Package ‘ib’

October 13, 2022

Type Package

Title Bias Correction via Iterative Bootstrap

Version 0.2.0

Description An implementation of the iterative bootstrap procedure of Kuk (1995) <doi:10.1111/j.2517-6161.1995.tb02035.x> to correct the estimation bias of a fitted model object. This procedure has better bias correction properties than the bootstrap bias correction technique.

Maintainer Samuel Orso <Samuel.Orso@unige.ch>

Depends R (>= 4.0.0)

Imports betareg, lme4, Formula, MASS, Matrix, methods, Rdpack (>= 0.7), stats, utils, VGAM

Suggests testthat (>= 3.0.0), knitr, nlraa, rmarkdown

License GPL (>= 2)

Encoding UTF-8

RdMacros Rdpack

RoxygenNote 7.1.2

URL https://github.com/SMAC-Group/ib/

BugReports https://github.com/SMAC-Group/ib/issues/

Config/testthat/edition 3

NeedsCompilation no

Author Samuel Orso [aut, cre], Stéphane Guerrier [ctb], Yuming Zhang [ctb]

Repository CRAN

Date/Publication 2022-04-04 22:50:02 UTC
R topics documented:

- bootstrap .. 2
- coef,ib-method ... 3
- effects,ib-method ... 4
- fitted,ib-method ... 4
- getEst ... 5
- getExtra .. 5
- getIteration ... 6
- getObject .. 7
- ib .. 7
- ib,negbin-method ... 11
- IbBetareg-class ... 12
- ibControl .. 13
- plot,ib,ANY-method 14
- predict,ib-method ... 15
- residuals,ib-method 15
- show,ib-method ... 16
- show,SummaryIb-method 16
- simulation .. 17
- simulation,betareg-method 17
- simulation,glm-method 18
- simulation,lm-method 18
- simulation,lmerMod-method 19
- simulation,negbin-method 19
- simulation,nls-method 20
- simulation,vglm-method 20
- summary,IbBetareg-method 21
- summary,IbGlm-method 21
- summary,IbLmer-method 22
- summary,IbLmer-class 22
- summary,IbNegbin-method 23
- summary,IbNls-method 23
- summary,IbVglm-method 24
- SummaryIbBetareg-class 24
- vcov,ib-method ... 25

Index ... 26

| bootstrap | Parametric bootstrap |

Description

Method for generating parametric bootstrap estimates from a fitted model.
Usage

bootstrap(object, B = 1000, extra_param = FALSE, ...)

Arguments

object an object representing a fitted model (see 'Details').
B an integer for number of bootstrap replicates (default 1,000).
extra_param if TRUE, bootstrap is also performed for extra parameters (see 'Details').
... additional optional arguments to pass to ibControl.

Details

This method is a simple wrapper around the ib method where number of iterations is set to 1.

Value

A matrix p (size of parameter) times B of bootstrapped estimates.

Author(s)

Samuel Orso

See Also

ib, ibControl

Description

Method for extracting coefficients from an object in class union "Ib"

Usage

S4 method for signature 'Ib'
coef(object, ...)

Arguments

object an object of class union "Ib"
... further arguments to pass to coef

See Also

Ib, coef
effects,Ib-method

Method for extracting effects from an object in class union "Ib"

Usage

```r
## S4 method for signature 'Ib'
effects(object, ...)
```

Arguments

- `object`: an object of class union "Ib"
- `...`: further arguments to pass to `effects`

See Also

- `Ib`, `effects`

fitted,Ib-method

Method for extracting fitted values from an object in class union "Ib"

Usage

```r
## S4 method for signature 'Ib'
fitted(object, ...)
```

Arguments

- `object`: an object of class union "Ib"
- `...`: further arguments to pass to `fitted`

See Also

- `Ib`, `fitted.values`
getEst

Accessor to the object in class union "Ib"

Description
Method for obtaining estimates from fitted model within any object of class union Ib.

Usage
getEst(x)

S4 method for signature 'Ib'
getEst(x)

Arguments
x
an object of class union "Ib"

Details
This methods allow to access extra parameter estimates. If extra_param=TRUE, it becomes equivalent to coef.

Value
an estimate (as in getExtra).

See Also
Ib

getExtra

Accessor to an extra part in class union "Ib"

Description
Method for obtaining extra values generated by the iterative bootstrap procedure within any object of class union Ib.

