iemisc: Calculating the Reynolds number Examples

Irucka Embry, E.I.T. (EcoC²S)

2023-09-24

Contents

Replicate the R code .. 1
Problem 1 Statement ... 1
Solution 1 .. 2
Problem 2 Statement ... 5
Solution 2 .. 5
Works Cited .. 6
EcoC²S Links .. 7
Copyright and License ... 7

Replicate the R code

Note: If you wish to replicate the R code below, then you will need to copy and paste the following commands in R first (to make sure you have all the packages and their dependencies):

```r
install.packages(c("install.load", "iemisc", "units", "round"))
# install the packages and their dependencies
```

```r
install.load::load_package("iemisc", "units", "round")
# load the required packages
install.load::load_package("install.load", "iemisc", "units", "round")
# load needed packages using the load_package function from the install.load package (it is assumed that you have already installed these packages)
```

Problem 1 Statement

Problem 17.2 [Lindeburg Practice]
“Points A and B are separated by 3000 ft of new 6 in schedule-40 steel pipe. 750 gal/min of 60°F water flows from point A to point B. Point B is 60 ft above point A.”

What is the Reynolds number?

From Appendix 16.B Dimensions of Welded and Seamless Steel Pipe [Lindeburg Manual], the internal diameter for a 6 inch nominal diameter new schedule-40 steel pipe is 0.5054 ft with an internal area of 0.2006 ft².

From Table 17.2 Values of Specific Roughness for Common Pipe Materials [Lindeburg Manual], the specific roughness, ϵ, for a steel pipe is 0.0002 ($2e^{-04}$) ft.

Solution 1

60 degrees Fahrenheit water new 6 in schedule-40 steel pipe determine the # Reynolds number

given the water flow of 750 gal / min create a numeric vector with the units # of gallons per minute for the volumetric flow rate
Vdot <- set_units(750, gallon/min)
Vdot

750 [gallon/min]

create a numeric vector with the units of cubic feet per second for the # volumetric flow rate
Vdot <- Vdot

units(Vdot) <- make_units(ft^3/s)
Vdot

1.671007 [ft^3/s]

given temperature of 60 degrees Fahrenheit create a numeric vector with the # units of degrees Fahrenheit
T_F <- set_units(60, degree_F)

create a numeric vector to convert from degrees Fahrenheit to Kelvin
T_K <- T_F
T_K

60 [degree_F]

create a numeric vector with the units of Kelvin
units(T_K) <- make_units(K)
T_K

288.7056 [K]

saturated liquid density at 60 degrees Fahrenheit (SI units)
rho_SI <- density_water(drop_units(T_K), units = "Absolute")
rho_SI <- set_units(rho_SI, kg/m^3)
rho_SI
998.9672 [kg/m^3]

saturated liquid density at 60 degrees Fahrenheit (US Customary units)
rho_Eng <- density_water(drop_units(T_F), units = "Eng", Eng_units = "lbm/ft^3")
rho_Eng <- set_units(rho_Eng, lb/ft^3) # lbm/ft^3
rho_Eng
62.36349 [lb/ft^3]

kinematic viscosity at 60 degrees Fahrenheit and density of rho (SI units)
nu_SI <- kin_visc_water(mu = dyn_visc_water(Temp = drop_units(T_K), units = "Absolute"),
 rho = density_water(Temp = drop_units(T_K), units = "Absolute"),
 rho_units = "kg/m^3",
 mu_units = "Pa*s or kg/m/s")
nu_SI <- set_units(nu_SI, m^2/s)
nu_SI
1.122882e-06 [m^2/s]

kinematic viscosity at 60 degrees Fahrenheit and density of rho (US Customary units)
nu_Eng <- kin_visc_water(mu = dyn_visc_water(Temp = drop_units(T_F), units = "Eng",
 Eng_units = "lbf*s/ft^2"),
 rho = density_water(Temp = drop_units(T_F), units = "Eng",
 Eng_units = "lbm/ft^3"),
 rho_units = "lbm/ft^3",
 mu_units = "lbf*s/ft^2")
nu_Eng <- set_units(nu_Eng, ft^2/s)
nu_Eng
3.756632e-07 [ft^2/s]

absolute or dynamic viscosity at 60 degrees Fahrenheit and density of rho (SI units)
uu_SI <- dyn_visc_water(Temp = drop_units(T_K), units = "Absolute")
uu_SI <- set_units(uu_SI, Pa * s)
uu_SI
0.001121723 [Pa*s]

absolute or dynamic viscosity at 60 degrees Fahrenheit and density of rho (US Customary units)
uu_Eng <- dyn_visc_water(Temp = drop_units(T_F), units = "Eng", Eng_units = "lbf*s/ft^2")
uu_Eng <- set_units(uu_Eng, lbf * s/ft^2)
uu_Eng
2.342767e-05 [lbf*s/ft^2]

create a numeric vector with the units of feet for the given specific roughness
epsilon <- set_units(2e-04, ft)
epsilon
2e-04 [ft]
create a numeric vector with the units of feet for the given internal pipe
diameter
Di <- set_units(0.5054, ft)
Di

