Title Imputation of Financial Time Series with Missing Values
Version 0.1.0
Date 2019-12-05
Description Missing values often occur in financial data due to a variety of reasons (errors in the collection process or in the processing stage, lack of asset liquidity, lack of reporting of funds, etc.). However, most data analysis methods expect complete data and cannot be employed with missing values. One convenient way to deal with this issue without having to redesign the data analysis method is to impute the missing values. This package provides an efficient way to impute the missing values based on modeling the time series with a random walk or an autoregressive (AR) model, convenient to model log-prices and log-volumes in financial data. In the current version, the imputation is univariate-based (so no asset correlation is used).

The package is based on the paper:

Maintainer Daniel P. Palomar <daniel.p.palomar@gmail.com>
URL https://CRAN.R-project.org/package=imputeFin,
 https://github.com/dppalomar/imputeFin

BugReports https://github.com/dppalomar/imputeFin/issues
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 7.0.0
Imports MASS, zoo
Suggests bookdown, knitr, ggplot2, prettydoc, rmarkdown, R.rsp, testthat, xts
VignetteBuilder knitr, rmarkdown, R.rsp
NeedsCompilation no
imputeFin-package

Author Junyan Liu [aut].
 Daniel P. Palomar [cre, aut]

Repository CRAN

Date/Publication 2019-12-13 15:00:06 UTC

\textbf{R topics documented:}

\begin{itemize}
\item imputeFin-package .. 2
\item fit_AR1_Gaussian .. 3
\item fit_AR1_t .. 5
\item impute_AR1_Gaussian .. 7
\item impute_AR1_t .. 9
\item plot_imputed .. 11
\item ts_AR1_Gaussian ... 12
\item ts_AR1_t .. 13
\end{itemize}

\textbf{Index} 14

\begin{itemize}
\item imputeFin-package \hspace{1cm} \textit{imputeFin: Imputation of Financial Time Series with Missing Values.}
\end{itemize}

\textbf{Description}

Missing values often occur in financial data due to a variety of reasons (errors in the collection process or in the processing stage, lack of asset liquidity, lack of reporting of funds, etc.). However, most data analysis methods expect complete data and cannot be employed with missing values. One convenient way to deal with this issue without having to redesign the data analysis method is to impute the missing values. This package provides an efficient way to impute the missing values based on modeling the time series with a random walk or an autoregressive (AR) model, convenient to model log-prices and log-volumes in financial data. In the current version, the imputation is univariate-based (so no asset correlation is used).

\textbf{Functions}

\begin{itemize}
\item fit_AR1_Gaussian, impute_AR1_Gaussian, fit_AR1_t, impute_AR1_t, plot_imputed
\end{itemize}

\textbf{Data}

\begin{itemize}
\item ts_AR1_Gaussian, ts_AR1_t
\end{itemize}

\textbf{Help}

For a quick help see the README file: \url{GitHub-README}.

\textbf{Author(s)}

Junyan LIU and Daniel P. Palomar
References

fit_AR1_Gaussian

Fit Gaussian AR(1) model to time series with missing values

Description

Estimate the parameters of a univariate Gaussian AR(1) model to fit the given time series with missing values. For multivariate time series, the function will perform a number of individual univariate fittings without attempting to model the correlations among the time series. If the time series does not contain missing values, the maximum likelihood (ML) estimation is done in one shot. With missing values, the iterative EM algorithm is employed for the estimation until convergence is achieved.

Usage

```r
fit_AR1_Gaussian(
  y,
  random_walk = FALSE,
  zero_mean = FALSE,
  return_iterates = FALSE,
  return_condMeanCov = FALSE,
  tol = 1e-10,
  maxiter = 1000
)
```

Arguments

- `y` - Time series object coercible to either a numeric vector or numeric matrix (e.g., zoo or xts) with missing values denoted by NA.
- `random_walk` - Logical value indicating if the time series is assumed to be a random walk so that phi1 = 1 (default is FALSE).
- `zero_mean` - Logical value indicating if the time series is assumed zero-mean so that phi0 = 0 (default is FALSE).
- `return_iterates` - Logical value indicating if the iterates are to be returned (default is FALSE).
- `return_condMeanCov` - Logical value indicating if the conditional mean and covariance matrix of the time series (excluding the leading and trailing missing values) given the observed data are to be returned (default is FALSE).
- `tol` - Positive number denoting the relative tolerance used as stopping criterion (default is 1e-8).
- `maxiter` - Positive integer indicating the maximum number of iterations allowed (default is 1000).
Value

