Package ‘igate’

October 13, 2022

Type Package
Title Guided Analytics for Testing Manufacturing Parameters
Version 0.3.3
Description An implementation of the initial guided analytics for parameter testing and controlband extraction framework. Functions are available for continuous and categorical target variables as well as for generating standardized reports of the conducted analysis. See <https://github.com/stefan-stein/igate> for more information on the technology.

URL https://github.com/stefan-stein/igate
BugReports https://github.com/stefan-stein/igate/issues
License GPL-3
Encoding UTF-8
LazyData true
SystemRequirements pandoc (>= 1.12.3) - http://pandoc.org
Depends R (>= 3.6.0),
Imports ggplot2, dplyr, grDevices, stringr, graphics, stats, knitr, xtable, kableExtra, rmarkdown
RoxygenNote 6.1.1
VignetteBuilder knitr
NeedsCompilation no
Author Stefan Stein [aut, cre]
Maintainer Stefan Stein <s.stein@warwick.ac.uk>
Repository CRAN
Date/Publication 2019-09-10 22:50:06 UTC

R topics documented:
categorical.freqplot ... 2
categorical.igate ... 3
categorical.freqplot

Produces frequency plots (normed to density plots to account for different category sizes) for sanity check in categorical iGATE.

description

This function takes a data frame, a categorical target variable and a list of ssv and produces a density plot of each ssv and each category of the target variable. The output is written as .png file into the current working directory. Also, summary statistics are provided. The files can be saved into the current working directory. Consider changing the working directory to a new empty folder before running if you want to save a copy of the plots.

usage

categorical.freqplot(df, target, ssv = NULL,
 outlier_removal_ssv = TRUE, savePlots = FALSE,
 image_directory = tempdir())

arguments

df Data frame to be analysed.
target Categorical target variable to be analysed.
ssv A vector of suspected sources of variation. These are the variables in df which we believe might have an influence on the target variable and will be tested. If no list of ssv is provided, the test will be performed on all numeric variables.
outlier_removal_ssv Logical. Should outlier removal be performed for each ssv (default: TRUE)?
savePlots Logical. If FALSE (the default) frequency plots will be output to the standard plotting device. If TRUE, frequency plots will be saved to image_directory as png files.
image_directory Directory to which plots should be saved. This is only used if savePlots = TRUE and defaults to the temporary directory of the current R session, i.e. tempdir(). To save plots to the current working directory set savePlots = TRUE and image_directory = getwd().
Details

Frequency plots for each ssv against each category of the target are produced and saved to current working directory. Also a data frame with summary statistics is produced, see Value for details.

Value

The density plots of each category of target against each ssv are written as .png file into the current working directory. Also, a data frame with the following columns is output:

<table>
<thead>
<tr>
<th>Causes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>outliers_removed</td>
<td>How many outliers (with respect to this ssv) have been removed before drawing the plot?</td>
</tr>
<tr>
<td>observations_retained</td>
<td>After outlier removal was performed, how many observations were left and used to fit the model?</td>
</tr>
<tr>
<td>frequency_plot</td>
<td>Logical. Was plotting successful? No plot will be produced if a ssv is constant.</td>
</tr>
</tbody>
</table>

Examples

categorical.freqplot(mtcars, target = "cyl")

categorical.igate
date function for categorical target variables

Description

This function performs an initial Guided Analysis for parameter testing and controlband extraction (iGATE) for a categorical target variable on a dataset and returns those parameters found to be influential.

Usage

categorical.igate(df, versus = 8, target, best.cat, worst.cat, test = "w", ssv = NULL, outlier_removal_ssv = TRUE)

Arguments

df | Data frame to be analysed. |
versus | How many Best of the Best and Worst of the Worst do we collect? By default, we will collect 8 of each. |
target | Target variable to be analysed. Must be categorical. Use igate for continuous target. |
best.cat | The best category. The versus BOB will be selected randomly from this category. |
worst.cat | The worst category. The versus WOW will be selected randomly from this category. |
test | Statistical hypothesis test to be used to determine influential process parameters. Choose between Wilcoxon Rank test ("w", default) and Student’s t-test ("t"). |
ssv | A vector of suspected sources of variation. These are the variables in df which we believe might have an influence on the target variable and will be tested. If no list of ssv is provided, the test will be performed on all numeric variables.

outlier_removal_ssv | Logical. Should outlier removal be performed for each ssv (default: TRUE)?

