Package ‘incR’

March 21, 2018

Type Package

Title Analysis of Incubation Data

Version 1.1.0

Date 2018-03-17

Author Pablo Capilla-Lasheras [aut, cre]

Maintainer Pablo Capilla-Lasheras <pacapilla@gmail.com>

Description Suite of functions to study animal incubation.

At the core of incR
lies an algorithm that allows for the scoring of
incubation behaviour. Additionally, several functions
extract biologically relevant metrics of incubation such as off-bout number
and off-bout duration - for a review of avian incubation studies,
see Nests, Eggs, and Incubation: New ideas about avian reproduction (2015)

License GPL-3

Depends R (>= 3.4.0), base, stats

Imports dplyr, ggplot2, maptools, lubridate, rgeos, utils

Suggests codetools, knitr, rmarkdown

VignetteBuilder knitr

LazyData true

RoxygenNote 6.0.1

NeedsCompilation no

Repository CRAN

Date/Publication 2018-03-21 15:25:24 UTC

R topics documented:

  incR ................................................................. 2
  incRact ............................................................ 2
incR: Analysis of animal incubation

Description

This package is formed by a suite of R functions that help the user to get useful biological information from raw time-series data of incubation temperatures. It is thought to be of interest for the study of uni-parental or intermittent incubating species.

Suggested workflow

Check the package vignettes to find a suggested workflow and calibrate the main function in incR.

incR functions

The current version of incR contains the following functions and three example data sets: incRprep, incRenv, incRscan, incract, incRatt, incRbouts and incRt, along with three example data sets.

incract

Calculation of daily first incubation off-bout and last incubation on-bout

Description

Using a vector of incubation scores, incract calculates onset of activity (first off-bout in the morning), and end of daily activity (last on-bout in the evening) per day. A column for dates, named "date" is needed in the data argument.

Usage

incract(data, time_column, vector.incubation)
Arguments

- **data**: data frame containing a numeric vector of 1's and 0's (incubation scores), where "1" means "incubating individual inside nest" and "0" means "incubating individual outside the nests". This vector, under the name of incr_score is provided by `incrscan` in the first object (`incrscan_data`) of the returned list. A column named "date" is needed to refer to daily calculations.

- **time_column**: (character class) name of the column containing times.

- **vector.incubation**: (character class) name of the vector containing incubation scores. `incrscan` produces this vector named "incR_score".

Value

a data frame containing fist off-bout and last on-bout per day in `data`.

Author(s)

Pablo Capilla-Lasheras

See Also

`incrprep` `incrscan`

Examples

```r
# loading example data
data(incR_procdata)
incRact (data=incR_procdata,
    time_column="time",
    vector.incubation="incR_score")
```
Arguments

data data frame containing a time-series vector of 1’s and 0’s, where “1” means "incubating individual inside nest" and "0" means "incubating individual outside nest”. This vector, under the name of "inc.vector", is provided by `incrscan` in the first object of the returned list. A column named "date" is needed to refer to daily calculations.

vector.incubation name of the column (vector class) storing the information about the presence/absence of the incubating individual in the nest.

Value

Daily percentage of time in nest, returned in a data frame with one day per raw.

See Also

`incrprep` `incrscan` `incract`

Examples

```r
# loading example data
data(incR_procdata)
incratt(data=incR_procdata,
        vector.incubation="incR_score")
```

---

`incRbouts`  
*Calculation of the number of daily on- and off-bouts*

Description

Calculation of number and duration of incubation on- and off-bouts.

Usage

`incRbouts(data, vector.incubation, dec_time, temp, sampling.rate)`

Arguments

- **data**: data frame containing a time-series vector of 1’s and 0’s, where "1" means "incubating individual inside nest" and "0" means "incubating individual outside nest". This vector, under the name of "inc.vector", is provided by `incrscan` in the first object of the returned list. A column named "date" is needed to refer to daily calculations.
- **vector.incubation**: name of the column (vector class) storing the information about the presence/absence of the incubating individual in the nest.
- **dec_time**: (character class) name of the column with decimal time.
incRenv

temp (character class) name of the column with incubation temperatures.
sampling.rate time difference between two consecutive recording points. Effectively, the rate at which data points were recorded (e.g. 1 data point per 50sec). The time units of the returned object will depend on the units of this argument.

Value

This function returns a list with two objects. The first object, named total_bouts, is a list of individual on- and off-bouts, giving information about their start time, duration, start nest temperature and final nest temperature. The second object, day_bouts, provides a summary of on- and off-bouts per day of observation. This second table shows number and mean duration of on- and off-bout per day. Mean times are shown in those time units you specify the argument sampling.rate.