Usage
getExtra(x)

S4 method for signature 'Ib'
getExtra(x)
Arguments

x an object of class union "Ib"

Value

a list with the following components:

- iteration number of iterations \(k\)
- of value of the objective function \(\|\hat{\pi} - \frac{1}{H} \sum_{h=1}^{H} \hat{\pi}_h(\hat{\theta}^k)\|\)
- estimate value of the estimates \(\hat{\theta}^k\)
- test_theta value for difference of thetas: \(\|\hat{\theta}^k - \hat{\theta}^{k-1}\|\)
- ib_warn optional warning message
- boot matrix of \(H\) bootstrap estimates: \(\hat{\pi}(\hat{\theta}^k)\)

See Also

Ib

getIteration

Accessor to the object in class union "Ib"

Description

Method for obtaining the number of iteration from fitted model within any object of class union Ib.

Usage

getIteration(x)

S4 method for signature 'Ib'

getIteration(x)

Arguments

x an object of class union "Ib"

Details

This methods allow to access extra information about the number of iterations.

Value

a number of iterations (as in getExtra).

See Also

Ib
getObject

Accessor to the object in class union "Ib"

Description

Method for obtaining a fitted model within any object of class union Ib.

Usage

```r
getObject(x)
```

S4 method for signature 'Ib'

```r
ggetObject(x)
```

Arguments

- `x`
 - an object of class union "Ib"

See Also

- Ib

ib

Bias correction via iterative bootstrap

Description

ib is used to correct the bias of a fitted model object with the iterative bootstrap procedure.

Usage

```r
ib(object, start = NULL, control = list(...), extra_param = FALSE, ...)
```

S4 method for signature 'betareg'

```r
ib(object, start = NULL, control = list(...), extra_param = FALSE, ...)
```

S4 method for signature 'glm'

```r
ib(object, start = NULL, control = list(...), extra_param = FALSE, ...)
```

S4 method for signature 'lm'

```r
ib(object, start = NULL, control = list(...), extra_param = FALSE, ...)
```

S4 method for signature 'lmerMod'

```r
ib(object, start = NULL, control = list(...), extra_param = FALSE, ...)
```

S4 method for signature 'nls'

```r
ib(object, start = NULL, control = list(...), extra_param = FALSE, ...)
```
ib(object, thetastart = NULL, control = list(...), extra_param = FALSE, ...)

S4 method for signature 'vglm'
ib(object, thetastart = NULL, control = list(...), extra_param = FALSE, ...)

Arguments

- **object**: an object representing a fitted model (see 'Details').
- **thetastart**: an optional starting value for the iterative procedure. If NULL (default), the procedure starts at the estimates in object.
- **control**: a list of parameters for controlling the iterative procedure (see `ibControl`).
- **extra_param**: if TRUE, the bias of estimation of extra parameters is performed (see 'Details').
- **...**: additional optional arguments (see 'Details').

Details

The iterative bootstrap procedure is described in Kuk (1995) and further studied by Guerrier et al. (2019) and Guerrier et al. (2020). The \(k \)th iteration of this algorithm is

\[
\hat{\theta}^k = \hat{\theta}^{k-1} + \frac{1}{H} \sum_{h=1}^{H} \tilde{\pi}_h(\hat{\theta}^{k-1})
\]

for \(k = 1, 2, \ldots \) and where the sum is over \(h = 1, \ldots, H \). The estimate \(\tilde{\pi} \) is provided by the object. The value \(\tilde{\pi}_h(\hat{\theta}) \) is a parametric bootstrap estimate where the bootstrap sample is generated from \(\hat{\theta} \) and a fixed seed (see `ibControl`). The greater the parameter value \(H \) generally the better bias correction but the more computation it requires (see `ibControl`). If thetastart=NULL, the initial value of the procedure is \(\hat{\theta}^0 = \hat{\pi} \). The number of iterations are controlled by `maxit` parameter of `ibControl`.

By default, the method correct **coefficients** only. For extra parameters, it depends on the model. These extra parameters may have some constraints (e.g. positivity). If `constraint=TRUE` (see `ibControl`), then a transformation from the constraint space to the real is used for the update.