Details

We collect the Best of the Best and the Worst of the Worst dynamically dependent on the current ssv. That means, for each ssv we first remove all the observations with missing values for that ssv from df. Then, based on the remaining observations, we randomly select versus observations from the the best category (“Best of the Best”, short BOB) and versus observations from the worst category (“Worst of the Worst”, short WOW). By default, we select 8 of each. Next, we compare BOB and WOW using the the counting method and the specified hypothesis test. If the distributions of the ssv in BOB and WOW are significantly different, the current ssv has been identified as influential to the target variable. An ssv is considered influential, if the test returns a count larger/ equal to 6 and/ or a p-value of less than 0.05. For the next ssv we again start with the entire dataset df, remove all the observations with missing values for that new ssv and then select our new BOB and WOW. In particular, for each ssv we might select different observations. This dynamic selection is necessary, because in case of an incomplete data set, if we select the same BOB and WOW for all the ssv, we might end up with many missing values for particular ssv. In that case the hypothesis test loses statistical power, because it is used on a smaller sample or worse, might fail altogether if the sample size gets too small.

For those ssv determined to be significant, control bands are extracted. The rationale is: If the value for an ssv is in the interval [good_lower_bound,good_upper_bound] the target is likely to be good. If it is in the interval [bad_lower_bound,bad_upper_bound], the target is likely to be bad.

Furthermore some summary statistics are provided: na_removed tells us how many observations have been removed for a particular ssv. When selecting the versus BOB/ WOW, the selection is done randomly from within the best/ worst category, i.e. the versus BOB/ WOW are not uniquely determined. The randomness in the selection is quantified by ties_best_cat,ties_worst_cat, which gives the size of the best/ worst category respectively.

Value

A data frame with the following columns

Causes	Those ssv that have been found to be influential to the target variable.
Count	The value returned by the counting method.
p.value	The p-value of the hypothesis test performed, i.e. either of the Wilcoxon rank test (in case test = "w") or t-test.
good_lower_bound	The lower bound for this Cause for good quality.
good_upper_bound	The upper bound for this Cause for good quality.
bad_lower_bound	The lower bound for this Cause for bad quality.
bad_upper_bound	The upper bound for this Cause for bad quality.
na_removed	How many missing values were in the data set for this Cause?
ties_best_cat	How many observations fall into the best category?
ties_worst_cat	How many observations fall into the worst category?
counts.test

Examples

def <- mtcars
def$cyl <- as.factor(df$cyl)
categorical.igate(df, target = "cyl", best.cat = "8", worst.cat = "4")

counts.test

Performs the counting test

Description

This test is based on Tukey’s "A Quick, Compact, Two-Sample Test to Duckworth’s Specifications", Technometrics, Vol. 1, No. 1 (1959), p.31-48. The test is chosen here because of its easy interpretability.

Usage

counts.test(B, W)

Arguments

B, W Numeric vectors with best observations (B) and worst observations (W).

Details

We form rbind(B,W) and order it. If B and W differ significantly, ordering rbind(B,W) will find observations of one group at the top and observations of the other at the bottom. We then count how many observations of one group are at the top and how many of the other are at the bottom. The sum of the two values gives us the count test statistic. A critical value of count >= 6 corresponds to a p-value of roughly 0.05 and is independent of sample size and distributional assumptions. These clustered observations at the top and bottom of the ordered list also determine the control bands good_band_lower_bound, good_band_upper_bound, bad_band_lower_bound, bad_band_upper_bound: We look if observations from group B are at the top or bottom. The highest/lowest values for observations of group B within that cluster are good_band_lower_bound and good_band_upper_bound. We proceed with group W respectively. If no such clusters form at the end of the ordered list, the control bands are set to -1.

Value

A data frame with the following columns

count The count test statistic described in Tukey’s paper, adjusted for tied observations. The original test statistic as described originally in the paper need not exist in case of tied observations, this implementation remedies this.
good_band_lower_bound Lower bound for good observations (B).
good_band_upper_bound Upper bound for good observations (B).
bad_band_lower_bound Lower bound for bad observations (W).
bad_band_upper_bound Upper bound for bad observations (W).
igate function for continuous target variables

Description

This function performs an initial Guided Analysis for parameter testing and controlband extraction (iGATE) on a dataset and returns those parameters found to be influential.

