Package ‘inTrees’

October 13, 2022

Title Interpret Tree Ensembles
Version 1.3
Date 2022-05-02
Imports RRF, arules, gbm, xtable, xgboost, data.table, methods
Description For tree ensembles such as random forests, regularized random forests and gradient boosted trees, this package provides functions for: extracting, measuring and pruning rules; selecting a compact rule set; summarizing rules into a learner; calculating frequent variable interactions; formatting rules in latex code. Reference: Interpreting tree ensembles with inTrees (Houtao Deng, 2019, <doi:10.1007/s41060-018-0144-8>).</p>

Maintainer Houtao Deng <softwaredeng@gmail.com>

BugReports https://github.com/softwaredeng/inTrees/issues

License GPL (>= 3)

NeedsCompilation no

Repository CRAN

Date/Publication 2022-05-31 23:00:02 UTC

Author Houtao Deng [aut, cre],
Xin Guan [aut],
Vadim Khotilovich [aut]

R topics documented:

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>applyLearner</td>
<td>2</td>
</tr>
<tr>
<td>buildLearner</td>
<td>2</td>
</tr>
<tr>
<td>dataSimulate</td>
<td>3</td>
</tr>
<tr>
<td>dicretizeVector</td>
<td>4</td>
</tr>
<tr>
<td>extractRules</td>
<td>4</td>
</tr>
<tr>
<td>GBM2List</td>
<td>5</td>
</tr>
<tr>
<td>getFreqPattern</td>
<td>6</td>
</tr>
<tr>
<td>getRuleMetric</td>
<td>7</td>
</tr>
<tr>
<td>presentRules</td>
<td>8</td>
</tr>
<tr>
<td>pruneRule</td>
<td>8</td>
</tr>
<tr>
<td>RF2List</td>
<td>9</td>
</tr>
</tbody>
</table>
applyLearner

apply a simplified tree ensemble learner (STEL) to data

Description
apply STEL to data and get predictions

Usage
applyLearner(learner, X)

Arguments
learner a matrix with rules ordered by priority
X predictor variable matrix

Value
predictions for the data

See Also
buildLearner

buildLearner

build a simplified tree ensemble learner (STEL)

Description
Build a simplified tree ensemble learner (STEL). Currently works only for classification problems.

Usage
buildLearner(ruleMetric, X, target, minFreq = 0.01)

Arguments
ruleMetric a matrix including the conditions, predictions, and and metrics
X predictor variable matrix
target target variable
minFreq minimum frequency of a rule condition in order to be included in STEL.
dataSimulate

Value

A matrix including the conditions, prediction, and metrics, ordered by priority.

Author(s)

Houtao Deng

References

Examples

data(iris)
library(RRF)
X <- iris[,1:(ncol(iris)-1)]
target <- iris[,]"Species"]
rf <- RRF(X,as.factor(target),ntree=100) # build an ordinary RF
treeList <- RF2List(rf)
ruleExec <- extractRules(treeList,X)
ruleExec <- unique(ruleExec)
ruleMetric <- getRuleMetric(ruleExec,X) # measure rules
ruleMetric <- pruneRule(ruleMetric,X,target) # prune each rule
learner <- buildLearner(ruleMetric,X,target)
pred <- applyLearner(learner,X)
read <- presentRules(learner,colnames(X)) # more readable format

format the rule and metrics as a table in latex code
library(xtable)
print(xtable(read), include.rownames=FALSE)
print(xtable(ruleMetric[,1:2], include.rownames=FALSE)

Description

Simulate data

Usage

dataSimulate(flag = 1, nCol = 20, nRow = 1000)

Arguments

nCol the number of columns in the data set. must >= 2.
nRow the number of rows in the data set.
Value

predictor variable matrix and target variable

Examples

res <- dataSimulate(flag=1)
X <- res$X;
target <- res$target

dicretizeVector

Description

discretize a variable

Usage

dicretizeVector(v, K = 3)

Arguments

v: vector
K: discretize into up to K levels with equal frequency

Value

discretized levels for v

Examples

data(iris)
dicretizeVector(iris[,1],3)

extractRules

Extract rules from a list of trees

Description

Extract rule conditions from a list of trees. Use functions RF2List/GBM2List to transform RF/GBM objects to list of trees.

