Package ‘incR’

October 13, 2022

Type Package
Title Analysis of Incubation Data
Version 1.1.0
Date 2018-03-17
Author Pablo Capilla-Lasheras [aut, cre]
Maintainer Pablo Capilla-Lasheras <pacapilla@gmail.com>
Description Suite of functions to study animal incubation.
 At the core of incR
 lies an algorithm that allows for the scoring of
 incubation behaviour. Additionally, several functions
 extract biologically relevant metrics of incubation such as off-bout number
 and off-bout duration - for a review of avian incubation studies,
 see Nests, Eggs, and Incubation: New ideas about avian reproduction (2015)
License GPL-3
Depends R (>= 3.4.0), base, stats
Imports dplyr, ggplot2, maptools, lubridate, rgeos, utils
Suggests codetools, knitr, rmarkdown
VignetteBuilder knitr
LazyData true
RoxygenNote 6.0.1
NeedsCompilation no
Repository CRAN
Date/Publication 2018-03-21 15:25:24 UTC

R topics documented:

incR .. 2
incRact ... 2
incRact

Description

This package is formed by a suite of R functions that help the user to get useful biological information from raw time-series data of incubation temperatures. It is thought to be of interest for the study of uni-parental or intermittent incubating species.

Suggested workflow

Check the package vignettes to find a suggested workflow and calibrate the main function in incR.

incR functions

The current version of incR contains the following functions and three example data sets: incRprep, incRenv, incRscan, incRact, incRatt, incRbouts and incRt, along with three example data sets.

Usage

incRact(data, time_column, vector.incubation)
Arguments

data data frame containing a numeric vector of 1's and 0's (incubation scores), where "1" means "incubating individual inside nest" and "0" means "incubating individual outside the nests". This vector, under the name of incR_score is provided by incRscan in the first object (incRscan_data) of the returned list. A column named "date" is needed to refer to daily calculations.

time_column (character class) name of the column containing times.

vector.incubation (character class) name of the vector containing incubation scores. incRscan produces this vector named "incR_score".

Value

a data frame containing first off-bout and last on-bout per day in data.

Author(s)

Pablo Capilla-Lasheras

See Also

incRprep incRscan

Examples

```r
# loading example data
data(incR_procdata)
incRact (data=incR_procdata,
        time_column="time",
        vector.incubation="incR_score")
```

Description

This function calculates percentage of day time spent inside nest based on the "inc.vector" variable produced by incRscan (or any other method). Current version do not discriminate day and night times.

Usage

```
incRatt(data, vector.incubation)
```
incRbouts

Arguments

data data frame containing a time-series vector of 1’s and 0’s, where "1" means "incubating individual inside nest" and "0" means "incubating individual outside nest". This vector, under the name of "inc.vector", is provided by incRscan in the first object of the returned list. A column named "date" is needed to refer to daily calculations.

vector.incubation name of the column (vector class) storing the information about the presence/absence of the incubating individual in the nest.

Value

Daily percentage of time in nest, returned in a data frame with one day per raw.

See Also

incRprep incRscan incRact

Examples

loading example data
data(incR_procdata)
incRbouts(data=incR_procdata,
 vector.incubation="incR_score")

Description

Calculation of number and duration of incubation on- and off-bouts.

Usage

incRbouts(data, vector.incubation, dec_time, temp, sampling.rate)

Arguments

data data frame containing a time-series vector of 1’s and 0’s, where "1" means "incubating individual inside nest" and "0" means "incubating individual outside nest". This vector, under the name of "inc.vector", is provided by incRscan in the first object of the returned list. A column named "date" is needed to refer to daily calculations.

vector.incubation name of the column (vector class) storing the information about the presence/absence of the incubating individual in the nest.

dec_time (character class) name of the column with decimal time.
incRenv

Matching environmental and nest temperatures

Description

This function takes a data frame with recordings of environmental temperature and another with nest temperatures and merges both per unit of time. The user can do this work manually, however, `incRenv` is thought to automate data preparation (in combination with `incRprep`) to use `incRscan` after.

Usage

```r
incRenv(data.nest, data.env, env.temperature.name, env.date.name, env.date.format, env.timezone)
```

temp (character class) name of the column with incubation temperatures.

sampling.rate time difference between two consecutive recording points. Effectively, the rate at which data points were recorded (e.g. 1 data point per 50sec). The time units of the returned object will depend on the units of this argument.

Value

This function returns a list with two objects. The first object, named `total_bouts`, is a list of individual on- and off-bouts, giving information about their start time, duration, start nest temperature and final nest temperature. The second object, `day_bouts`, provides a summary of on- and off-bouts per day of observation. This second table shows number and mean duration of on- and off-bout per day. Mean times are shown in those time units you specify the argument `sampling.rate`.