Usage

igate(df, versus = 8, target, test = "w", ssv = NULL,
 outlier_removal_target = TRUE, outlier_removal_ssv = TRUE,
 good_end = "low", savePlots = FALSE, image_directory = tempdir())

Arguments

df Data frame to be analysed.
versus How many Best of the Best and Worst of the Worst do we collect? By default, we will collect 8 of each.
target Target variable to be analysed. Must be continuous. Use categorical.igate for categorical target.
test Statistical hypothesis test to be used to determine influential process parameters. Choose between Wilcoxon Rank test ("w", default) and Student’s t-test ("t").
ssv A vector of suspected sources of variation. These are the variables in df which we believe might have an influence on the target variable and will be tested. If no list of ssv is provided, the test will be performed on all numeric variables.
outlier_removal_target Logical. Should outliers (with respect to the target variable) be removed from df (default: TRUE)? Important: This only makes sense if no prior outlier removal has been performed on df, i.e. df still contains all the data. Otherwise calculation for outlier threshold will be falsified.
outlier_removal_ssv Logical. Should outlier removal be performed for each ssv (default: TRUE)?
good_end Are low (default) or high values of target variable good? This is needed to determine the control bands.
savePlots Logical, only relevant if outlier_removal_target is TRUE. If savePlots == FALSE (the default) the boxplot of the target variable will be output to the standard output device for plots, usually the console. If TRUE, the boxplot will additionally be saved to image_directory as a png file.
image_directory Directory to which plots should be saved. This is only used if savePlots = TRUE and defaults to the temporary directory of the current R session, i.e. tempdir(). To save plots to the current working directory set savePlots = TRUE and image_directory = getwd().
Details

We collect the Best of the Best and the Worst of the Worst dynamically dependent on the current ssv. That means, for each ssv we first remove all the observations with missing values for that ssv from df. Then, based on the remaining observations, we select versus observations with the best values for the target variable ("Best of the Best", short BOB) and versus observations with the worst values for the target variable ("Worst of the Worst", short WOW). By default, we select 8 of each. Next, we compare BOB and WOW using the the counting method and the specified hypothesis test. If the distributions of the ssv in BOB and WOW are significantly different, the current ssv has been identified as influential to the target variable. An ssv is considered influential, if the test returns a count larger/ equal to 6 and/ or a p-value of less than 0.05. For the next ssv we again start with the entire dataset df, remove all the observations with missing values for that new ssv and then select our new BOB and WOW. In particular, for each ssv we might select different observations. This dynamic selection is necessary, because in case of an incomplete data set, if we select the same BOB and WOW for all the ssv, we might end up with many missing values for particular ssv. In that case the hypothesis test loses statistical power, because it is used on a smaller sample or worse, might fail altogether if the sample size gets too small.

For those ssv determined to be significant, control bands are extracted. The rationale is: If the value for an ssv is in the interval [good_lower_bound,good_upper_bound] the target is likely to be good. If it is in the interval [bad_lower_bound,bad_upper_bound], the target is likely to be bad.

Furthermore some summary statistics are provided: When selecting the versus BOB/ WOW, tied values for target can mean that the versus BOB/ WOW are not uniquely determined. In that case we randomly select from the tied observations to give us exactly versus observations per group. ties_lower_end, competition_lower_end, ties_upper_end, competition_upper_end quantify this randomness. How to interpret these values: lower end refers to the group whose target values are low and upper end to the one whose target values are high. For example if a low value for target is good, lower end refers to the BOB and upper end to the WOW. We determine the versus BOB/ WOW via

```r
lower_end <- df[min_rank(df$target)<=versus,]
```

If there are tied observations, nrow(lower_end) can be larger than versus. In ties_lower_end we record how many observations in lower_end$target have the highest value and in competition_lower_end we record for how many places they are competing, i.e. competing_for_lower <- versus - (nrow(lower_end) - ties_lower_end). The values for ties_upper_end and competition_upper_end are determined analogously.

Value

A data frame with the following columns

- Causes: Those ssv that have been found to be influential to the target variable.
- Count: The value returned by the counting method.
- p.value: The p-value of the hypothesis test performed, i.e. either of the Wilcoxon rank test (in case test = "w") or the t-test (if test = "t").
- good_lower_bound: The lower bound for this Cause for good quality.
- good_upper_bound: The upper bound for this Cause for good quality.
- bad_lower_bound: The lower bound for this Cause for bad quality.
- bad_upper_bound: The upper bound for this Cause for bad quality.
- na_removed: How many missing values were in the data set for this Cause?
- ties_lower_end: Number of tied observations at lower end of target when selecting the versus BOB/ WOW.
competition_lower_end For how many positions are the tied_obs_lower competing?
ties_upper_end Number of tied observations at upper end of target when selecting the versus BOB/ WOW.
competition_upper_end For how many positions are the tied_obs_upper competing?
adjusted.p.values The p.values adjusted via Bonferroni correction.

