Package ‘ibd’
April 24, 2019

Version 1.5
Date 2019-04-24
Title Incomplete Block Designs
Author B N Mandal [aut, cre]
Maintainer B N Mandal <mandal.stat@gmail.com>
Depends R (>= 3.1.1)
Imports lpSolve, car, emmeans, multcomp
Suggests multcompView
Description A collection of several utility functions related to binary incomplete block designs. The package contains function to generate A- and D-efficient binary incomplete block designs with given numbers of treatments, number of blocks and block size. The package also contains function to generate an incomplete block design with specified concurrence matrix. There are functions to generate balanced treatment incomplete block designs and incomplete block designs for test versus control treatments comparisons with specified concurrence matrix. Package also allows performing analysis of variance of data and computing estimated marginal means of factors from experiments using a connected incomplete block design. Tests of hypothesis of treatment contrasts in incomplete block design set up is supported.
License GPL (>= 2)
NeedsCompilation no
Repository CRAN
Date/Publication 2019-04-24 07:10:03 UTC

R topics documented:

 aov.ibd .. 2
 A_eff ... 3
 bibd ... 4
 btib ... 6
 btib1 .. 7
 Cmatrix ... 8
 design_to_N .. 9
 D_eff ... 10
aov.ibd

Analysis of variance, least square means and contrast analysis of data from a block design

Description

This function performs intrablock analysis of variance of data from experiments using a block design. It also computes estimated marginal means of the factor variables (e.g. treatments) and optionally estimates and tests the contrasts of factor variables (e.g treatments).

Usage

```r
aov.ibd(formula, specs, data, contrast, joint=FALSE, details=FALSE, sort=TRUE, by=NULL, alpha=0.05, letters = "ABCDEFGHIJ", ...)
```

Arguments

- **formula**: A formula specifying the model of the form response~treatment+block or response~block+treatment. Make sure the treatment and blocks are factor variables.
- **specs**: A character vector specifying the names of the factors over which estimated marginal means are desired
- **data**: A data frame in which the variables specified in the formula will be found. If missing, the variables are searched for in the standard way.
- **contrast**: A matrix whose rows are contrasts of factors (e.g. treatments)
- **joint**: If contrast argument has more than one row, then whether a joint test of the contrasts will be performed. Default is FALSE. If joint=TRUE, a check is performed whether the contrasts are pairwise orthogonal or not and then if orthogonal, joint test is performed.
- **details**: Logical, if details=TRUE then all objects including lm object from lm(), emmeans() are returned. Default is FALSE.
- **sort**: Logical value determining whether the least square means are sorted before the comparisons are produced. Default is TRUE.
A_eff

by Character value giving the name or names of variables by which separate families of comparisons are tested. If NULL, all means are compared.

alpha Numeric value giving the significance level for the comparisons

Letters Characters to be used for compact letter display of groups of factor variables over which least square means are computed. Default is English alphabet capital letters "ABCDEFGHIJ"

... Not used

Details

The function makes use of lm() function in R and Anova() function in car package with specification of Type III sum of squares and emmeans(), contrast() functions in emmeans() package, cld() function in multcomp package and combines the results in a single place.

Value

Returns a list with following components

lmNobj An object of class lm if details=TRUE
ANOVA.table ANOVA table from the fitted lm object
EMMEANS Estimated marginal means means with compact letter display
contrastNanalysis Contrast analysis result if contrast matrix was supplied

Author(s)

B N Mandal <mandal.stat@gmail.com>

Examples

data(ibddata)
aov.ibd(y~factor(trt)+factor(blk),data=ibddata)
contrast=matrix(c(1,-1,0,0,0,0,0,0,1,-1,0,0,0,0),nrow=2,byrow=TRUE)
aov.ibd(y~factor(trt)+factor(blk),specs="trt",data=ibddata,contrast=contrast)

A_eff A-efficiency of a binary incomplete block design

Description

This function computes lower bound to A-efficiency of a binary incomplete block design. Treatment by block incidence matrix of the design is to be supplied as input to the function.

Usage

A_eff(N)
Arguments

N Treatment by block incidence matrix

Value

Aeff A-efficiency

Author(s)

B N Mandal <mandal.stat@gmail.com>

Examples

N=matrix(c(1,0,0,0,1,0,1,0,0,0,1,1,0,1,0,1,0,1,0,1,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0,0,1,1,0,0,1,0,0,1,0,0, 1,0,1,0,0,0),nrow=7,byrow=TRUE)
A_eff(N)

bibd

Balanced incomplete block design for given parameters

Description

This function generates a balanced incomplete block design with given number of treatments(v), number of blocks(b), number of replications (r), block size(k) and number of concurrences (lambda).

