")
x <- simData.pls$x
y <- simData.pls$y
L <- length(x)

prev_pls <- preview.pls(x = x, y = y, L = L, scale.x = TRUE, scale.y = TRUE)
```

scca
Sparse canonical correlation analysis

Description

This function provides penalty-based sparse canonical correlation analysis to get the first pair of canonical vectors.

Usage

```r
scca(x, y, mu1, mu2, eps = 1e-04, scale.x = TRUE, scale.y = TRUE, 
maxstep = 50, trace = FALSE)
```

Arguments

- `x` data matrix of explanatory variables
- `y` data matrix of dependent variables.
- `mu1` numeric, sparsity penalty parameter for vector u.
- `mu2` numeric, sparsity penalty parameter for vector v.
- `eps` numeric, the threshold at which the algorithm terminates.
- `scale.x` character, "TRUE" or "FALSE", whether or not to scale the variables x. The default is TRUE.
- `scale.y` character, "TRUE" or "FALSE", whether or not to scale the variables y. The default is TRUE.
- `maxstep` numeric, maximum iteration steps. The default value is 50.
- `trace` character, "TRUE" or "FALSE". If TRUE, prints out its screening results of variables.

Value

An 'scca' object that contains the list of the following items.

- `x`: data matrix of explanatory variables with centered columns. If scale.x is TRUE, the columns of data matrix are standardized to have mean 0 and standard deviation 1.
- `y`: data matrix of dependent variables with centered columns. If scale.y is TRUE, the columns of data matrix are standardized to have mean 0 and standard deviation 1.
• loading.x: the estimated canonical vector of variables x.
• loading.y: the estimated canonical vector of variables y.
• variable.x: the screening results of variables x.
• variable.y: the screening results of variables y.
• meanx: column mean of the original dataset x.
• meany: column mean of the original dataset y.
• normx: column standard deviation of the original dataset x.
• normy: column standard deviation of the original dataset y.

See Also

See Also as iscca, meta.scca.

Examples

library(iSFun)
data("simData.cca")
x.scca <- do.call(rbind, simData.cca$x)
y.scca <- do.call(rbind, simData.cca$y)
res_scca <- scca(x = x.scca, y = y.scca, mu1 = 0.1, mu2 = 0.1, eps = 1e-3,
 scale.x = TRUE, scale.y = TRUE, maxstep = 50, trace = FALSE)

simData.cca Example data for method iscca

Description

Example data for users to apply the method iscca, iscca.cv, meta.scca or scca.

Format

list

simData.pca Example data for method ispca

Description

Example data for users to apply the method ispca, ispca.cv, meta.spca or spca.

Format

list
Example data for method ispls

Description

Example data for users to apply the method ispls, ispls.cv, meta.spls or spls.

Format

list

spca

Sparse principal component analysis

Description

This function provides penalty-based integrative sparse principal component analysis to obtain the direction of first principal component of a given dataset with high dimensions.

Usage

```r
spca(x, mu1, eps = 1e-04, scale.x = TRUE, maxstep = 50, trace = FALSE)
```

Arguments

- **x**: data matrix of explanatory variables.
- **mu1**: numeric, sparsity penalty parameter.
- **eps**: numeric, the threshold at which the algorithm terminates.
- **scale.x**: character, "TRUE" or "FALSE", whether or not to scale the variables x. The default is TRUE.
- **maxstep**: numeric, maximum iteration steps. The default value is 50.
- **trace**: character, "TRUE" or "FALSE". If TRUE, prints out its screening results of variables.

Value

An 'spca' object that contains the list of the following items.

- **x**: data matrix of explanatory variables with centered columns. If scale.x is TRUE, the columns of data matrix are standardized to have mean 0 and standard deviation 1.
- **eigenvalue**: the estimated first eigenvalue.
- **eigenvector**: the estimated first eigenvector.
• component: the estimated first principal component.
• variable: the screening results of variables.
• meanx: column mean of the original dataset x.
• normx: column standard deviation of the original dataset x.

See Also
See Also as ispca, meta.spca.

Examples
library(iSFun)
data("simData.pca")
x.spca <- do.call(rbind, simData.pca$x)
res_spca <- spca(x = x.spca, mu1 = 0.08, eps = 1e-3, scale.x = TRUE,
 maxstep = 50, trace = FALSE)

spls

Sparse partial least squares

Description
This function provides penalty-based sparse partial least squares analysis for single dataset with high dimensions, which aims to have the direction of the first loading.

Usage
spls(x, y, mu1, eps = 1e-04, kappa = 0.05, scale.x = TRUE,
 scale.y = TRUE, maxstep = 50, trace = FALSE)

Arguments
x matrix of explanatory variables.
y matrix of dependent variables.
mu1 numeric, sparsity penalty parameter.
eps numeric, the threshold at which the algorithm terminates.
kappa numeric, 0 < kappa < 0.5 and the parameter reduces the effect of the concave part of objective function.
scale.x character, "TRUE" or "FALSE", whether or not to scale the variables x. The default is TRUE.
scale.y character, "TRUE" or "FALSE", whether or not to scale the variables y. The default is TRUE.
maxstep numeric, maximum iteration steps. The default value is 50.
trace character, "TRUE" or "FALSE". If TRUE, prints out its screening results of variables.
Value

An 'spls' object that contains the list of the following items.

- x: data matrix of explanatory variables with centered columns. If scale.x is TRUE, the columns of data matrix are standardized to have mean 0 and standard deviation 1.
- y: data matrix of dependent variables with centered columns. If scale.y is TRUE, the columns of data matrix are standardized to have mean 0 and standard deviation 1.
- betahat: the estimated regression coefficients.
- loading: the estimated first direction vector.
- variable: the screening results of variables.
- meanx: column mean of the original dataset x.
- normx: column standard deviation of the original dataset x.
- meany: column mean of the original dataset y.
- normy: column standard deviation of the original dataset y.

See Also

See Also as `ispls, meta.spls`.

Examples

```r
library(iSFun)
data("simData.pls")
x.spls <- do.call(rbind, simData.pls$x)
y.spls <- do.call(rbind, simData.pls$y)
res_spls <- spls(x = x.spls, y = y.spls, mu1 = 0.05, eps = 1e-3, kappa = 0.05, scale.x = TRUE, scale.y = TRUE, maxstep = 50, trace = FALSE)
```
Index

* datasets
 simData.cca, 26
 simData.pca, 26
 simData.pls, 27

iscca, 2, 6, 7, 18, 22, 26
iscca.cv, 3, 4
iscca.plot, 6
ispca, 7, 10, 11, 20, 23, 28
ispca.cv, 8, 9
ispca.plot, 11
ispls, 12, 15, 16, 21, 24, 29
ispls.cv, 13, 14
ispls.plot, 16

meta.scca, 3, 17, 26
meta.spca, 8, 19, 28
meta.spls, 13, 20, 29

preview.cca, 3, 21
preview.pca, 8, 23
preview.pls, 13, 24

scca, 3, 18, 25
simData.cca, 26
simData.pca, 26
simData.pls, 27
spca, 8, 20, 27
spls, 13, 21, 28