If the argument \(y \) is a univariate time series (i.e., coercible to a numeric vector), then this function will return a list with the following elements:

- **phi0**: The estimate for \(\phi_0 \) (real number).
- **phi1**: The estimate for \(\phi_1 \) (real number).
- **sigma2**: The estimate for \(\sigma^2 \) (positive number).
- **phi0_iterates**: Numeric vector with the estimates for \(\phi_0 \) at each iteration (returned only when \(\text{return_iterates} = \text{TRUE} \)).
- **phi1_iterates**: Numeric vector with the estimates for \(\phi_1 \) at each iteration (returned only when \(\text{return_iterates} = \text{TRUE} \)).
- **sigma2_iterates**: Numeric vector with the estimates for \(\sigma^2 \) at each iteration (returned only when \(\text{return_iterates} = \text{TRUE} \)).
- **f_iterates**: Numeric vector with the objective values at each iteration (returned only when \(\text{return_iterates} = \text{TRUE} \)).
- **cond_mean_y**: Numeric vector (of same length as argument \(y \)) with the conditional mean of the time series (excluding the leading and trailing missing values) given the observed data (returned only when \(\text{return_condMeanCov} = \text{TRUE} \)).
- **cond_cov_y**: Numeric matrix (with number of columns/rows equal to the length of the argument \(y \)) with the conditional covariance matrix of the time series (excluding the leading and trailing missing values) given the observed data (returned only when \(\text{return_condMeanCov} = \text{TRUE} \)).

If the argument \(y \) is a multivariate time series (i.e., with multiple columns and coercible to a numeric matrix), then this function will return a list with each element as in the case of univariate \(y \) corresponding to each of the columns (i.e., one list element per column of \(y \)), with the following additional elements that combine the estimated values in a convenient vector form:

- **phi0_vct**: Numeric vector (with length equal to the number of columns of \(y \)) with the estimates for \(\phi_0 \) for each of the univariate time series.
- **phi1_vct**: Numeric vector (with length equal to the number of columns of \(y \)) with the estimates for \(\phi_1 \) for each of the univariate time series.
- **sigma2_vct**: Numeric vector (with length equal to the number of columns of \(y \)) with the estimates for \(\sigma^2 \) for each of the univariate time series.

Author(s)

Junyan Liu and Daniel P. Palomar

References

Examples

```r
library(imputeFin)
data(ts_AR1_Gaussian)
y_missing <- ts_AR1_Gaussian$y_missing
fitted <- fit_AR1_Gaussian(y_missing)
```

Description

Estimate the parameters of a univariate Student’s t AR(1) model to fit the given time series with missing values. For multivariate time series, the function will perform a number of individual univariate fittings without attempting to model the correlations among the time series. If the time series does not contain missing values, the maximum likelihood (ML) estimation is done via the iterative EM algorithm until converge is achieved. With missing values, the stochastic EM algorithm is employed for the estimation (currently the maximum number of iterations will be executed without attempting to check early converge).

Usage

```r
fit_AR1_t(
  y,
  random_walk = FALSE,
  zero_mean = FALSE,
  fast_and_heuristic = TRUE,
  return_iterates = FALSE,
  return_condMean_Gaussian = FALSE,
  tol = 1e-10,
  maxiter = 100,
  n_chain = 10,
  n_thin = 1,
  K = 30
)
```

Arguments

- `y` Time series object coercible to either a numeric vector or numeric matrix (e.g., zoo or xts) with missing values denoted by NA.
- `random_walk` Logical value indicating if the time series is assumed to be a random walk so that $\phi_1 = 1$ (default is FALSE).
- `zero_mean` Logical value indicating if the time series is assumed zero-mean so that $\phi_0 = 0$ (default is FALSE).
- `fast_and_heuristic` Logical value indicating whether a heuristic but fast method is to be used to estimate the parameters of the Student’s t AR(1) model (default is TRUE).
return_iterates
Logical value indicating if the iterates are to be returned (default is FALSE).