Usage

`bibd(v,b,r,k,lambda,ntrial,pbar=FALSE)`

Arguments

v number of treatments
b number of blocks
r number of replications
k block size
lambda number of concurrences
ntrial number of trials
pbar logical value indicating whether progress bar will be displayed or not. Default is FALSE
Value

- **v**: number of treatments
- **b**: number of blocks
- **r**: number of replications
- **k**: block size
- **\(\lambda \)**: number of concurrences
- **design**: block contents in a b by k matrix
- **\(N \)**: treatments by blocks incidence matrix of the generated design
- **\(NNP \)**: concurrence matrix of the generated design
- **\(Aeff \)**: Lower bound to the A-efficiency of the generated design
- **\(Deff \)**: Lower bound to the D-efficiency of the generated design

Note

The function works best for values of number of treatments (v) up to 30 and block size (k) up to 10. However, for block size (k) up to 3, much larger values of number of treatments (v) may be used.

Author(s)

B N Mandal <mandal.stat@gmail.com>

References

Examples

bibd(7,7,3,1, pbar=FALSE)
balanced treatment incomplete block designs

btib

Description

This function generates a balanced treatment incomplete block design for specified parameters.

Usage

```r
btib(v, b, r, r0, k, lambda, lambda0, ntrial=5, pbar=FALSE)
```

Arguments

- `v`: number of test treatments
- `b`: number of blocks
- `r`: number of replications of test treatments
- `r0`: number of replications of the control treatment
- `k`: block size
- `lambda`: number of concurrences among test treatments
- `lambda0`: number of concurrences between test treatments and the control treatment
- `ntrial`: number of trials. Default is 5.
- `pbar`: Logical value indicating whether progress bar will be displayed or not. Default is FALSE.

Value

- `v`: number of test treatments
- `b`: number of blocks
- `r`: number of replications of test treatments
- `r0`: number of replications of the control treatment
- `k`: block size
- `lambda`: number of concurrences among test treatments
- `lambda0`: number of concurrences between test treatments and the control treatment
- `design`: generated block design
- `N`: treatment by block incidence matrix of the generated block design
- `NNP`: concurrence matrix of the generated design
- `Aeff`: A-efficiency of the generated design

Note

The function works best for values of number of treatments (v) up to 30 and block size (k) up to 10. However, for block size (k) up to 3, much larger values of number of treatments (v) may be used.
Author(s)

B N Mandal <mandal.stat@gmail.com>

References

Examples

btib(4,6,3,6,3,1,3,10)

btib1 balanced treatment incomplete block designs

Description

This function generates a balanced treatment incomplete block design for specified parameters by searching all possible combinations.

Usage

btib1(v,b,r,r0,k,lambda,lambda0)

Arguments

v number of test treatments
b number of blocks
r number of replications of test treatments
r0 number of replications of the control treatment
k block size
lambda number of concurrences among test treatments
lambda0 number of concurrences between test treatments and control treatment

Value

v number of test treatments
b number of blocks
r number of replications of test treatments
r0 number of replications of control treatment
k block size
The function gives the information matrix from a given treatment by block incidence matrix of a block design. The function works best for values of number of treatments (v) up to 30 and block size (k) up to 10. However, for block size (k) up to 3, much larger values of number of treatments (v) may be used.

Author(s)
B N Mandal <mandal.stat@gmail.com>

References

Examples
btib(4,6,3,6,3,1,3)

Cmatrix

Information matrix from given treatment by block incidence matrix of a block design

Description
This function gives the information matrix from a given treatment by block incidence matrix of a block design.

Usage
Cmatrix(N)

Arguments
N treatment by block incidence matrix

Value
Cmatrix v by v information matrix where v is number of treatments
design_to_N

Author(s)
B N Mandal <mandal.stat@gmail.com>

Examples

n=matrix(c(1,0,0,0,1,0,0,1,1,1,0,0,1,1,0,1,1,1,0,1,1,1,0,0,0,1,1,1,0,0,1,1,1,1,0,0,1,0,0,nrow=7,byrow=TRUE)
Cmatrix(n)

design_to_N block design to treatment by block incidence matrix

Description
This function generates treatment by block incidence matrix from a given block design

Usage

design_to_N(design)

Arguments

design design

Value

N A treatment by block incidence matrix of order v by b with elements as 0 and 1 where v is the number of treatments and b is the number of blocks

Author(s)
B N Mandal <mandal.stat@gmail.com>

Examples

d=matrix(c(1,4,6,5,6,7,3,4,5,2,4,7,1,3,7,2,3,6,1,2,5),nrow=7,byrow=TRUE)
design_to_N(d)
D_eff

D-efficiency of a binary incomplete block design

Description

This function computes lower bound to D-efficiency of a binary incomplete block design. Treatment by block incidence matrix of the design is to be supplied as input to the function.