Author(s)

Pablo Capilla-Lasheras

See Also

incRprep incRscan incRact incRatt

Examples

```r
# loading example data
data(incr_procdata)
incrbouts (data=incr_procdata,
vector-incubation="incr_score",
dec_time="dec_time",
temp="temperature",
sampling.rate=240) # sampling rate in seconds.
```

---

incRenv Matching environmental and nest temperatures

Description

This function takes a data frame with recordings of environmental temperature and another with nest temperatures and merges both per unit of time. The user can do this work manually, however, incRenv is thought to automate data preparation (in combination with incrprep) to use incrscan after.

Usage

```r
incRenv(data.nest, data.env, env.temperature.name, env.date.name,
        env.date.format, env.timezone)
```
Arguments

data.nest            data frame containing nest temperature recordings. It must have two compulsory columns 'date' and 'hour' displaying dates and the hour of each observation. These two columns are provided if the user uses incRprep before.
data.env            data frame containing environmental temperatures to be merged with nest temperature records. Please, provide date and time of each observation in one unique column as requested for incRprep.

env.temperature.name name of the column containing temperature recordings in the data.env data frame.
env.date.name       name of the column containing date and time in the data.env data frame.
env.date.format     format of env.date.name. Similar to incRprep.
env.timezone        time zone of the environmental recordings. Similar to incRprep.

Details

This function is thought to be used after incRprep as it uses some of the additional variables created by incRprep.

Value

The original data.nest with an additional column for hour-averaged environmental temperature. This new variable is thought to serve as env_temp in incRscan.

Author(s)

Pablo Capilla-Lasheras

See Also

incRprep incRscan

Examples

data(incR_envdata)  # environmental data
head (incR_envdata)

data(incR_rawdata) # loading nest data
head (incR_rawdata)

# the first step in to format the raw data using incRprep
new.data <- incRprep (data=incR_rawdata,
                       date.name= "DATE",
                       date.format= "%d/%m/%Y %H:%M",
                       timezone="GMT",
                       temperature.name="temperature")

# then use incRenv to merge environmental data
```r
ew.data2 <- incRenv (data.nest = new.data, 
data.env = incR_envdata, 
env.temperature.name = "env_temperature", 
env.date.name = "DATE", 
env.date.format = "%d/%m/%Y %H:%M", 
env.timezone = "GMT")

head (new.data2, 3)
```

---

### Description

After **incRscan** has been used, **incRplot** provides a quick visualisation of the incubation temperature trace with coloured on- and off-bouts. Environmental temperatures can also be added to the plot.

### Usage

```r
incRplot(data, time.var, day.var, inc.temperature.var, 
env.temperature.var = NULL, vector.incubation)
```

### Arguments

- **data**: data table with incubation temperature data
- **time.var**: Character string. Name of the variable with time of the day for temperature data. Please, have time in decimal hours. If **incRprep** has been previously used, "dec_time" can be used.
- **day.var**: Character string. Name of the variable with date for temperature observation. No specific format is needed. If **incRprep** has been previously used, "date" can be used.
- **inc.temperature.var**: Character string. Name of the variable with incubation temperatures.
- **env.temperature.var**: Character string. Name of the variable with environmental temperatures. If no value is provided, a plot with no environmental temperatures is produced.
- **vector.incubation**: name of the binary variable storing information about the presence/absence of the incubating individual in the nest. If **incRscan** has been used, "incR_score" can be used.

### Value

Plot of incubation temperature, on-bouts and off-bouts with (optional) environmental temperatures. The plot is generated using **ggplot2**. The user can customised the appearance of the plot using tools within **ggplot2** (see example).
See Also

incrscan

Examples

# loading example data
data(incR.procdata)
my_plot <- incRplot(data = incR.procdata[complete.cases(incR.procdata$temperature),],
time.var = "dec_time",
day.var = "date",
inc.temperature.var = "temperature",
env.temperature.var = "env_temp",
vector.incubation = "incR_score")

# see your plot
my_plot

# add new labels (ggplot2 required)
my_plot + ggplot2::labs(x = "New X label", y = "New Y label")

incRprep Data preparation for incubation analysis in incR

Description

Preparing incubation time series for further analysis. This function takes a data file containing a
temporal series of temperature recordings and adds some the extra variables needed to use further
functions embedded in the incR package. It simply accommodates a raw data frame, reformatting
date and time columns automatically.

