Package ‘ica’

May 24, 2018

Type Package
Title Independent Component Analysis
Version 1.0-2
Date 2018-05-24
Author Nathaniel E. Helwig <helwig@umn.edu>
Maintainer Nathaniel E. Helwig <helwig@umn.edu>
Description Independent Component Analysis (ICA) using various algorithms: FastICA, Information-Maximization (Infomax), and Joint Approximate Diagonalization of Eigenmatrices (JADE).
License GPL (>= 2)
NeedsCompilation no
Repository CRAN
Date/Publication 2018-05-24 06:12:53 UTC

R topics documented:

 ica-package .. 2
 acy .. 3
 icafast ... 4
 icaimax ... 7
 icajade ... 9
 icaplot .. 12
 icasamp ... 13

Index 15
Independent Component Analysis (ICA) using various algorithms: FastICA, Information-Maximization (Infomax), and Joint Approximate Diagonalization of Eigenmatrices (JADE).

Details

The DESCRIPTION file:

Package: ica
Type: Package
Title: Independent Component Analysis
Version: 1.0-2
Date: 2018-05-24
Author: Nathaniel E. Helwig <helwig@umn.edu>
Maintainer: Nathaniel E. Helwig <helwig@umn.edu>
Description: Independent Component Analysis (ICA) using various algorithms: FastICA, Information-Maximization (Infomax), and Joint Approximate Diagonalization of Eigenmatrices (JADE).
License: GPL (>=2)

Index of help topics:

acy Amari-Cichocki-Yang Error
ica-package Independent Component Analysis
icafast ICA via FastICA Algorithm
icaimax ICA via Infomax Algorithm
icajade ICA via JADE Algorithm
icaplot Plot Densities of Source Signal Distributions
icasamp Sample from Various Source Signal Distributions

Author(s)
Nathaniel E. Helwig <helwig@umn.edu>
Maintainer: Nathaniel E. Helwig <helwig@umn.edu>

References

Examples

```
# See examples for icafast, icaimax, icajade, and icasamp
```

acy

Amari-Cichocki-Yang Error

Description

The Amari-Cichocki-Yang (ACY) error is an asymmetric measure of dissimilarity between two nonsingular matrices X and Y. The ACY error: (a) is invariant to permutation and rescaling of the columns of X and Y, (b) ranges between 0 and n^{-1}, and (c) equals 0 if and only if X and Y are identical up to column permutations and rescalings.

Usage

```r
acy(X, Y)
```

Arguments

- **X**
 - Nonsingular matrix of dimension $n \times n$ (test matrix).

- **Y**
 - Nonsingular matrix of dimension $n \times n$ (target matrix).

Details

The ACY error is defined as

$$
\frac{1}{2n} \sum_{i=1}^{n} \left(\frac{\sum_{j=1}^{n} |a_{ij}|}{\max_j |a_{ij}|} - 1 \right) + \frac{1}{2n} \sum_{j=1}^{n} \left(\frac{\sum_{i=1}^{n} |a_{ij}|}{\max_i |a_{ij}|} - 1 \right)
$$

where $a_{ij} = (Y^{-1}X)_{ij}$.
Value

Returns a scalar (the ACY error).

Warnings

If Y is singular, function will produce an error.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Examples

```
set.seed(1)
X <- matrix(rnorm(16), 4, 4)
Y <- matrix(rnorm(16), 4, 4)
Z <- X[, c(3, 1, 2, 4)] * diag(1:4)
acy(X, Y)
acy(X, Z)
```

Description

Usage

```
icafast(X, nc, center = TRUE, maxit = 100, tol = 1e-6,
        Rmat = diag(nc), alg = c("par", "def"),
        fun = c("logcosh", "exp", "kur"), alpha = 1)
```
Arguments

- **X**: Data matrix with \(n \) rows (samples) and \(p \) columns (variables).
- **nc**: Number of components to extract.
- **center**: If TRUE, columns of \(X \) are mean-centered before ICA decomposition.
- **maxit**: Maximum number of algorithm iterations to allow.
- **tol**: Convergence tolerance.
- **Rmat**: Initial estimate of the \(nc \)-by-\(nc \) orthogonal rotation matrix.
- **alg**: Algorithm to use: \(\text{alg="par"} \) to estimate all \(nc \) components in parallel (default) or \(\text{alg="def"} \) for deflation estimation (i.e., projection pursuit).
- **fun**: Contrast function to use for negentropy approximation.
- **alpha**: Tuning parameter for "logcosh" contrast function (\(1 \leq \alpha \leq 2 \)).