0.5054 [ft]

relative roughness (dimensionless) of the steel pipe
rel_roughness <- epsilon/Di
rel_roughness

0.0003957262 [1]

internal area of the steel pipe
Ai <- Di^2 * pi/4
Ai

0.2006136 [ft^2]

average velocity of the flowing water
V <- Vdot/Ai
V

8.329481 [ft/s]

Reynolds number using the kinematic viscosity
Re_nu <- Re2(D = drop_units(Di), V = drop_units(V), nu = drop_units(nu_Eng))
Re_nu

[1] 11206101

Reynolds number using the absolute or dynamic viscosity
Re_mu <- Re1(D = drop_units(Di), V = drop_units(V), rho = drop_units(rho_Eng), mu = drop_units(mu_Eng),
 units = "Eng")
Re_mu

$nu
[1] 1.208658e-05

$Re1
[1] 348297

display Re_nu with scientific notation
format(Re_nu, scientific = TRUE)

[1] "1.12061e+07"

display Re_mu with scientific notation
format(Re_mu, scientific = TRUE)

nu Re1
"1.208658e-05" "3.48297e+05"

Michael Lindeburg calculated the Reynolds number as 3.4593114×10^5 [rounded to 3.46×10^5].
Problem 2 Statement

“This month’s problem asked what flow rate of water would be needed to have fully developed turbulent flow in a circular tube.” [Fosse]

What is the Reynolds number given the mass flow rate?

Solution 2

```r
# given temperature of 22 degrees Celsius create a numeric vector with the
# units of degrees Celsius
T_C <- set_units(22, degree_C)
T_C

## 22 [°C]

# create a numeric vector to convert from degrees Celsius to Kelvin
T_K <- T_C
T_K

## 22 [°C]

# create a numeric vector with the units of Kelvin
units(T_K) <- make_units(K)
T_K

## 295.15 [K]

# saturated liquid density at 22 degrees Celsius (SI units)
rho_SI <- density_water(drop_units(T_K), units = "Absolute")
rho_SI <- set_units(rho_SI, kg/m^3)
rho_SI

## 997.7247 [kg/m^3]

# kinematic viscosity at 60 degrees Fahrenheit and density of rho (SI units)
nu_SI <- kin_visc_water(mu = dyn_visc_water(Temp = drop_units(T_K), units = "Absolute"),
                       rho = density_water(Temp = drop_units(T_K), units = "Absolute"),
                       rho_units = "kg/m^3",
                       mu_units = "Pa*s or kg/m/s")
nu_SI <- set_units(nu_SI, m^2/s)
nu_SI

## 9.569716e-07 [m^2/s]

# absolute or dynamic viscosity at 60 degrees Fahrenheit and density of rho (SI units)
mu_SI <- dyn_visc_water(Temp = drop_units(T_K), units = "Absolute")
mu_SI <- set_units(mu_SI, Pa * s)
mu_SI

## 0.0009547942 [Pa*s]
```
create a numeric vector with the units of inches for the given internal pipe diameter
Di <- set_units(4, inch)
Di
4 [inch]

create a numeric vector with the units of meters for the given internal pipe diameter
Di <- Di
Di
4 [inch]

units(Di) <- make_units(m)
Di
0.1016 [m]

given the mass flow rate of 0.765 kg/s (rounded in HTML) create a numeric vector with the units of kilograms per second for the mass flow rate
G <- set_units(0.76486004, kg/s)
G
0.76486 [kg/s]

display the Reynolds number
re3 <- Re3(D = drop_units(Di), G = drop_units(G), mu = drop_units(mu_SI), units = "SI")
re3
[1] 10038.96

display the Reynolds number from Re3 with scientific notation
format(re3, scientific = TRUE)
[1] "1.003896e+04"

Kendall Fosse provided 1e^{04} for the Reynolds number.

Works Cited

