imputeTS: Time Series Missing Value Imputation

Imputation (replacement) of missing values in univariate time series. Offers several imputation functions and missing data plots. Available imputation algorithms include: 'Mean', 'LOCF', 'Interpolation', 'Moving Average', 'Seasonal Decomposition', 'Kalman Smoothing on Structural Time Series models', 'Kalman Smoothing on ARIMA models'.

Version: 2.6
Depends: R (≥ 3.0.1)
Imports: stats, stinepack, graphics, grDevices, forecast, Rcpp
LinkingTo: Rcpp
Suggests: testthat, utils
Published: 2018-03-20
Author: Steffen Moritz
Maintainer: Steffen Moritz <steffen.moritz10 at>
License: GPL-3
NeedsCompilation: yes
Citation: imputeTS citation info
Materials: README NEWS
In views: TimeSeries
CRAN checks: imputeTS results


Reference manual: imputeTS.pdf
Vignettes: imputeTS: Time Series Missing Value Imputation in R
Package source: imputeTS_2.6.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
OS X El Capitan binaries: r-release: imputeTS_2.5.tgz
OS X Mavericks binaries: r-oldrel: imputeTS_2.5.tgz
Old sources: imputeTS archive

Reverse dependencies:

Reverse imports: imputeTestbench
Reverse suggests: naniar


Please use the canonical form to link to this page.