Author(s)

Pablo Capilla-Lasheras

See Also

`incRprep` `incRscan` `incRact` `incRatt`

Examples

```r
# loading example data
data(incR_procdata)
incRbouts(data=incR_procdata, vector.incubation="incR_score", dec_time="dec_time", temp="temperature", sampling.rate=240) # sampling rate in seconds.
```
Arguments

data.nest data frame containing nest temperature recordings. It must have two compulsory columns 'date' and 'hour' displaying dates and the hour of each observation. These two columns are provided if the user uses incRprep before.

data.env data frame containing environmental temperatures to be merged with nest temperature records. Please, provide date and time of each observation in one unique column as requested for incRprep.

env.temperature.name name of the column containing temperature recordings in the data.env data frame.

env.date.name name of the column containing date and time in the data.env data frame.

env.date.format format of env.date.name. Similar to incRprep.

env.timezone time zone of the environmental recordings. Similar to incRprep.

Details

This function is thought to be used after incRprep as it uses some of the additional variables created by incRprep.

Value

The original data.nest with an additional column for hour-averaged environmental temperature. This new variable is thought to serve as env_temp in incRscan.

Author(s)

Pablo Capilla-Lasheras

See Also

incRprep incRscan

Examples

data(incR_envdata) # environmental data
head (incR_envdata)

data(incR_rawdata) # loading nest data
head (incR_rawdata)

the first step in to format the raw data using incRprep
new.data <- incRprep (data=incR_rawdata,
 date.name= "DATE",
 date.format= "%d/%m/%Y %H:%M",
 timezone="GMT",
 temperature.name="temperature")

then use incRenv to merge environmental data
new.data2 <- incRenv (data.nest = new.data,
 data.env = incR_envdata,
 env.temperature.name = "env_temperature",
 env.date.name = "DATE",
 env.date.format = "%d/%m/%Y %H:%M",
 env.timezone = "GMT")

head (new.data2, 3)

incRplot

Quick visualisation of incubation temperatures, on-bouts and off-bouts

Description

After *incRscan* has been used, *incRplot* provides a quick visualisation of the incubation temperature trace with coloured on- and off-bouts. Environmental temperatures can also be added to the plot.

Usage

```r
incRplot(data, time.var, day.var, inc.temperature.var, 
    env.temperature.var = NULL, vector.incubation)
```

Arguments

- **data**: data table with incubation temperature data
- **time.var**: Character string. Name of the variable with time of the day for temperature data. Please, have time in decimal hours. If *incRprep* has been previously used, "dec_time" can be used.
- **day.var**: Character string. Name of the variable with date for temperature observation. No specific format is needed. If *incRprep* has been previously used, "date" can be used.
- **inc.temperature.var**: Character string. Name of the variable with incubation temperatures.
- **env.temperature.var**: Character string. Name of the variable with environmental temperatures. If no value is provided, a plot with no environmental temperatures is produced.
- **vector.incubation**: name of the binary variable storing information about the presence/absence of the incubating individual in the nest. If *incRscan* has been used, "incR_score" can be used.

Value

Plot of incubation temperature, on-bouts and off-bouts with (optional) environmental temperatures. The plot is generated using *ggplot2*. The user can customised the appearance of the plot using tools within *ggplot2*(see example)
See Also

incRscan

Examples

```r
# loading example data
data(incR_procdata)
my_plot <- incRplot(data = incR_procdata[complete.cases(incR_procdata$temperature),],
                    time.var = "dec_time",
                    day.var = "date",
                    inc.temperature.var = "temperature",
                    env.temperature.var = "env_temp",
                    vector.incubation = "incR_score")

# see your plot
my_plot

# add new labels (ggplot2 required)
my_plot + ggplot2::labs(x = "New X label", y = "New Y label")
```

incRprep

Data preparation for incubation analysis in incR

Description

Preparing incubation time series for further analysis. This function takes a data file containing a temporal series of temperature recordings and adds some the extra variables needed to use further functions embedded in the incR package. It simply accommodates a raw data frame, reformatting date and time columns automatically.

Usage

```r
incRprep(data, date.name, date.format, timezone, temperature.name)
```

Arguments

data
 raw data from incubation time series. It must contain a column with date and time information for each observation (e.g. "2017-05-01 21:01"). The function is written to handle date and time concatenated in one unique column (see example below).

date.name
 name of the date and time column

date.format
 format for date and time column. It must be a character object as specified in the function `strptime`. `incRprep` assumes that the date and time column contains date and time. If date and time are in different columns, please, concatenate them in one column before running the function.

timezone
 time zone for time calculations. See `strptime` documentation for more details.

temperature.name
 name of the column storing temperature information.
Value
The original data frame with additional columns for:

1. index: a running number identifying every row in the data set.
2. dec_time: time in decimal hours (e.g. "22:30" becomes 22.5).
3. time: in 'H:M' format.
4. hour: in 'H' format.
5. minute: in 'M' format.
6. date: in 'Y-m-d' format.
7. temp1: difference between the ith temperature value and the i-1 one.