Usage

extractRules(treeList, X, ntree = 100, maxdepth = 6, random = FALSE, digits = NULL)
Arguments

- **treeList**: tree list
- **X**: predictor variable matrix
- **ntree**: conditions are extracted from the first ntree trees
- **maxdepth**: conditions are extracted from the top maxdepth levels from each tree
- **random**: the max depth for each tree is an integer randomly chosen between 1 and maxdepth
- **digits**: digits for rounding

Value

a set of rule conditions

Examples

```r
library(RRF)
data(iris)
X <- iris[,1:(ncol(iris)-1)]
target <- iris[,"Species"]
rf <- RRF(X,as.factor(target),ntree=100) # build an ordinary RF
treeList <- RF2List(rf)
ruleExec <- extractRules(treeList,X,digits=4) # transform to R-executable rules
ruleExec <- unique(ruleExec)
```

GBM2List

Transform gbm object to a list of trees

Description

Transform gbm object to a list of trees that can be used for rule condition extraction

Usage

```r
GBM2List(gbm1,X)
```

Arguments

- **gbm1**: gbm object
- **X**: predictor variable matrix

Value

a list of trees in an inTrees-required format

See Also

RF2List
Examples

```r
library(gbm)
data(iris)
X <- iris[,1:(ncol(iris)-1)]
target <- iris[,"Species"]

# gbmFit <- gbm(Species~ ., data=iris, n.tree = 400, interaction.depth = 10, distribution="multinomial")
treeList <- GBM2List(gbmFit,X)
ruleExec = extractRules(treeList,X)
ruleExec <- unique(ruleExec)
#ruleExec <- ruleExec[1:min(2000,length(ruleExec)),,drop=FALSE]
ruleMetric <- getRuleMetric(ruleExec,X,target)
ruleMetric <- pruneRule(ruleMetric,X,target)
ruleMetric <- unique(ruleMetric)

learner <- buildLearner(ruleMetric,X,target)
pred <- applyLearner(learner,X)
readableLearner <- presentRules(learner,colnames(X)) # more readable format
err <- 1-sum(pred==target)/length(pred);
```

getFreqPattern
calculate frequent variable interactions

Description

calculate frequent variable interactions

Usage

getFreqPattern(ruleMetric, minsup = 0.01, minconf = 0.5, minlen = 1, maxlen = 4)

Arguments

- `ruleMetric`: a matrix including conditions, predictions, and the metrics
- `minsup`: minimum support of conditions in a tree ensemble
- `minconf`: minimum confidence of the rules
- `minlen`: minimum length of the conditions
- `maxlen`: max length of the conditions

Value

a matrix including frequent variable interactions (in a form of conditions), predictions, length, support, and confidence.
getRuleMetric

Examples

library(RRF)
library(arules)
data(iris)
X <- iris[,1:(ncol(iris)-1)]
target <- iris[,"Species"]
rf <- RRF(X,as.factor(target),ntree=100) # build an ordinary RF
treeList <- RF2List(rf)
ruleExec <- extractRules(treeList,X) # transform to R-executable rules
ruleMetric <- getRuleMetric(ruleExec,X,target)
freqPattern <- getFreqPattern(ruleMetric)
freqPatternMetric <- getRuleMetric(freqPattern,X,target)

getRuleMetric Assign outcomes to a conditions, and measure the rules

Description

Assign outcomes to a conditions, and measure the rules

Usage

g RULEMETRIC(ruleExec, X, target)

Arguments

ruleExec a set of rule conditions
X predictor variable matrix
target target variable

Value

a matrix including the conditions, predictions, and metrics

References

Examples

library(RRF)
data(iris)
X <- iris[,1:(ncol(iris)-1)]
target <- iris[,"Species"]
rf <- RRF(X,as.factor(target),ntree=100) # build an ordinary RF
treeList <- RF2List(rf)
ruleExec <- extractRules(treeList,X) # transform to R-executable rules
ruleExec <- unique(ruleExec)
ruleMetric <- getRuleMetric(ruleExec,X,target) # measure rules
presentRules
Present a learner using column names instead of X[i,]

Description
Present a learner using column names instead of X[i,]

Usage
```r
presentRules(rules, colN, digits)
```

Arguments
- `rules` a set of rules
- `colN` a vector including the column names
- `digits` digits for rounding

Value
a matrix including the conditions (with column names), etc.