Examples
igate(iris, target = "Sepal.Length")

igate.regressions Produces the regression plots for sanity check in iGATE

Description
This function takes a data frame, a target variable and a list of ssv and produces a regression plot of each ssv against the target. The output can written as .png file into the current working directory. Also, summary statistics are provided.

Usage
igate.regressions(df, target, ssv = NULL, outlier_removal_target = TRUE, outlier_removal_ssv = TRUE, savePlots = FALSE, image_directory = tempdir())

Arguments
df Data frame to be analysed.
target Target variable to be analysed.
ssv A vector of suspected sources of variation. These are the variables in df which we believe might have an influence on the target variable and will be tested. If no list of ssv is provided, the test will be performed on all numeric variables.
outlier_removal_target Logical. Should outliers (with respect to the target variable) be removed from df (default: TRUE)? Important: This only makes sense if no prior outlier removal has been performed on df, i.e. df still contains all the data. Otherwise calculation for outlier threshold will be falsified.
outlier_removal_ssv Logical. Should outlier removal be performed for each ssv (default: TRUE)?
savePlots Logical. If FALSE (the default) regression plots will be output to the standard plotting device. If TRUE, regression plots will additionally be saved to image_directory as png files.
image_directory Directory to which plots should be saved. This is only used if savePlots = TRUE and defaults to the temporary directory of the current R session, i.e. tempdir(). To save plots to the current working directory set savePlots = TRUE and image_directory = getwd().
Details

Regression plots for each ssv against target are produced and saved to current working directory. Also a data frame with summary statistics is produced, see Value for details.

Value

The regression plots of target against each ssv are written as .png file into the current working directory. Also, a data frame with the following columns is output:

- **Causes**: The ssv that were analysed.
- **outliers_removed**: How many outliers (with respect to this ssv) have been removed before fitting the linear model?
- **observations_retained**: After outlier removal was performed, how many observations were left and used to fit the model?
- **regression_plot**: Logical. Was fitting the model successful? It can fail, for example, if a ssv is constant.
- **r_squared**: r^2 value of model.
- **gradient, intercept**: Gradient and intercept of fitted model.

Examples

igate.regressions(iris, target = "Sepal.Length")

report

Generates report about a conducted igate.

Description

Takes results from a previous igate and automatically generates a html report for it. Be aware that running this function will create an html document in your current working directory.

Usage

report(df, versus = 8, target, type = "continuous", test = "w", ssv = NULL, outlier_removal_target = TRUE, outlier_removal_ssv = TRUE, good_outcome = "low", results_path, validation = FALSE, validation_path = NULL, validation_counts = NULL, validation_summary = NULL, image_directory = tempdir(), output_name = NULL, output_directory)

Arguments

df

The data frame that was analysed with igate or categorical.igate.

versus

What value of versus was used?

target

What target was used?

type

Was igate (use type = "continuous") or categorical.igate (use type = "categorical") conducted?

test

Which hypothesis test was used alongside the counting method?
Value

An html file named "iGATE_Report.html" will be output to the current working directory, containing details about the conducted analysis. This includes a list of the analysed SSV, as well as tables with the results from `igate`/`categorical.igate` and plots from `igate.regressions`/`categorical.freqplot`.

Examples

```r
## Example for categorical target variable
# If you want to conduct an igate analysis from scratch, running report
# is the last step and relies on executing the other functions in this package first.
# Run categorical.igate
df <- mtcars
df$cyl <- as.factor(df$cyl)
results <- categorical.igate(df, target = "cyl", best.cat = "8", worst.cat = "4")
# Produce density plots
```
Suppose you only want to analyse further the first three identified ssv
results <- results[1:3,]
categorical.freqplot(mtcars, target = "cyl", ssv = results$Causes, savePlots = TRUE)

report(df = df, target = "cyl", type = "categorical", good_outcome = "8",
results_path = "results",
output_name = "testing_igate", output_directory = tempdir())

resultsIris

Example results data file to be used for example report generation.