For `betareg`, `extra_param` is not available as by default mean and precision parameters are corrected. Currently the ‘identity’ link function is not supported for precision parameters.

For `glm`, if `extra_param=TRUE`: the shape parameter for the **Gamma**, the variance of the residuals in `lm` or the overdispersion parameter of the negative binomial regression in `glm.nb`, are also corrected. Note that the **quasi** families are not supported for the moment as they have no simulation method (see `simulate`). Bias correction for extra parameters of the **inverse.gaussian** is not yet implemented.

For `lm`, if `extra_param=TRUE`: the variance of the residuals is also corrected. Note that using the **ib** is not useful as coefficients are already unbiased, unless one considers different data generating mechanism such as censoring, missing values and outliers (see `ibControl`).

For `lmer`, by default, only the fixed effects are corrected. If `extra_param=TRUE`: all the random effects (variances and correlations) and the variance of the residuals are also corrected. Note that using the **ib** is certainly not useful with the argument `REML=TRUE` in `lmer` as the bias of variance components is already addressed, unless one considers different data generating mechanism such as censoring, missing values and outliers (see `ibControl`).
For `nls`, if `extra_param=TRUE`: the variance of the residuals is also corrected.

For `vglm`, `extra_param` is currently not used. Indeed, the philosophy of a vector generalized linear model is to potentially model all parameters of a distribution with a linear predictor. Hence, what would be considered as an extra parameter in `glm` for instance, may already be captured by the default coefficients. However, correcting the bias of a coefficient does not imply that the bias of the parameter of the distribution is corrected (by Jensen's inequality), so we may use this feature in a future version of the package. Note that we currently only support distributions with a `simslot` (see `simulate.vlm`).

Value

A fitted model object of class `Ib`.

Author(s)

Samuel Orso

References

See Also

`betareg`

`glm, glm.nb`

`lm`

`lmer`

`nls`

`vglm`

Examples

```r
## beta regression
library(betareg)
data("GasolineYield", package = "betareg")
```
currently link.phi = "identity" is not supported
fit_beta <- betareg(yield ~ batch + temp, data = GasolineYield)
fit_beta <- betareg(yield ~ batch + temp, link.phi = "log", data = GasolineYield)
fit_ib <- ib(fit_beta)

precision parameter can also depend on covariates
fit_beta <- betareg(yield ~ batch + temp | temp, data = GasolineYield)
fit_ib <- ib(fit_beta)

poisson regression
counts <- c(18,17,15,20,20,25,13,12)
outcome <- gl(3,1,9)
treatment <- gl(3,3)
pois_fit <- glm(counts ~ outcome + treatment, family = poisson())
fit_ib <- ib(pois_fit)
summary(fit_ib)

Set H = 1000
Not run:
fit_ib <- ib(pois_fit, control=list(H=1000))
summary(fit_ib)

gamma regression
clotting <- data.frame(
 u = c(5,10,15,20,30,40,60,80,100),
 lot1 = c(118,58,42,35,27,25,21,19,18),
 lot2 = c(69,35,26,21,18,16,13,12,12))
fit_gamma <- glm(lot2 ~ log(u), data = clotting, family = Gamma(link = "inverse"))
fit_ib <- ib(fit_gamma)

summary(fit_ib)
correct for shape parameter and show iterations
Not run:
fit_ib <- ib(fit_gamma, control=list(verbose = TRUE), extra_param = TRUE)
summary(fit_ib)

negative binomial regression
library(MASS)
fit_nb <- glm.nb(Days ~ Sex/(Age + Eth*Lrn), data = quine)
fit_ib <- ib(fit_nb)

summary(fit_ib)
correct for overdispersion with H=100
Not run:
fit_ib <- ib(fit_nb, control=list(H=100), extra_param = TRUE)
summary(fit_ib)