Usage

```r
d_effHnI
```

Arguments

- `n`: treatment by block incidence matrix

Value

- `deff`: Lower bound to D-efficiency

Author(s)

B N Mandal <mandal.stat@gmail.com>

Examples

```r
n=matrix(c(1,0,0,0,1,0,1,0,0,0,1,0,1,0,0,1,0,1,0),nrow=7,byrow=TRUE)
d_eff(n)
```

ibd

Binary incomplete block design for given v, b and k and optionally, with a specified concurrence matrix

Description

This function generates an A- and D- efficient binary incomplete block design with given number of treatments(v), number of blocks(b) and block size(k) and optionally with a specified concurrence matrix(NNP).

Usage

```r
ibd(v,b,k,NNP,ntrial,pbar=FALSE)
```
Arguments

- `v` number of treatments
- `b` number of blocks
- `k` block size
- `NNPo` optionally, desired concurrence matrix. If not specified, a nearly balanced concurrence matrix is obtained automatically.
- `ntrial` number of trials
- `pbar` progress bar

Value

- `v` number of treatments
- `b` number of blocks
- `k` block size
- `NNP` specified concurrence matrix
- `N` incidence matrix of the generated design
- `design` block contents in a `b` by `k` matrix
- `conc.mat` concurrence matrix of the generated design
- `A.efficiency` lower bound to A-efficiency of the generated design
- `D.efficiency` lower bound to D-efficiency of the generated design
- `time.taken` time taken to generate the design

Note

The function works best for values of number of treatments (`v`) up to 30 and block size (`k`) up to 10. However, for block size (`k`) up to 3, much larger values of number of treatments (`v`) may be used.

Author(s)

B N Mandal <mandal.stat@gmail.com>

References

Examples

```r
v=9
b=12
k=3
ibd(v,b,k,pbar=FALSE)
```
ibddata

Data from an experiment using incomplete block design

Description

Data from an experiment using incomplete block design

Usage

data("ibddata")

Format

A data frame with 36 observations on the following 3 variables.

trt Treatments
blk Blocks
y The response variable

Details

The experiment used a balanced incomplete block design.

References

Examples

data(ibddata)

ibdtvc

incomplete block design for test vs control(s) comparisons

Description

This function generates an incomplete block design for test vs control(s) comparisons with specified parameters and concurrence matrix.

Usage

ibdtvc(v1,v2,b,k,NNPo,ntrial=5,pbar=FALSE)
Arguments

\(v1 \)
number of test treatments

\(v2 \)
number of control treatments

\(b \)
number of blocks

\(k \)
block size

\(\text{NNPo} \)
desired concurrence matrix

\(\text{ntrial} \)
number of trials, default is 5

\(\text{pbar} \)
Logical value indicating whether progress bar will be displayed. Default is FALSE.

Value

\(v1=v1,v2=v2,b=b,k=k,\text{design}=\text{design},N=N, \text{NNP}=\text{NNP},\text{Aeff}=\text{Aeff} \)

\(v1 \)
number of test treatments

\(v2 \)
number of control treatments

\(b \)
number of blocks

\(k \)
block size

\(\text{design} \)
generated block design

\(N \)
treatment by block incidence matrix of the generated block design

\(\text{NNP} \)
concurrence matrix of the generated design

Author(s)

B N Mandal <mandal.stat@gmail.com>

References

Examples

\(\text{ibdtvc}(6,2,15,4,\text{NNPo}) \)
is.connected
Connectedness of a binary incomplete block design

Description
This function checks whether an incomplete block design is connected or not. Treatment by block incidence matrix of the design is to be supplied as input to the function. If the design is connected, it returns a value of 1 else it returns 0.