See Also
- `buildLearner`

Examples
```r
# See function "buildLearner"
```

pruneRule
Prune irrelevant variable-value pair from a rule condition

Description
Prune irrelevant variable-value pair from a rule condition

Usage
```r
pruneRule(rules, X, target, maxDecay = 0.05, typeDecay = 2)
```

Arguments
- `rules` A matrix including the rules and metrics
- `X` predictor variable matrix
- `target` target variable vector
- `maxDecay` threshold of decay
- `typeDecay` 1: relative error; 2: error; default :2
RF2List

Value
A matrix including the rules each being pruned, and metrics

Author(s)
Houtao Deng

References

See Also
buildLearner

Examples
see function "buildLearner"

RF2List: Transform a random forest object to a list of trees

Description
Transform a random forest object to a list of trees

Usage
RF2List(rf)

Arguments
rf random forest object

Value
a list of trees

See Also
GBM2List
Examples

```r
library(RRF)
data(iris)
X <- iris[,1:(ncol(iris)-1)]
target <- iris[,"Species"]
rf <- RRF(X,as.factor(target),ntree=100) # build an ordinary RF
treeList <- RF2List(rf)
ruleExec <- extractRules(treeList,X) # transform to R-executable rules
```

selectRuleRRF

Select a set of relevant and non-redundant rules using regularized random forests

Description

Select a set of relevant and non-redundant rules using regularized random forests

Usage

```r
selectRuleRRF(ruleMetric, X, target)
```

Arguments

- `ruleMetric`: a matrix including the rules and metrics
- `X`: predictor variable matrix
- `target`: target

Value

A matrix including a set of relevant and non-redundant rules, and their metrics

Author(s)

Houtao Deng

See Also

- `buildLearner`

Examples

```r
# See function "buildLearner:
```
XGB2List

Transform an xgboost object to a list of trees

Description

Transform an xgboost object to a list of trees

Usage

XGB2List(xgb, X)

Arguments

xgb xgboost object
X predictor variable matrix

Value

a list of trees in an inTrees-required format

See Also

XGB2List

Examples

library(data.table)
library(xgboost)
test data set 1: iris
X <- within(iris,rm("Species")); Y <- iris[,"Species"]
X <- within(iris,rm("Species")); Y <- iris[,"Species"]
model_mat <- model.matrix(~. -1, data=X)
xgb <- xgboost(model_mat, label = as.numeric(Y) - 1, nrounds = 20,
objective = "multi:softprob", num_class = 3)
tree_list <- XGB2List(xgb,model_mat)
Index

* STEL
 buildLearner, 2
* apply
 applyLearner, 2
* discretize
 discretizeVector, 4
* extract
 extractRules, 4
* gbm
 GBM2List, 5
* learner
 buildLearner, 2
* measure
 getRuleMetric, 7
* predict
 applyLearner, 2
* present
 presentRules, 8
* prune
 pruneRule, 8
* randomforest
 RF2List, 9
* rank
 getRuleMetric, 7
* select
 selectRuleRRF, 10
* simulate
 dataSimulate, 3
* variable interaction
 getFreqPattern, 6
* xgboost
 XGB2List, 11

GBM2List, 5, 9
getFreqPattern, 6
getRuleMetric, 7
presentRules, 8
pruneRule, 8
RF2List, 5, 9
selectRuleRRF, 10
XGB2List, 11, 11

applyLearner, 2
buildLearner, 2, 2, 8–10
dataSimulate, 3
discretizeVector, 4
extractRules, 4