End(Not run)

linear regression
fit_lm <- lm(disp ~ cyl + hp + wt, data = mtcars)
fit_ib <- ib(fit_lm)

summary(fit_ib)
correct for variance of residuals
fit_ib <- ib(fit_lmm, extra_param = TRUE)
summary(fit_ib)

linear mixed-effects regression
library(lme4)
fit_lmm <- lmer(Reaction ~ Days + (Days | Subject), data = sleepstudy, REML = FALSE)
fit_ib <- ib(fit_lmm)
summary(fit_ib)

correct for variances and correlation
Not run:
fit_ib <- ib(fit_lmm, extra_param = TRUE)
summary(fit_ib)
End(Not run)

nonlinear regression
DNase1 <- subset(DNase, Run == 1)
fit_nls <- nls(density ~ SSlogis(log(conc), Asym, xmid, scal), data = DNase1)
fit_ib <- ib(fit_nls)
summary(fit_ib)

student regression
library(VGAM)
tdata <- data.frame(x = runif(nn <- 1000))
tdata <- transform(tdata,
 y = rt(nn, df = exp(exp(0.5 - x))))
fit_vglm <- vglm(y ~ x, studentt3, data = tdata)
fit_ib <- ib(fit_vglm)
summary(fit_ib)

ib.negbin-method

S4 method for signature 'negbin'

```r
ib(object, thetastart = NULL, control = list(...), extra_param = FALSE, ...)
```

Arguments

- **object**
 - an object representing a fitted model (see ’Details’).
- **thetastart**
 - an optional starting value for the iterative procedure. If NULL (default), the procedure starts at the estimates in object.
- **control**
 - a list of parameters for controlling the iterative procedure (see `ibControl`).
extra_param if TRUE, the bias of estimation of extra parameters is performed (see 'Details').

... additional optional arguments (see 'Details').

IbBetareg-class

An S4 class union for ib

Description

Members of the union are `IbBetareg`, `IbGlm`, `IbLm`, `IbLmer`, `IbNegbin`, `IbNls`, `IbVglm`

Details

The ‘Functions’ section describes members of the class union.

Value

Each member of the union has a slot with the initial object corrected by the ib (see `getObject`) and a second slot with extra meta data from ib (see `getExtra`).

Functions

- `IbBetareg-class`: fitted model by `betareg` from `betareg`
- `IbGlm-class`: fitted model by `glm` from `stats`
- `IbLm-class`: fitted model by `lm` from `stats`
- `IbLmer-class`: fitted model by `lmer` from `lme4`
- `IbNegbin-class`: fitted model by `glm.nb` from `MASS`
- `IbNls-class`: fitted model by `nls` from `stats`
- `IbVglm-class`: fitted model by `vglm` from `VGAM`

Author(s)

Samuel Orso

See Also

`getExtra`, `getObject`
ibControl

Auxiliary for controlling IB

Description

Auxiliary function for ib bias correction.

Usage

```r
ibControl(
  tol = 1e-05,
  maxit = 25,
  verbose = FALSE,
  seed = 123L,
  H = 1L,
  constraint = TRUE,
  early_stop = FALSE,
  cens = FALSE,
  right = NULL,
  left = NULL,
  mis = FALSE,
  prop = NULL,
  out = FALSE,
  eps = NULL,
  G = NULL,
  func = function(x) rowMeans(x, na.rm = T),
  sim = NULL
)
```

Arguments

- **tol**: positive convergence tolerance \(\epsilon \). The ib procedure converges when \(\| \hat{\theta}^{k+1} - \hat{\theta}^k \|_2/p < \epsilon \), where \(p \) is the dimension of \(\theta \).
- **maxit**: integer representing the maximal number of iterations.
- **verbose**: if TRUE, it prints some output in the console at each iteration.
- **seed**: integer to set the seed (see Random).
- **H**: integer representing the number of bootstrap estimates (see ib).
- **constraint**: if TRUE (default), constraint for extra_param is used in the iterative procedure (see 'Details' of ib).
- **early_stop**: if TRUE (default is FALSE), the iterative procedure stops as soon as there is no improvement in the minimization of the objective function (see 'Details' of ib).
- **cens**: if TRUE the simulated responses are censored according to left and right values.
- **right**: double for right-censoring (only used if cens=TRUE).
left double for left-censoring (only used if cens=TRUE).

mis if TRUE the simulated responses have missing data at random.

prop double between 0 and 1 representing the proportion of missing data (only used if mis=TRUE).

out if TRUE the simulated responses are also generated with a contamination mechanism.

eps double between 0 and 1 representing the proportion of outliers in the data (only used if out=TRUE).