Usage
is.connected(N)

Arguments
N
incidence matrix

Value
connected
Connectedness

Author(s)
B N Mandal <mandal.stat@gmail.com>

Examples

```r
N=matrix(c(1,0,0,0,1,0,0,0,0,1,1,0,0,1,1,0,1,0,0,0,1,1,0,1,1,0,0,0,1,1,0,0,1,1,0,0,1,0,0,1,0),nrow=7,byrow=TRUE)
is.connected(N)
```

is.equir
Equi-replicateness a binary incomplete block design

Description
This function checks whether an incomplete block design is equi-replicated or not. Treatment by block incidence matrix of the design is to be supplied as input to the function. If the design is equi-replicated, it returns a value of 1 else it returns 0.

Usage
is.equir(N)

Arguments
N
incidence matrix
is.orthogonal

Value

\text{equir} \quad \text{equi-replicated}

Author(s)

B N Mandal <mandal.stat@gmail.com>

Examples

\begin{verbatim}
N=matrix(c(1,0,0,1,0,1,0,0,1,0,1,0,0,1,1,0,1,0,1,0,0,0,1,1,0,0,1,1,0,
0,1,0,0,1,0,1,0,0),nrow=7,byrow=TRUE)
is.equal(N)
\end{verbatim}

Description

This function checks whether an incomplete block design is orthogonal or not. Treatment by block incidence matrix of the design is to be supplied as input to the function. If the design is orthogonal, it returns a value of 1 else it returns 0.

Usage

\text{is.orthogonal}(N)

Arguments

\text{N} \quad \text{incidence matrix}

Value

\text{orthogonal} \quad \text{orthogonal}

Author(s)

B N Mandal <mandal.stat@gmail.com>

Examples

\begin{verbatim}
N=matrix(c(1,0,0,1,0,1,0,0,1,0,1,0,0,1,1,0,1,0,1,0,0,0,1,1,0,0,1,1,0,
0,1,0,0,1,0,1,0,0),nrow=7,byrow=TRUE)
is.orthogonal(N)
\end{verbatim}
is.proper

proper binary incomplete block design

Description

This function checks whether an incomplete block design is proper or not. Treatment by block incidence matrix of the design is to be supplied as input to the function. If the design is proper, it returns a value of 1 else it returns 0.

Usage

```r
is.proper(N)
```

Arguments

- `N` incidence matrix

Value

proper

Author(s)

B N Mandal <mandal.stat@gmail.com>

Examples

```r
N=matrix(c(1,0,0,0,1,0,0,1,0,0,1,0,1,1,0,0,1,0,1,0,1,0,0,0,0,1,0,0,0,1,1,1,0,
0,0,1,0,0,1,0,1,0,0,0),nrow=7,byrow=TRUE)
is.proper(N)
```

is.vb

Variance balancedness of a binary incomplete block design

Description

This function checks whether an incomplete block design is variance balanced or not. Treatment by block incidence matrix of the design is to be supplied as input to the function. If the design is variance balanced, it returns a value of 1 else it returns 0.

Usage

```r
is.vb(N)
```

Arguments

- `N` incidence matrix
Value

vb variance balanced

Author(s)

B N Mandal <mandal.stat@gmail.com>

Examples

```
N=matrix(c(1,0,0,0,1,0,1,0,0,0,1,0,1,1,0,1,0,1,0,0,0,1,0,1,0,0,0,1,1,0,0,0,1,1,0,
    0,0,1,0,0,1,0,1,0,1,0,0),nrow=7,byrow=TRUE)
is.vb(N)
```

```
N_to_design
```

Treatment by block incidence matrix from given block design

Description

This function generates the block contents from a given treatment by block incidence matrix

Usage

```
N_to_design(N)
```

Arguments

```
N treatment by block incidence matrix
```

Value

```
design A matrix with number of rows equal to number of blocks and number of columns equal to block size. Constant block size is assumed. Treatments are numbered as 1, 2, ..., v
```

Author(s)

B N Mandal <mandal.stat@gmail.com>

Examples

```
N=matrix(c(1,0,0,0,1,0,1,0,0,0,1,0,1,1,0,1,0,1,0,0,0,1,0,1,0,0,0,1,1,0,0,0,1,1,0,
    1,1,0,0,0,1,0,1,0,1,0,0,0),nrow=7,byrow=TRUE)
N_to_design(N)
```
INDEX

design_to_N, 9
ibd, 10
ibddata, 12
ibdtvc, 12
is.connected, 14
is.equir, 14
is.orthogonal, 15
is.proper, 16
is.vb, 16

N_to_design, 17