Usage

incRprep(data, date.name, date.format, timezone, temperature.name)

Arguments

data raw data from incubation time series. It must contain a column with date and
time information for each observation (e.g. "2017-05-01 21:01"). The func-
tion is written to handle date and time concatenated in one unique column (see
example below).
date.name name of the date and time column
date.format format for date and time column. It must be a character object as specified in the
function strftime. incRprep assumes that the date and time column contains
date and time, If date and time are in different columns, please, concatenate
them in one column before running the function.
timezone time zone for time calculations. See strftime. documentation for more details.
temperature.name name of the column storing temperature information.
**Value**

The original data frame with additional columns for:

1. index: a running number identifying every row in the data set.
2. dec_time: time in decimal hours (e.g. "22:30" becomes 22.5).
3. time: in 'H:M' format.
4. hour: in 'H' format.
5. minute: in 'M' format.
6. date: in 'Y-m-d' format.
7. temp1: difference between the \(i\)th temperature value and the \(i-1\) one.

**Author(s)**

Pablo Capilla-Lasheras

**Examples**

```r
# loading example data
data(incubation_rawdata)
new.data <- incRprep (data=incR_rawdata,
  date.name = "DATE",
  date.format = "%d/%m/%Y %H:%M",
  timezone="GMT",
  temperature.name="temperature")
head (new.data, 3)
```

**Description**

This is the core algorithm of incR and classifies time points as 1's or 0's depending on whether or not the incubating individual is considered to be on the eggs. The algorithm uses night variation to daily calibrate itself to temperature variation when the incubating individual is assumed to be on the eggs. A major assumption of this algorithm is that there is a period of time in which temperature can be assumed to be constant or representative of time windows of constant incubation. This time window is defined by two arguments: lower.time and upper.time. The function is optimised to work using a data frame produced by incRprep.

**Usage**

```r
incRscan(data, temp.name, lower.time, upper.time, sensitivity, temp.diff, temp.diff.threshold, maxNightVariation, env.temp)
```
Arguments

data | data frame for analysis. It must contain four columns named as follows: date, temp1, dec_time and index, where temp1 is the difference between the ith and i-1th temperature recordings; dec_time is time in decimal hours; and index is a running number from 1 to N, N being the total number of observations. `incRprep` returns a data frame with these variables and the correct names, ready to be passed through `incRscan`.

temp.name | (character object) name of the column containing temperature data in data.
lower.time | lower limit of time window for calibration (numeric).
upper.time | upper limit of time window for calibration (numeric).
sensitivity | ratio of reduction in temperature threshold. When nest temperature does not drop close to environmental temperatures, this value can be kept to 1. If nest temperature follows environmental temperature at any point, then adjustment of this value may be required to detect short on/off-bouts at lower nest temperatures (see details).

temp.diff | deprecated. Use temp.diff.threshold.
temp.diff.threshold | threshold for temperature difference between env.temp and an observation which triggers the sensitivity parameter.
maxNightVariation | maximum temperature variation between two consecutive points within the calibrating window that is considered normal of this period. If this variation value is surpassed, the calibrating window is discarded and a previous night is used for calibration.

env.temp | name of a column containing environmental temperatures.

Value

The function returns a list with two objects. The first object, named `incRscan_data`, is the original data frame with an extra column named ‘incR_score’. This variable is formed by 1’s and 0’s, representing whether the incubating individual is inside (1) or outside the nest (0).

The second object, named `incRscan_threshold`, is a data frame with one day per row. Four columns tell the user the thresholds employed to calculate the ‘incR_score’ column. A fifth column accounts for the ratio between temperature variation in the calibrating window and the variation in temperature between 11am and 3pm for each day morning. The lower this value the more clear the pattern between night and day variation and, therefore, stronger the signal in the data. This value may serve the user as an indication of the signal / noise ratio in the analysed data set.

Details

For further details about the calculation performed by `incRscan`, consult the package vignettes and the associated publications.

Author(s)

Pablo Capilla-Lasheras
incRt

See Also

incRprep incRenv

Examples

# incR_proddata is a dataframe processed by incRprep and incRscan and
# contains suitable information to run incRscan
data(incR_proddata)

incubation.analysis <- incRscan (data=incR_proddata,
   temp.name="temperature",
   lower.time=22,
   upper.time=3,
   sensitivity=0.15,
   temp.diff.threshold=5,
   maxNightVariation=2,
   env.temp="env_temp")

inc.data <- incubation.analysis[[1]]
inc.thresholds <- incubation.analysis[[2]]

Description

Calculation of temperature average and variance between two customised time periods per day.
Time windows can be defined by the user using the limits argument, defined by bird activity
time (using the activity.times parameter) or set according to twilight times if coordinates are
provided (coor).