Author(s)
Pablo Capilla-Lasheras

Examples

```r
# loading example data
data(incubation_rawdata)
new.data <- incRprep (data=incR_rawdata,
date.name= "DATE",
date.format= "%d/%m/%Y %H:%M",
timezone="GMT",
temperature.name="temperature")
head (new.data, 3)
```

Description
This is the core algorithm of incR and classifies time points as 1's or 0's depending on whether or not the incubating individual is considered to be on the eggs. The algorithm uses night variation to daily calibrate itself to temperature variation when the incubating individual is assumed to be on the eggs. A major assumption of this algorithm is that there is a period of time in which temperature can be assumed to be constant or representative of time windows of constant incubation. This time window is defined by two arguments: lower.time and upper.time. The function is optimised to work using a data frame produced by incRprep.

Usage

```
incRscan(data, temp.name, lower.time, upper.time, sensitivity, temp.diff,
temp.diff.threshold, maxNightVariation, env.temp)
```
Arguments

data: data frame for analysis. It must contain four columns named as follows: date, temp1, dec_time and index, where temp1 is the difference between the \(i \)-th and \(i-1 \)-th temperature recordings; dec_time is time in decimal hours; and index is a running number from 1 to \(N \), \(N \) being the total number of observations. \texttt{incRprep} returns a data frame with these variables and the correct names, ready to be passed through \texttt{incRscan}.

\code{temp.name} (character object) name of the column containing temperature data in \code{data}.

\code{lower.time} lower limit of time window for calibration (numeric).

\code{upper.time} upper limit of time window for calibration (numeric).

\code{sensitivity} ratio of reduction in temperature threshold. When nest temperature does not drop close to environmental temperatures, this value can be kept to 1. If nest temperature follows environmental temperature at any point, then adjustment of this value may be required to detect short on/off-bouts at lower nest temperatures (see details).

\code{temp.diff} deprecated. Use \code{temp.diff.threshold}.

\code{temp.diff.threshold} threshold for temperature difference between \code{env.temp} and an observation which triggers the sensitivity parameter.

\code{maxNightVariation} maximum temperature variation between two consecutive points within the calibrating window that is considered normal of this period. If this variation value is surpassed, the calibrating window is discarded and a previous night is used for calibration.

\code{env.temp} name of a column containing environmental temperatures.

Value

The function returns a list with two objects. The first object, named \texttt{incRscan_data}, is the original data frame with an extra column named ‘incR_score’. This variable is formed by 1’s and 0’s, representing whether the incubating individual is inside (1) or outside the nest (0).

The second object, named \texttt{incRscan_threshold}, is a data frame with one day per row. Four columns tell the user the thresholds employed to calculate the ‘incR_score’ column. A fifth column accounts for the ratio between temperature variation in the calibrating window and the variation in temperature between 11am and 3pm for each day morning. The lower this value the more clear the pattern between night and day variation and, therefore, stronger the signal in the data. This value may serve the user as an indication of the signal / noise ratio in the analysed data set.

Details

For further details about the calculation performed by \texttt{incRscan}, consult the package vignettes and the associated publications.

Author(s)

Pablo Capilla-Lasheras
Calculation of temperature average and variance for customised time windows

Description

Calculation of temperature average and variation between two customised time periods per day. Time windows can be defined by the user using the limits argument, defined by bird activity time (using the activity.times parameter) or set according to twilight times if coordinates are provided (coor).

Usage

```r
incRt(data, temp.name, limits = NULL, coor = NULL, activity.times = FALSE, civil.twilight = FALSE, time.zone = NULL, ...)
```

Arguments

data (data frame containing a time-series vector of 1's and 0's (incubation scores), where "1" means "incubating individual inside nest" and "0" means "incubating individual outside the nests". This vector, under the name of incR_score, is provided by incRscan in the first object of the returned list. A column named "date" is needed to refer to daily calculations.

temp.name (character object) name of the column containing temperature data in data.

limits (vector of length 2 giving the time limits for calculations. For example, `c(6,20)` would calculate temperature averages and variances for two time periods, from 6 to 20 and from 20 to 6 of the next day. `civil.twilight` and `activity.times` must be FALSE to allow the use of `limits`.)