return_condMean_Gaussian
Logical value indicating if the conditional mean and covariance matrix of the
time series (excluding the leading and trailing missing values) given the ob-
served data are to be returned (default is FALSE).

tol
Positive number denoting the relative tolerance used as stopping criterion (de-
fault is 1e-8).

maxiter
Positive integer indicating the maximum number of iterations allowed (default
is 100).

n_chain
Positive integer indicating the number of the parallel Markov chains in the
stochastic EM method (default is 10).

n_thin
Positive integer indicating the sampling period of the Gibbs sampling in the
stochastic EM method (default is 1). Every n_thin-th samples is used. This is
aimed to reduce the dependence of the samples.

K
Positive number controlling the values of the step sizes in the stochastic EM
method (default is 30).

Value
If the argument \(y\) is a univariate time series (i.e., coercible to a numeric vector), then this function
will return a list with the following elements:

phi0
The estimate for \(\phi_0\) (real number).

phi1
The estimate for \(\phi_1\) (real number).

sigma2
The estimate for \(\sigma^2\) (positive number).

nu
The estimate for \(\nu\) (positive number).

phi0_iterates
Numeric vector with the estimates for \(\phi_0\) at each iteration (returned only when
return_iterates = TRUE).

phi1_iterates
Numeric vector with the estimates for \(\phi_1\) at each iteration (returned only when
return_iterates = TRUE).

sigma2_iterates
Numeric vector with the estimates for \(\sigma^2\) at each iteration (returned only when
return_iterates = TRUE).

nu_iterate
Numeric vector with the estimates for \(\nu\) at each iteration (returned only when
return_iterates = TRUE).

f_iterates
Numeric vector with the objective values at each iteration (returned only when
return_iterates = TRUE).

cond_mean_y_Gaussian
Numeric vector (of same length as argument \(y\)) with the conditional mean of the
time series (excluding the missing values at the head and tail) given the observed
data based on Gaussian AR(1) model (returned only when return_condMean_Gaussian
= TRUE).
If the argument `y` is a multivariate time series (i.e., with multiple columns and coercible to a numeric matrix), then this function will return a list with each element as in the case of univariate `y` corresponding to each of the columns (i.e., one list element per column of `y`), with the following additional elements that combine the estimated values in a convenient vector form:

- **phi0_vct**: Numeric vector (with length equal to the number of columns of `y`) with the estimates for `phi0` for each of the univariate time series.
- **phi1_vct**: Numeric vector (with length equal to the number of columns of `y`) with the estimates for `phi1` for each of the univariate time series.
- **sigma2_vct**: Numeric vector (with length equal to the number of columns of `y`) with the estimates for `sigma2` for each of the univariate time series.
- **nu_vct**: Numeric vector (with length equal to the number of columns of `y`) with the estimates for `nu` for each of the univariate time series.

Author(s)

Junyan Liu and Daniel P. Palomar

References

Examples

```r
library(imputeFin)
data(ts_AR1_t)
y_missing <- ts_AR1_t$y_missing
fitted <- fit_AR1_t(y_missing)
```

Description

Impute missing values of time series by drawing samples from the conditional distribution of the missing values given the observed data based on a Gaussian AR(1) model as estimated with the function `fit_AR1_Gaussian`.

Usage

```r
impute_AR1_Gaussian(
  y,
  n_samples = 1,
  impute_leading_NAs = FALSE,
)```
impute_AR1_Gaussian