Details

ICA Model The ICA model can be written as \(X = \text{tcrossprod}(S, M) + E \), where columns of \(S \) contain the source signals, \(M \) is the mixing matrix, and columns of \(E \) contain the noise signals. Columns of \(X \) are assumed to have zero mean. The goal is to find the unmixing matrix \(W \) such that columns of \(S = \text{tcrossprod}(X, W) \) are independent as possible.

Whitening Without loss of generality, we can write \(M = P*%R \) where \(P \) is a tall matrix and \(R \) is an orthogonal rotation matrix. Letting \(Q \) denote the pseudoinverse of \(P \), we can whiten the data using \(Y = \text{tcrossprod}(X, Q) \). The goal is to find the orthogonal rotation matrix \(R \) such that the source signal estimates \(S = Y*%R \) are as independent as possible. Note that \(W = \text{crossprod}(R, Q) \).

FastICA The FastICA algorithm finds the orthogonal rotation matrix \(R \) that (approximately) maximizes the negentropy of the estimated source signals. Negentropy is approximated using

\[
J(s) = \left[E\{G(s)\} - E\{G(z)\} \right]^2
\]

where \(E \) denotes the expectation, \(G \) is the contrast function, and \(z \) is a standard normal variable. See Hyvarinen (1999) for specifics of fixed-point algorithm.

Value

- **S**: Matrix of source signal estimates (\(S = Y*%R \)).
- **M**: Estimated mixing matrix.
- **W**: Estimated unmixing matrix (\(W = \text{crossprod}(R, Q) \)).
- **Y**: Whitened data matrix.
- **Q**: Whitening matrix.
- **R**: Orthogonal rotation matrix.
- **vafs**: Variance-accounted-for by each component.
- **iter**: Number of algorithm iterations.
- **alg**: Algorithm used (same as input).
- **fun**: Contrast function (same as input).
- **alpha**: Tuning parameter (same as input).
Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Examples

```
###########  EXAMPLE 1  ###########

# generate noiseless data (p=r)
set.seed(123)
nobs <- 1000
Amat <- cbind(icasamp("a","rnd",nobs),icasamp("b","rnd",nobs))
Bmat <- matrix(rnorm(2*nobs),nobs)
Xmat <- tcrossprod(Amat,Bmat)

# ICA via FastICA with 2 components
imod <- icafast(Xmat,2)
acy(Bmat,imod$W)
Cor(Amat,imod$S)

```

```
###########  EXAMPLE 2  ###########

# generate noiseless data (p=r)
set.seed(123)
nobs <- 1000
Amat <- cbind(icasamp("a","rnd",nobs),icasamp("b","rnd",nobs))
Bmat <- matrix(rnorm(100),nobs)
Xmat <- tcrossprod(Amat,Bmat)

# ICA via FastICA with 2 components
imod <- icafast(Xmat,2)
Cor(Amat,imod$S)

```

```
###########  EXAMPLE 3  ###########

# generate noisy data (p=r)
set.seed(123)
nobs <- 1000
Amat <- cbind(icasamp("a","rnd",nobs),icasamp("b","rnd",nobs))
Bmat <- matrix(rnorm(200),100)

```

icaimax <- matrix(rnorm(10^5),1000,100)
Xmat <- tcrossprod(Amat,Bmat)+Emat

ICA via FastICA with 2 components
imod <- icafast(Xmat,2)
cor(Amat,imod$S)

Description

Computes ICA decomposition using Bell and Sejnowski’s (1995) Information-Maximization (Infomax) approach with various options.

Usage

```r
icaimax(X, nc = TRUE, maxit = 100, tol = 1e-6,
        Rmat = diag(nc), alg = c("newton", "gradient"),
        fun = c("tanh", "log", "ext"), signs = rep(1, nc),
        signswitch = TRUE, rate = 1, rateanneal = NULL)
```