G a function to generate outliers. It takes only a sample size as argument.

func a function to reduce the H bootstrap estimates (rowwise). By default, the average is computed. The user can supply a function. One could imagine using other function such as the median or a trimmed mean.

sim a user-defined function for simulating responses (see 'Details')

Details

sim allows the user to provide its own function for generating responses. Currently it is only supported for generalized linear models with the prototype 'fun(object, control, extra_param, ...)' (see ib).

Value

a list with components named as the arguments.

See Also

ib, the iterative procedure for bias correction.

plot,Ib,ANY-method

Method for plotting an object in class union "Ib"

Description

Method for plotting an object in class union "Ib"

Usage

```r
## S4 method for signature 'Ib,ANY'
plot(x, y = NULL, ...)
```

Arguments

- `x` an object of class union "Ib"
- `y` not used
- `...` further arguments to pass to `plot`
predict,Ib-method

Method for making predictions from an object in class union "Ib"

Description
Method for making predictions from an object in class union "Ib"

Usage
S4 method for signature 'Ib'
predict(object, ...)

Arguments
object an object of class union "Ib"
... further arguments to pass to predict

See Also
Ib, predict

residuals,Ib-method Method for extracting residuals from an object in class union "Ib"

Description
Method for extracting residuals from an object in class union "Ib"

Usage
S4 method for signature 'Ib'
residuals(object, ...)

Arguments
object an object of class union "Ib"
... further arguments to pass to residuals

See Also
Ib, residuals
show, Ib-method

Method for printing object in class union "Ib"

Description
Method for printing object in class union "Ib"

Usage

```r
## S4 method for signature 'Ib'
show(object)
```

Arguments

- `object`: an object of class union "Ib"

See Also
- `Ib`

show, SummaryIb-method

Summarizing a fitted model corrected by the ib procedure

Description
Method for printing a summary of class union `SummaryIb`.

Usage

```r
## S4 method for signature 'SummaryIb'
show(object)
```

Arguments

- `object`: a summary object of member of `SummaryIb`

See Also
- `SummaryIb`
simulation

Generic for simulating from the object

Description

Method for simulating responses from an object.

Usage

simulation(object, control = list(...), ...)

S4 method for signature 'Ib'
simulation(object, control = list(...), ...)

Arguments

- object: an object of class union "Ib"
- control: a control list
- ...: further argument to pass

Value

simulated responses.

Examples

bootstrap poisson regression
counts <- c(18,17,15,20,10,20,25,13,12)
outcome <- gl(3,1,9)
treatment <- gl(3,3)
pois_fit <- glm(counts ~ outcome + treatment, family = poisson())

make 100 parametric bootstrap replicates
boot_dist <- simulate(pois_fit, nsim = 100)

simulation, betareg-method

Simulation for a beta regression

Description

simulation method for class IbBetareg
Usage

```r
## S4 method for signature 'betareg'
simulation(object, control = list(...), extra = NULL, ...)
```

Arguments

- `object`: an object of class `IbBetareg`
- `control`: a list of parameters for controlling the iterative procedure (see `ibControl`).
- `extra`: NULL by default; extra parameters to pass to simulation.
- `...`: further arguments

Simulation for a Generalized Linear Model regression

Description

Simulation method for class `IbGlm`

Usage

```r
## S4 method for signature 'glm'
simulation(object, control = list(...), extra = NULL, ...)
```

Arguments

- `object`: an object of class `IbGlm`
- `control`: a list of parameters for controlling the iterative procedure (see `ibControl`).
- `extra`: NULL by default; extra parameters to pass to simulation.
- `...`: further arguments

Simulation for linear regression

Description

Simulation method for class `IbLm`

Usage

```r
## S4 method for signature 'lm'
simulation(object, control = list(...), std = NULL, ...)
```

Arguments

- `object`: an object of class `IbLm`
- `control`: a list of parameters for controlling the iterative procedure (see `ibControl`).
- `extra`: NULL by default; extra parameters to pass to simulation.
- `...`: further arguments
Arguments

object an object of class \texttt{IbLm}
control a list of parameters for controlling the iterative procedure (see \texttt{ibControl}).
std NULL by default; standard deviation to pass to simulation.
... further arguments

Description

Simulation for linear mixed model regression

Usage

S4 method for signature 'lmerMod'
simulation(object, control = list(...), ...)

