Package ‘icr’
March 20, 2020

Type Package
Date 2020-03-20
Title Compute Krippendorff's Alpha
Version 0.6.2
Author Alexander Staudt [aut, cre], Pierre L'Ecuyer [ctb] (author of the C++ RNG code)
Maintainer Alexander Staudt <staudtlex@live.de>
Description Provides functions to compute and plot Krippendorff's inter-coder reliability coefficient alpha and bootstrapped uncertainty estimates (Krippendorff 2004, ISBN:0761915443). The bootstrap routines are set up to make use of parallel threads where supported.

URL https://github.com/staudtlex/icr
BugReports https://github.com/staudtlex/icr/issues
License GPL (>= 2)
Encoding UTF-8
LazyData true
Imports Rcpp (>= 0.12.9)
LinkingTo Rcpp
Suggests ggplot2
RoxygenNote 7.1.0
NeedsCompilation yes
Repository CRAN
Date/Publication 2020-03-20 18:10:02 UTC

R topics documented:
codings .. 2
krippalpha ... 2

Index 6
codings

Example reliability data

Description

A matrix containing example codings of 12 units (e.g. newspaper articles) by four coders.

Usage

codings

Format

A matrix with 4 rows and 12 columns. Each column contains the coders’ assessments of a coding unit (e.g. newspaper article)

Source

krippalpha

Krippendorff’s alpha

Description

krippalpha computes Krippendorff’s reliability coefficient alpha.

Usage

```
krippalpha(  
data,  
metric = "nominal",  
bootstrap = FALSE,  
bootnp = FALSE,  
nboot = 20000,  
nnp = 1000,  
cores = 1,  
seed = rep(12345, 6)  
)
```
Arguments

data [a matrix or data frame (coercible to a matrix) of reliability data. Data of type character are converted to numeric via `as.factor()`].

metric [metric difference function to be applied to disagreements. Supports nominal, ordinal, interval, ratio, bipolar. Defaults to nominal].

bootstrap [logical indicating whether uncertainty estimates should be obtained using the Krippendorff bootstrapping algorithm. Defaults to FALSE].

bootnp [logical indicating whether non-parametric bootstrap uncertainty estimates should be computed. Defaults to FALSE].
nboot [number of bootstraps used in Krippendorff’s algorithm. Defaults to 20000].
nnp [number of non-parametric bootstraps. Defaults to 1000].
cores [number of cores across which bootstrap-computations are distributed. Defaults to 1. If more cores are specified than available, the number will be set to the maximum number of available cores].

seed [numeric vector of length 6 for the internal L’Ecuyer-CMRG random number generator (see details). Defaults to c(12345, 12345, 12345, 12345, 12345, 12345)].

Details

krippalpha takes the seed vector to seed the internal random number generator of both bootstrap routines. It does not advance R’s RNG state.

When using the ratio metric with reliability data containing scales involving negative as well as positive values, krippalpha may return a value of NaN. The ratio metric difference function is defined as \(\left(\frac{c-k}{c+k} \right)^2 \). Hence, if for any two scale values \(c = -k \), the fraction is not defined, resulting in \(\alpha = \text{NaN} \). In order to avoid this issue, shift your reliability data to have strictly positive values.

Value

Returns a list of type `icr` with following elements:

alpha [value of inter-coder reliability coefficient].

metric [integer representation of metric used to compute alpha: 1 nominal, 2 ordinal, 3 interval, 4 ratio, 6 bipolar].
n_coders [number of coders].
n_units [number of units to be coded].
n_values [number of unique values in reliability data].
coincidence_matrix [matrix containing coincidences within coder-value pairs].
delta_matrix [matrix of metric differences depending on method].
D_e [expected disagreement].
D_o [observed disagreement].

bootstrap [TRUE if Krippendorff bootstrapping algorithm was run, FALSE otherwise].
nboot number of bootstraps
bootnp TRUE if nonparametric bootstrap was run, FALSE otherwise
nnp number of non-parametric bootstraps
bootstraps vector of bootstrapped values of alpha (Krippendorff’s algorithm)
bootstrapsNP vector of non-parametrically bootstrapped values of alpha

Note

krippalpha’s bootstrap-routines use L’Ecuyer’s CMRG random number generator (see L’Ecuyer et al. 2002) to create random numbers suitable for parallel computations. The routines interface to L’Ecuyer’s C++ code, which can be found at https://pubsonline.informs.org/doi/abs/10.1287/opre.50.6.1073.358

References

Examples

data(codings)

compute alpha, without uncertainty estimates
krippalpha(codings)

additionally compute bootstrapped uncertainty estimates for alpha
alpha <- krippalpha(codings, metric = "nominal", bootstrap = TRUE, bootnp = TRUE)
alpha

plot bootstrapped alphas
plot(alpha)

alternatively, use ggplot2
df <- plot(alpha, return_data = TRUE)

library(ggplot2)
ggplot() +
 geom_line(data = df[df$ci_limit == FALSE,], aes(x, y, color = type)) +
geom_area(data = df[df$ci == TRUE,], aes(x, y, fill = type), alpha = 0.4) +
theme_minimal() +
theme(plot.title = element_text(hjust = 0.5)) +
theme(legend.position = "bottom", legend.title = element_blank()) +
ggtitle(expression(paste("Bootstrapped ", alpha))) +
xlab("value") + ylab("density") +
guides(fill = FALSE)
Index

*Topic datasets
codings, 2
codings, 2
krippalpha, 2