Arguments

- `X` Data matrix with `n` rows (samples) and `p` columns (variables).
- `nc` Number of components to extract.
- `center` If `TRUE`, columns of `X` are mean-centered before ICA decomposition.
- `maxit` Maximum number of algorithm iterations to allow.
- `tol` Convergence tolerance.
- `Rmat` Initial estimate of the `nc`-by-`nc` orthogonal rotation matrix.
- `alg` Algorithm to use: `alg="newton"` for Newton iteration, and `alg="gradient"` for gradient descent.
- `fun` Nonlinear (squashing) function to use for algorithm: `fun="tanh"` for hyperbolic tangent, `fun="log"` for logistic, and `fun="ext"` for extended Infomax.
- `signs` Vector of length `nc` such that `signs[j]==1` if `j`-th component is super-Gaussian and `signs[j]==-1` if `j`-th component is sub-Gaussian. Only used if `fun="ext"`. Ignored if `signswitch=TRUE`.
- `signswitch` If `TRUE`, the signs vector is automatically determined from the data; otherwise a confirmatory ICA decomposition is calculated using input signs vector. Only used if `fun="ext"`.
- `rate` Learning rate for gradient descent algorithm. Ignored if `alg="newton"`.
- `rateanneal` Annealing angle and proportion for gradient descent learning rate (see Details). Ignored if `alg="newton"`.

ICA via Infomax Algorithm

Computes ICA decomposition using Bell and Sejnowski’s (1995) Information-Maximization (Infomax) approach with various options.
Details

ICA Model The ICA model can be written as \(X = t(crossprod(S, M)) + E \), where columns of \(S \) contain the source signals, \(M \) is the mixing matrix, and columns of \(E \) contain the noise signals. Columns of \(X \) are assumed to have zero mean. The goal is to find the unmixing matrix \(W \) such that columns of \(S = t(crossprod(X, W)) \) are independent as possible.

Whitening Without loss of generality, we can write \(M = P\%\%R \) where \(P \) is a tall matrix and \(R \) is an orthogonal rotation matrix. Letting \(Q \) denote the pseudoinverse of \(P \), we can whiten the data using \(Y = t(crossprod(X, Q)) \). The goal is to find the orthogonal rotation matrix \(R \) such that the source signal estimates \(S = Y\%\%R \) are as independent as possible. Note that \(W = crossprod(R, Q) \).

Infomax The Infomax approach finds the orthogonal rotation matrix \(R \) that (approximately) maximizes the joint entropy of a nonlinear function of the estimated source signals. See Bell and Sejnowski (1995) and Helwig (in prep) for specifics of algorithms.

Value

- \(S \): Matrix of source signal estimates \((S = Y\%\%R) \).
- \(M \): Estimated mixing matrix.
- \(W \): Estimated unmixing matrix \((W = crossprod(R, Q)) \).
- \(Y \): Whitened data matrix.
- \(Q \): Whitening matrix.
- \(R \): Orthogonal rotation matrix.
- \(vafs \): Variance-accounted-for by each component.
- \(iter \): Number of algorithm iterations.
- \(alg \): Algorithm used (same as input).
- \(fun \): Contrast function (same as input).
- \(signs \): Component signs (same as input).
- \(rate \): Learning rate (same as input).

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Examples

```
# generate noiseless data (p=r)
set.seed(123)
nobs <- 1000
Amat <- cbind(icasamp("a","rnd",nobs),icasamp("b","rnd",nobs))
```
Description

Usage

ica jade(X, nc, center = TRUE, maxit = 100,
tol = 1e-6, Rmat = diag(nc))

Arguments

x Data matrix with n rows (samples) and p columns (variables).
nc Number of components to extract.
center If TRUE, columns of x are mean-centered before ICA decomposition.
maxit Maximum number of algorithm iterations to allow.
tol Convergence tolerance.
Rmat Initial estimate of the nc-by-nc orthogonal rotation matrix.

Details

ICA Model The ICA model can be written as X tcrossprod(S, M) + E, where columns of S contain the source signals, M is the mixing matrix, and columns of E contain the noise signals. Columns of X are assumed to have zero mean. The goal is to find the unmixing matrix W such that columns of S tcrossprod(X, W) are independent as possible.

Whitening Without loss of generality, we can write M = P%*%R where P is a tall matrix and R is an orthogonal rotation matrix. Letting Q denote the pseudoinverse of P, we can whiten the data using Y tcrossprod(X, Q). The goal is to find the orthogonal rotation matrix R such that the source signal estimates S = Y%*%R are as independent as possible. Note that W = crossprod(R, Q).

JADE The JADE approach finds the orthogonal rotation matrix R that (approximately) diagonalizes the cumulant array of the source signals. See Cardoso and Souloumiac (1993,1996) and Helwig and Hong (2013) for specifics of the JADE algorithm.