Arguments

object an object of class \texttt{IbLmer}
control a list of parameters for controlling the iterative procedure (see \texttt{ibControl}).
... further arguments

Description

Simulation for a negative binomial regression

Usage

S4 method for signature 'negbin'
simulation(object, control = list(...), extra = NULL, ...)

Arguments

object an object of class \texttt{IbNegbin}
control a list of parameters for controlling the iterative procedure (see \texttt{ibControl}).
extra NULL by default; extra parameters to pass to simulation.
... further arguments
simulation,nls-method
Simulation for nonlinear regression

Description

Simulation method for class `IbNls`

Usage

```r
## S4 method for signature 'nls'
simulation(object, control = list(...), std = NULL, ...)
```

Arguments

- `object`: an object of class `IbNls`
- `control`: a list of parameters for controlling the iterative procedure (see `ibControl`).
- `std`: NULL by default; standard deviation to pass to simulation.
- `...`: further arguments

simulation,vglm-method
Simulation for vector generalized linear model regression

Description

Simulation method for class `IbVglm`

Usage

```r
## S4 method for signature 'vglm'
simulation(object, control = list(...), extra_param = NULL, ...)
```

Arguments

- `object`: an object of class `IbVglm`
- `control`: a list of parameters for controlling the iterative procedure (see `ibControl`).
- `extra_param`: NULL by default; extra parameters to pass to simulation.
- `...`: further arguments
summary.IbBetareg-method

Summarizing a beta regression fit corrected by the iterative bootstrap

Description

Summary method for class *IbBetareg*

Usage

```r
## S4 method for signature 'IbBetareg'
summary(object, ...)
```

Arguments

- `object` an object of class *IbBetareg*
- `...` further arguments passed to `summary.betareg`

See Also

`summary.betareg`

summary.IbGlm-method

Summarizing a Generalized Linear Model regression fit corrected by the iterative bootstrap

Description

Summary method for class *IbGlm*

Usage

```r
## S4 method for signature 'IbGlm'
summary(object, ...)
```

Arguments

- `object` an object of class *IbGlm*
- `...` further arguments passed to `summary.glm`

See Also

`summary.glm`
summary,IbLm-method
Summarizing a linear regression fit corrected by the iterative bootstrap

Description

summary method for class \texttt{IbLm}

Usage

```r
## S4 method for signature 'IbLm'
summary(object, ...)
```

Arguments

- `object`: an object of class \texttt{IbLm}
- `...`: further arguments passed to \texttt{summary.lm}

See Also

\texttt{summary.lm}

summary,IbLmer-method
Summarizing a linear mixed model regression fit corrected by the iterative bootstrap

Description

summary method for class \texttt{IbLmer}

Usage

```r
## S4 method for signature 'IbLmer'
summary(object, ...)
```

Arguments

- `object`: an object of class \texttt{IbLmer}
- `...`: further arguments passed to \texttt{summary.merMod} of \texttt{lme4}
summary.IbNegbin-method

Summarizing a negative binomial regression fits corrected by the iterative bootstrap

Description

summary method for class IbNegbin

Usage

S4 method for signature 'IbNegbin'
summary(object, ...)

Arguments

object an object of class IbNegbin
...

further arguments passed to summary.negbin

See Also

summary.negbin

summary.IbNls-method

Summarizing a nonlinear regression fit corrected by the iterative bootstrap

Description

summary method for class IbNls

Usage

S4 method for signature 'IbNls'
summary(object, ...)

Arguments

object an object of class IbNls
...

further arguments passed to summary.nls of stats
SummaryIbBetareg-class

SummaryIbBetareg-class

An S4 class union for summary

Description

Summary method for class IbVglm

Usage

```r
## S4 method for signature 'IbVglm'
summary(object, ...)
```

Arguments

- `object` an object of class IbVglm
- `...` further arguments passed to `summary.merMod` of VGAM

SummaryIbBetareg-class

An S4 class union for summary

Description

Members of the union are SummaryIbBetareg, SummaryIbGlm, SummaryIbLm, SummaryIbLmer, SummaryIbNegbin, SummaryIbNls, SummaryIbVglm iterative bootstrap procedure

Details

The 'Functions' section describes members of the class union.