Description

This is the output of `resultsIris <- igate(iris, target = "Sepal.Length")`

Usage

`resultsIris`

Format

A data frame as described in the documentation of `igate`.

robust.categorical.igate

Robust igate for categorical target variables

Description

This function performs a robust an initial Guided Analysis for parameter testing and controlband extraction (iGATE) for a categorical target variable by repeatedly running `categorical.igate` and only returning those parameters that are selected more often than a certain threshold.

Usage

`robust.categorical.igate(df, versus = 8, target, best.cat, worst.cat, test = "w", ssv = NULL, outlier_removal_ssv = TRUE, iterations = 50, threshold = 0.5)`
robust.categorical.igate

Arguments

- **df**: Data frame to be analysed.
- **versus**: How many Best of the Best and Worst of the Worst do we collect? By default, we will collect 8 of each.
- **target**: Target variable to be analysed. Must be categorical. Use igate for continuous target.
- **best.cat**: The best category. The versus BOB will be selected randomly from this category.
- **worst.cat**: The worst category. The versus WOW will be selected randomly from this category.
- **test**: Statistical hypothesis test to be used to determine influential process parameters. Choose between Wilcoxon Rank test ("w", default) and Student’s t-test ("t").
- **ssv**: A vector of suspected sources of variation. These are the variables in df which we believe might have an influence on the target variable and will be tested. If no list of ssv is provided, the test will be performed on all numeric variables.
- **outlier_removal_ssv**: Logical. Should outlier removal be performed for each ssv (default: TRUE)?
- **iterations**: Integer. How often should categorical.igate be performed? A message about how many iterations have been performed so far will be printed to the console every \(0.1 \times \text{iterations}\) iterations.
- **threshold**: Between 0 and 1. Only parameters that are selected at least \(\text{floor}(\text{iterations} \times \text{threshold})\) times are returned.

Details

We collect the Best of the Best and the Worst of the Worst dynamically dependent on the current ssv. That means, for each ssv we first remove all the observations with missing values for that ssv from df. Then, based on the remaining observations, we randomly select versus observations from the best category ("Best of the Best"), short BOB) and versus observations from the worst category ("Worst of the Worst", short WOW). By default, we select 8 of each. Since this selection happens randomly, it is recommended to use robust.categorical.igate over categorical.igate. After the selection we compare BOB and WOW using the the counting method and the specified hypothesis test. If the distributions of the ssv in BOB and WOW are significantly different, the current ssv has been identified as influential to the target variable. An ssv is considered influential, if the test returns a count larger/ equal to 6 and/ or a p-value of less than 0.05. For the next ssv we again start with the entire dataset df, remove all the observations with missing values for that new ssv and then select our new BOB and WOW. In particular, for each ssv we might select different observations. This dynamic selection is necessary, because in case of an incomplete data set, if we select the same BOB and WOW for all the ssv, we might end up with many missing values for particular ssv. In that case the hypothesis test loses statistical power, because it is used on a smaller sample or worse, might fail altogether if the sample size gets too small.

For those ssv determined to be significant, control bands are extracted. The rationale is: If the value for an ssv is in the interval \([\text{good_lower_bound}, \text{good_upper_bound}]\) the target is likely to be good. If it is in the interval \([\text{bad_lower_bound}, \text{bad_upper_bound}]\), the target is likely to be bad.
Value

A data frame with the summary statistics for those parameters that were selected at least floor(iterations*threshold) times:

<table>
<thead>
<tr>
<th>Causes</th>
<th>Those ssv that have been found to be influential to the target variable.</th>
</tr>
</thead>
<tbody>
<tr>
<td>median_count</td>
<td>The median value returned by the counting method for this parameter.</td>
</tr>
<tr>
<td>median_p_value</td>
<td>The median p-value of the hypothesis test performed, i.e. either of the Wilcoxon rank test (in case test = "w") or the t-test (if test = "t").</td>
</tr>
<tr>
<td>median_good_lower_bound</td>
<td>The median lower bound for this Cause for good quality.</td>
</tr>
<tr>
<td>median_good_upper_bound</td>
<td>The median upper bound for this Cause for good quality.</td>
</tr>
<tr>
<td>median_bad_lower_bound</td>
<td>The median lower bound for this Cause for bad quality.</td>
</tr>
<tr>
<td>median_bad_upper_bound</td>
<td>The median upper bound for this Cause for bad quality.</td>
</tr>
</tbody>
</table>

Examples

robust.categorical.igate(mtcars, target = "cyl",
best.cat = "8", worst.cat = "4", iterations = 50, threshold = 0.5)

validate

Validates results after using igate or categorical.igate.