```
impute_trailing_NAs = FALSE,
random_walk = FALSE,
zero_mean = FALSE,
return_estimates = FALSE,
tol = 1e-10,
maxiter = 1000
```

Arguments

- **y**: Time series object coercible to either a numeric vector or numeric matrix (e.g., zoo or xts) with missing values denoted by NA.
- **n_samples**: Positive integer indicating the number of imputations (default is 1).
- **impute_leading_NAs**: Logical value indicating if the leading missing values of time series are to be imputed (default is FALSE).
- **impute_trailing_NAs**: Logical value indicating if the trailing missing values of time series are to be imputed (default is FALSE).
- **random_walk**: Logical value indicating if the time series is assumed to be a random walk so that $\phi_1 = 1$ (default is FALSE).
- **zero_mean**: Logical value indicating if the time series is assumed zero-mean so that $\phi_0 = 0$ (default is FALSE).
- **return_estimates**: Logical value indicating if the estimates of the model parameters are to be returned (default is FALSE).
- **tol**: Positive number denoting the relative tolerance used as stopping criterion (default is $1e^{-8}$).
- **maxiter**: Positive integer indicating the maximum number of iterations allowed (default is 1000).

Value

By default (i.e., for $n_{samples} = 1$ and $return_estimates = FALSE$), the function will return an imputed time series of the same class and dimensions as the argument $y$ with one new attribute recording the locations of missing values (the function plot_imputed will make use of such information to indicate the imputed values).

If $n_{samples} > 1$, the function will return a list consisting of $n_{sample}$ imputed time series with names: $y_{imputed.1}, y_{imputed.2}$, etc.

If $return_estimates = TRUE$, in addition to the imputed time series $y_{imputed}$, the function will return the estimated model parameters:

- **phi0**: The estimate for $\phi_0$ (numeric scalar or vector depending on the number of time series).
- **phi1**: The estimate for $\phi_1$ (numeric scalar or vector depending on the number of time series).
- **sigma2**: The estimate for $\sigma_2$ (numeric scalar or vector depending on the number of time series).


**Author(s)**

Junyan Liu and Daniel P. Palomar

**References**


**Examples**

```r
library(imputeFin)
data(ts_AR1_Gaussian)
y_missing <- ts_AR1_Gaussian$y_missing
y_imputed <- impute_AR1_Gaussian(y_missing)
plot_imputed(y_imputed)
```

**Description**

Impute missing values of time series by drawing samples from the conditional distribution of the missing values given the observed data based on a Student’s t AR(1) model as estimated with the function `fit_AR1_t`.

**Usage**

```r
impute_AR1_t(
 y,
 n_samples = 1,
 impute_leading_NAs = FALSE,
 impute_trailing_NAs = FALSE,
 random_walk = FALSE,
 zero_mean = FALSE,
 fast_and_heuristic = TRUE,
 return_estimates = FALSE,
 tol = 1e-10,
 maxiter = 100,
 K = 30,
 n_burn = 100,
 n_thin = 50
)
```
Arguments

- **y**: Time series object coercible to either a numeric vector or numeric matrix (e.g., zoo or xts) with missing values denoted by NA.
- **n_samples**: Positive integer indicating the number of imputations (default is 1).
- **impute_leading_NAs**: Logical value indicating if the leading missing values of time series are to be imputed (default is FALSE).
- **impute_trailing_NAs**: Logical value indicating if the trailing missing values of time series are to be imputed (default is FALSE).
- **random_walk**: Logical value indicating if the time series is assumed to be a random walk so that $\phi_1 = 1$ (default is FALSE).
- **zero_mean**: Logical value indicating if the time series is assumed zero-mean so that $\phi_0 = 0$ (default is FALSE).
- **fast_and_heuristic**: Logical value indicating whether a heuristic but fast method is to be used to estimate the parameters of the Student’s t AR(1) model (default is TRUE).
- **return_estimates**: Logical value indicating if the estimates of the model parameters are to be returned (default is FALSE).
- **tol**: Positive number denoting the relative tolerance used as stopping criterion (default is 1e-8).
- **maxiter**: Positive integer indicating the maximum number of iterations allowed (default is 1000).
- **K**: Positive number controlling the values of the step sizes in the stochastic EM method (default is 30).
- **n_burn**: Positive integer controlling the length of the burn-in period of the Gibbs sampling (default is 100). The first $(n_burn \times n\_thin)$ samples generated will be ignored.
- **n_thin**: Positive integer indicating the sampling period of the Gibbs sampling in the stochastic EM method (default is 1). Every $n\_thin$-th samples is used. This is aimed to reduce the dependence of the samples.

Value

By default (i.e., for $n_samples = 1$ and $return_estimates = FALSE$), the function will return an imputed time series of the same class and dimensions as the argument $y$ with one new attribute recording the locations of missing values (the function plot_imputed will make use of such information to indicate the imputed values).

If $n_samples > 1$, the function will return a list consisting of $n_sample$ imputed time series with names: $y\_imputed.1$, $y\_imputed.2$, etc.

If $return_estimates = TRUE$, in addition to the imputed time series $y\_imputed$, the function will return the estimated model parameters:
The estimate for \( \phi_0 \) (numeric scalar or vector depending on the number of time series).

The estimate for \( \phi_1 \) (numeric scalar or vector depending on the number of time series).

The estimate for \( \sigma^2 \) (numeric scalar or vector depending on the number of time series).

The estimate for \( \nu \) (numeric scalar or vector depending on the number of time series).

Author(s)

Junyan Liu and Daniel P. Palomar

References


Examples