Functions

- SummaryIbBetareg-class: summary of class summary.betareg from betareg
- SummaryIbGlm-class: summary of class summary.glm from stats
- SummaryIbLm-class: summary of class summary.lm from stats
- SummaryIbLmer-class: summary of class summary.merMod from lme4
- SummaryIbNegbin-class: summary of class summary.negbin from MASS
- SummaryIbNls-class: summary of class summary.nls from stats
- SummaryIbVglm-class: summary of class summary.vglm from VGAM

Author(s)

Samuel Orso
vcov, Ib-method

Method for calculating covariance matrix from an object in class union "Ib"

Description

Method for calculating covariance matrix from an object in class union "Ib"

Usage

```r
## S4 method for signature 'Ib'
vcov(object, ...)
```

Arguments

- `object` an object of class union "Ib"
- `...` further arguments to pass to `vcov`

See Also

`Ib`, `vcov`
Index

betareg, 8, 9
bootstrap, 2
coeff, 3, 5
coeff, Ib-method, 3
coefficients, 8
effects, 4
effects, Ib-method, 4
fitted, Ib-method, 4
fitted.values, 4
Gamma, 8
getEst, 5
gEst, Ib-method (getEst), 5
gExtra, 5, 5, 6, 12
gExtra, Ib-method (getExtra), 5
gIteration, 6
gIteration, Ib-method (getIteration), 6
getObject, 7, 12
gObject, Ib-method (getObject), 7
glm, 8, 9
glm.nb, 8, 9, 11
Ib, 3–7, 9, 15, 16, 25
ib, 3, 7, 11, 13, 14
ib, betareg-method (ib), 7
ib, glm-method (ib), 7
ib, lm-method (ib), 7
ib, lmerMod-method (ib), 7
ib, negbin-method, 11
ib, nls-method (ib), 7
ib, vglm-method (ib), 7
Ib-class (IbBetareg-class), 12
IbBetareg, 12, 17, 18, 21
IbBetareg-class, 12
ibControl, 3, 8, 11, 13, 18–20
IbGlm, 12, 18, 21
IbGlm-class (IbBetareg-class), 12
IbLm, 12, 18, 19, 22
IbLm-class (IbBetareg-class), 12
IbLmer, 12, 19, 22
IbLmer-class (IbBetareg-class), 12
IbNegbin, 12, 19, 23
IbNegbin-class (IbBetareg-class), 12
IbNls, 12, 20, 23
IbNls-class (IbBetareg-class), 12
IbVglm, 12, 20, 24
IbVglm-class (IbBetareg-class), 12
inverse.gaussian, 8
lm, 8, 9
lmer, 8, 9
nls, 9
plot, Ib, ANY-method, 14
plot.lm, 15
predict, 15
predict, Ib-method, 15
quasi, 8
Random, 13
residuals, 15
residuals, Ib-method, 15
show, Ib-method, 16
show, SummaryIb-method, 16
simulate, 8
simulate.vlm, 9
simulation, 17
simulation, betareg-method, 17
simulation, glm-method, 18
simulation, Ib-method (simulation), 17
simulation, lm-method, 18
simulation, lmerMod-method, 19
simulation, negbin-method, 19
simulation, nls-method, 20
simulation, vglm-method, 20
summary, IbBetareg-method, 21
summary.IbGlm-method, 21
summary.IbLm-method, 22
summary.IbLmer-method, 22
summary.IbNegbin-method, 23
summary.IbNls-method, 23
summary.IbVglm-method, 24
summary.betareg, 21
summary.glm, 21
summary.lm, 22
summary.negbin, 23
SummaryIb, 16
SummaryIb-class
 (SummaryIbBetareg-class), 24
SummaryIbBetareg, 24
SummaryIbBetareg-class, 24
SummaryIbGlm, 24
SummaryIbGlm-class
 (SummaryIbBetareg-class), 24
SummaryIbLm, 24
SummaryIbLm-class
 (SummaryIbBetareg-class), 24
SummaryIbLmer, 24
SummaryIbLmer-class
 (SummaryIbBetareg-class), 24
SummaryIbNegbin, 24
SummaryIbNegbin-class
 (SummaryIbBetareg-class), 24
SummaryIbNls, 24
SummaryIbNls-class
 (SummaryIbBetareg-class), 24
SummaryIbVglm, 24
SummaryIbVglm-class
 (SummaryIbBetareg-class), 24
vcov, 25
vcov.Ib-method, 25
vglm, 9