Description

Takes a new data frame to be used for validation and the causes and control bands obtained from igate or categorical.igate and returns all those observations that fall within these control bands.

Usage

validate(validation_df, target, causes, results_df, type = NULL)

Arguments

validation_df Data frame to be used for validation. It is recommended to use a different data frame from the one used in igate/categorical.igate. The same data frame can be used if just a sanity check of the results is performed. This data frame must contain the target variable as well as all the causes determined by igate/categorical.igate.

target Target variable that was used in igate or categorical.igate.

causes Causes determined by igate or categorical.igate. If you saved the results of igate/categorical.igate in an object results, simply use results$Causes here.

results_df The data frame containing the results of igate or categorical.igate.

type The type of igate that was performed: either "continuous" or "categorical". If not provided function will try to guess the correct type based on the type of validation_df[[target]].
Details

If a value of Good_Count or Bad_count is very low in the second data frame, it means that this cause is excluding a lot of observations from the first data frame. Consider re-running validate with this cause removed from causes.

Value

A list of three data frames is returned. The first data frame contains those observations in validation_df that fall into *all* the good resp. bad control bands specified in results_df. The columns are target, then one column for each of the causes and a new column expected_quality which is "good" if the observation falls into all the good control bands and "bad" if it falls into all the bad control bands.

The second data frame has three columns:

<table>
<thead>
<tr>
<th>Cause</th>
<th>Each of the causes.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good_Count</td>
<td>If we selected all those observations that fall into the good band of this cause, how many observations would we select?</td>
</tr>
<tr>
<td>Bad_Count</td>
<td>If we selected all those observations that fall into the bad band of this cause, how many observations would we select?</td>
</tr>
</tbody>
</table>

The third data frame summarizes the first data frame: If type = "continuous" it has three columns:

<table>
<thead>
<tr>
<th>expected_quality</th>
<th>Either "good" or "bad".</th>
</tr>
</thead>
<tbody>
<tr>
<td>max_target</td>
<td>The maximum value for target for the observations with "good" expected quality resp. "bad" expected quality.</td>
</tr>
<tr>
<td>min_target</td>
<td>Minimum value of target for good resp. bad expected quality.</td>
</tr>
</tbody>
</table>

If type = "categorical" it has the following three columns:

<table>
<thead>
<tr>
<th>expected_quality</th>
<th>Either "good" or "bad".</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>A list of categories of the observations with expected quality good resp. bad.</td>
</tr>
<tr>
<td>Frequency</td>
<td>A count how often the respective Category appears amongst the observations with good/ bad expected quality.</td>
</tr>
</tbody>
</table>

Examples

validate(iris, target = "Sepal.Length", causes = resultsIris$Causes, results_df = resultsIris)

validatedObsIris

validatedObsIris data set

Description

Example validation data file to be used for example report generation.

Usage

validatedObsIris
validationCountsIris

Format

A data frame as described in the documentation of `validate`.

Details

This is the output of

```r
x <- validate(iris, target = "Sepal.Length", causes = resultsIris$Causes, results_df = resultsIris)
validatedObsIris <- x[[1]]
```

validationCountsIris validationCountsIris data set

Description

Example validation data file to be used for example report generation.

Usage

validationCountsIris

Format

A data frame as described in the documentation of `validate`.

Details

This is the output of

```r
x <- validate(iris, target = "Sepal.Length", causes = resultsIris$Causes, results_df = resultsIris)
validationCountsIris <- x[[2]]
```

validationSummaryIris validationSummaryIris data set

Description

Example validation data file to be used for example report generation.

Usage

validationSummaryIris
Format

A data frame as described in the documentation of `validate`.

Details

This is the output of

```r
x <- validate(iris, target = "Sepal.Length", causes = resultsIris$Causes, results_df = resultsIris)
validationSummaryIris <- x[[3]]
```
Index

* datasets
 resultsIris, 11
 validatedObsIris, 14
 validationCountsIris, 15
 validationSummaryIris, 15

categorical.freqplot, 2, 10
_categorical.igate, 3, 6, 9–13
counting.test, 5

igate, 3, 6, 9–13
igate.regressions, 8, 10

report, 9
resultsIris, 11
robust.categorical.igate, 11

validate, 10, 13, 15, 16
validatedObsIris, 14
validationCountsIris, 15
validationSummaryIris, 15