```r
library(imputeFin)
data(ts_AR1_t)
y_missing <- ts_AR1_t$y_missing
y_imputed <- impute_AR1_t(y_missing)
plot_imputed(y_imputed)
```

Description

Plot single imputed time series (as returned by functions `impute_AR1_Gaussian` and `impute_AR1_t`), highlighting the imputed values in a different color.

Usage

```r
plot_imputed(
 y_imputed,
 column = 1,
 type = c("ggplot2", "simple"),
 title = NULL,
 color_imputed = "red"
)
```
Arguments

**y_imputed**  
Imputed time series (can be any object coercible to a numeric vector or a numeric matrix). If it has the attribute "index_miss" (as returned by any of the imputation functions `impute_AR1_Gaussian` and `impute_AR1_t`), then it will highlight the imputed values in a different color.

**column**  
Positive integer indicating the column index to be plotted (only valid if the argument `y_imputed` is coercible to a matrix with more than one column). Default is 1.

**type**  
Type of plot. Valid options: "ggplot2" and "simple". Default is "ggplot2" (the package ggplot2 must be installed).

**title**  
Title of the plot (default is "Imputed time series").

**color_imputed**  
Color for the imputed values (default is "red").

Author(s)

Daniel P. Palomar and Junyan Liu

Examples

```r
library(imputeFin)
data(ts_AR1_t)
y_missing <- ts_AR1_t$y_missing
y_imputed <- impute_AR1_t(y_missing)
plot_imputed(y_missing, title = "Original time series with missing values")
plot_imputed(y_imputed)
```

---

**ts_AR1_Gaussian**  
*Synthetic AR(1) Gaussian time series with missing values*

Description

Synthetic AR(1) Gaussian time series with missing values for estimation and imputation testing purposes.

Usage

data(ts_AR1_Gaussian)

Format

List with the following elements:

- **y_missing**  
300 x 3 zoo object with three AR(1) Gaussian time series along the columns: the first column contains a time series with 10 second column contains a time series with 10 values randomly distributed; and the third column contains the union of the previous missing values.
**ts_AR1_t**

- **phi0** Value of $\phi_0$ used to generate the time series.
- **phi1** Value of $\phi_1$ used to generate the time series.
- **sigma2** Value of $\sigma_2$ used to generate the time series.

---

**Description**

Synthetic AR(1) Student’s t time series with missing values for estimation and imputation testing purposes.

**Usage**

```r
data(ts_AR1_t)
```

**Format**

List with the following elements:

- **y_missing** 300 x 3 zoo object with three AR(1) Student’s t time series along the columns: the first column contains a time series with 10 values randomly distributed; and the third column contains the union of the previous missing values.
- **phi0** Value of $\phi_0$ used to generate the time series.
- **phi1** Value of $\phi_1$ used to generate the time series.
- **sigma2** Value of $\sigma_2$ used to generate the time series.
- **nu** Value of $\nu$ used to generate the time series.
Index

*Topic dataset
  ts_AR1_Gaussian, 12
  ts_AR1_t, 13

fit_AR1_Gaussian, 2, 3, 7
fit_AR1_t, 2, 5, 9

impute_AR1_Gaussian, 2, 7, 11, 12
impute_AR1_t, 2, 9, 11, 12
imputeFin-package, 2

plot_imputed, 2, 8, 10, 11

ts_AR1_Gaussian, 2, 12
  ts_AR1_t, 2, 13