See Also

incRprep incRenv

Examples

```r
# incR_procdata is a dataframe processed by incRprep and incRscan and # contains suitable information to run incRscan
data(incR_procdata)

incubation.analysis <- incRscan (data=incR_procdata,
                                 temp.name="temperature",
                                 lower.time=22,
                                 upper.time=3,
                                 sensitivity=0.15,
                                 temp.diff.threshold=5,
                                 maxNightVariation=2,
                                 env.temp="env_temp")

inc.data <- incubation.analysis[[1]]
inc.thresholds <- incubation.analysis[[2]]
```
incRt

coor coordinates for the location where temperature was recorded, formatted as decimal degrees N/S, decimal degrees E/W. When 'civil.twilight' is TRUE, 'coor' allows the user to define sunrise and sunset times based on the crepuscule function (in maptools package).

activity.times TRUE or FALSE. Set as TRUE when time periods for calculation are defined by incRact. Data must contain a column named 'incR_score' for the use of incRact.

civil.twilight TRUE or FALSE. Set as TRUE when time periods for calculation are to be defined by civil twilight times - calculated using crepuscule. If 'civil.twilight = TRUE', 'coor' and 'time.zone' need to be specified.

time.zone time zone for crepuscule dawn and dusk calculations.

Value

a data frame containing temperature means and variance for the defined time window.

Author(s)

Pablo Capilla-Lasheras

See Also

incRprep incRscan incRact crepuscule

Examples

loading example data
data(incR_procdata)

calculation based on chosen times from 6am to 7pm and 7pm to 6am
incRt (data=incR_procdata,
 temp.name="temperature",
 limits=c(6,19),
 coor=NULL,
 civil.twilight=FALSE,
 activity.times=FALSE,
 time.zone=NULL)

calculation based on activity times
incRt (data=incR_procdata,
 temp.name="temperature",
 limits=NULL,
 coor=NULL,
 civil.twilight=FALSE,
 activity.times=TRUE,
 time.zone=NULL,
 time_column="time", # extra argument needed for incRact
 vector.incubation="incR_score") # extra argument needed for incRact
calculation based on civil twilight
incRt (data=incR_procdata,
 temp.name="temperature",
 limits=NULL,
 coor=c(42,0.89),
 civil.twilight=TRUE,
 activity.times=FALSE,
 time.zone="GMT")

incR_envdata
An example data set of environmental temperatures to test the use of link{incRenv}.

Description
A dataset containing environmental temperatures for the study area where the data in incR_rawdata were collected. This raw data set was produced by an iButton device (Maxim Integrated).

Usage
incR_envdata

Format
A data frame with 1570 rows and two variables, representing two days of environmental temperature recordings at two different locations in one study site.

DATE a date-time column. Both elements, date and time, are concatenated in one column.

env_temperature environmental temperature recordings.

Details
use this data set to try out link{incRenv} after the very first application of incRprep using incR_rawdata.

incR_procdata
An example of incubation temperature time-series after the use of incRprep and incRenv.

Description
A dataset containing temperatures, time and date for a blue tit nest. It also includes variables added by incRprep and incRenv. The raw data set incR_rawdata was produced by an iButton device (Maxim) and represents raw data to start the analysis of incubation behaviour.
Usage

incR_procdata

Format

A data frame with 954 rows and 11 variables, representing two days of nest temperatures.

- **DATE** a date-time column. Both elements, date and time, are concatenated in one column.
- **temperature** nest temperature recordings.
- **index** running number from first to last observation.
- **time**, **hour**, **minute**
- **date**
- **dec_time** time in decimal hours.
- **temp1** difference between the \(i\)th and the \(i-1\)th nest temperature recording.
- **env_temp** environmental temperature, calculated per hour average using incRenv.
- **incR_score** Incubation scores (0/1) as calculated by incRscan

Details

see incRprep and incRenv for more details on the variables of this data set and how it was produced.

incR_rawdata An example of incubation temperature time-series

Description

A dataset containing date, time and temperatures for a blue tit nest. This data set was produced by an iButton device (Maxim Integrated) and represents raw data to start the analysis of incubation behaviour.

Usage

incR_rawdata

Format

A data frame with 954 rows and 2 variables, representing three days of nest temperatures.

- **DATE** a date-time column. Both elements, date and time, are concatenated in one column
- **temperature** temperature recordings in Celsius
Index

* datasets
 incR_envdata, 13
 incR_procdata, 13
 incR_rawdata, 14

crepuscule, 12

ggplot2, 7

incR, 2
incR-package (incR), 2
incR_envdata, 13
incR_procdata, 13
incR_rawdata, 13, 14
incRact, 2, 2, 4, 5, 12
incRatt, 2, 3, 5
incRbouts, 2, 4
incRenv, 2, 5, 5, 11, 13, 14
incRPplot, 7, 7
incRprep, 2–8, 8, 9–14
incRscan, 2–8, 9, 10–12, 14
incRt, 2, 11

strptime, 8