Value

S Matrix of source signal estimates (S = Y%*%R).
M Estimated mixing matrix.
W Estimated unmixing matrix (W = crossprod(R, Q)).
Y Whitened data matrix.
Q Whitening matrix.
R Orthogonal rotation matrix.
vafs Variance-accounted-for by each component.
iter Number of algorithm iterations.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>
References

Examples

```
########### EXAMPLE 1 ###########

# generate noiseless data (p=r)
set.seed(123)
nobs = 1000
Amat = cbind(icasamp("a","rnd",nobs),icasamp("b","rnd",nobs))
Bmat = matrix(2*runif(4),2,2)
Xmat = tcrossprod(Amat,Bmat)

# ICA via JADE with 2 components
imod = icajade(Xmat,2)
acy(Bmat,imod$M)
cor(Amat,imod$S)

########### EXAMPLE 2 ###########

# generate noiseless data (p=r)
set.seed(123)
nobs = 1000
Amat = cbind(icasamp("a","rnd",nobs),icasamp("b","rnd",nobs))
Bmat = matrix(2*runif(200),100,2)
Xmat = tcrossprod(Amat,Bmat)

# ICA via JADE with 2 components
imod = icajade(Xmat,2)
cor(Amat,imod$S)

########### EXAMPLE 3 ###########

# generate noisy data (p=r)
set.seed(123)
nobs = 1000
Amat = cbind(icasamp("a","rnd",nobs),icasamp("b","rnd",nobs))
Bmat = matrix(2*runif(200),100,2)
Emat = matrix(rnorm(10^4),100,100)
Xmat = tcrossprod(Amat,Bmat)+Emat
```
ICA via JADE with 2 components

```r
imod <- icajade(Xmat, 2)
 cor(Amat, imod$S)
```

icaplot

Plot Densities of Source Signal Distributions

Description

Plot density (pdf) and kurtosis for the 18 source signal distributions used in Bach and Jordan (2002); see `icasamp` for more information.

Usage

```r
icaplot(xseq = seq(-2, 2, length.out = 500),
        xlab = "", ylab = "", lty = 1,
        lwd = 1, col = "black", ...)```

**Arguments**

- `xseq`  
  Sequence of ordered data values for plotting density.
- `xlab`  
  X-axis label for plot (default is no label).
- `ylab`  
  Y-axis label for plot (default is no label).
- `lty`  
  Line type for each density (scalar or vector of length 18).
- `lwd`  
  Line width for each density (scalar or vector of length 18).
- `col`  
  Line color for each density (scalar or vector of length 18).
- ...  
  Optional inputs for `plot`.

**Value**

Produces a plot with NULL return value.

**Author(s)**

Nathaniel E. Helwig <helwig@umn.edu>

**References**


icasamp

Examples

```r
Not run:
####### EXAMPLE #######
quartz(height=9,width=7)
par(mar=c(3,3,3,3))
icaplot()

End(Not run)
```

icasamp  

Sample from Various Source Signal Distributions

Description

Sample observations from the 18 source signal distributions used in Bach and Jordan (2002). Can also return density values and kurtosis for each distribution. Use `icaplot` to plot distributions.

Usage

```r
icasamp(dname, query = c("rnd","pdf","kur"),
nsamp = NULL, data = NULL)
```

Arguments

dname  
Distribution name: letter "a" through "r" (see Bach & Jordan, 2002).

query  
What to return: query="rnd" for random sample, query="pdf" for density values, and query="kur" for kurtosis.

nsamp  
Number of observations to sample. Only used if query="rnd".

data  
Data values for density evaluation. Only used if query="pdf".

Details

Inspired by `usr_distrib.m` from Bach's (2002) `kernel-ica` MATLAB toolbox.

Value

If query="rnd", returns random sample of size `nsamp`.
If query="pdf", returns density for input data.
If query="kur", returns kurtosis of distribution.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>
References


Examples

```
sample 1000 observations from distribution "f"
set.seed(123)
mysamp <- icasamp("f","rnd",nsamp=1000)
xr <- range(mysamp)
hist(mysamp,freq=FALSE,ylim=c(0,8),breaks=sqrt(1000))

evaluate density of distribution "f"
xseq <- seq(-5,5,length.out=1000)
mpdf <- icasamp("f","pdf",data=xseq)
lines(xseq,mpdf)

evaluate kurtosis of distribution "f"
icasamp("f","kur")
```
Index

*Topic package
  ica-package, 2

acy, 3

ica (ica-package), 2
ica-package, 2
icafast, 4
icaimax, 7
icajade, 9
icaplot, 12, 13
icasamp, 12, 13