Usage

incRt(data, temp.name, limits = NULL, coor = NULL, activity.times = FALSE,
civil.twilight = FALSE, time.zone = NULL, ...)

Arguments

data 
data frame containing a time-series vector of 1's and 0's (incubation scores),
where "1" means "incubating individual inside nest" and "0" means "incubating
individual outside the nests". This vector, under the name of incR_score, is
provided by incRscan in the first object of the returned list. A column named
"date" is needed to refer to daily calculations.

temp.name 
(character object) name of the column containing temperature data in data.

limits 
vector of length 2 giving the time limits for calculations. For example, 'c(6,20)'
would calculate temperature averages and variances for two time periods, from
6 to 20 and from 20 to 6 of the next day. 'civil.twilight' and 'activity.times' must
be FALSE to allow the use of 'limits'.

coordinates for the location where temperature was recorded, formatted as decimal degrees N/S, decimal degrees E/W. When 'civil.twilight' is TRUE, 'coor' allows the user to define sunrise and sunset times based on the `crepuscule` function (in `maptools` package).

`activity.times` TRUE or FALSE. Set as TRUE when time periods for calculation are defined by `incRact`. Data must contain a column named 'incR_score' for the use of `incRact`.

`civil.twilight` TRUE or FALSE. Set as TRUE when time periods for calculation are to be defined by civil twilight times - calculated using `crepuscule`. If 'civil.twilight' = TRUE', 'coor' and 'time.zone' need to be specified.

`time.zone` time zone for `crepuscule` dawn and dusk calculations.

... use parameters in `incRact` if `activity.times` = TRUE.

**Value**

a data frame containing temperature means and variance for the defined time window.

**Author(s)**

Pablo Capilla-Lasheras

**See Also**

`incRprep` `incRscan` `incRact` `crepuscule`

**Examples**

# loading example data
```
data(incR_procdata)
```

# calculation based on chosen times from 6am to 7pm and 7pm to 6am
```
incRt (data=incR_procdata,
    temp.name="temperature",
    limits=c(6,19),
    coor=NULL,
    civil.twilight=FALSE,
    activity.times=FALSE,
    time.zone=NULL)
```

# calculation based on activity times
```
incRt (data=incR_procdata,
    temp.name="temperature",
    limits=NULL,
    coor=NULL,
    civil.twilight=FALSE,
    activity.times=TRUE,
    time.zone=NULL,
    time_column="time", # extra argument needed for incRact
    vector.incubation="incR_score") # extra argument needed for incRact
# calculation based on civil twilight

```r
incRt (data = incr_procdata,
       temp.name = "temperature",
       limits = NULL,
       coor = c(42, 0.89),
       civil.twilight = TRUE,
       activity.times = FALSE,
       time.zone = "GMT")
```

---

**incR_envdata**  
*An example data set of environmental temperatures to test the use of*  
[incRenv](#).

---

**Description**

A dataset containing environmental temperatures for the study area where the data in **incR_rawdata** were collected. This raw data set was produced by an iButton device (Maxim Integrated).

**Usage**

```r
incR_envdata
```

**Format**

A data frame with 1570 rows and two variables, representing two days of environmental temperature recordings at two different locations in one study site.

- **DATE**  a date-time column. Both elements, date and time, are concatenated in one column.
- **env_temperature** environmental temperature recordings.

**Details**

use this data set to try out [incRenv](#) after the very first application of **incRprep** using **incR_rawdata**.

---

**incR_procdata**  
*An example of incubation temperature time-series after the use of*  
**incRprep** and **incRenv**.

---

**Description**

A dataset containing temperatures, time and date for a blue tit nest. It also includes variables added by **incRprep** and **incRenv**. The raw data set **incR_rawdata** was produced by an iButton device (Maxim) and represents raw data to start the analysis of incubation behaviour.
Usage

incR_procdta

Format

A data frame with 954 rows and 11 variables, representing two days of nest temperatures.

DATE a date-time column. Both elements, date and time, are concatenated in one column.
temperature nest temperature recordings.
index running number from first to last observation.
time
hour
minute
date
dec_time time in decimal hours.
temp1 difference between the $i$th and the $ith-1$ nest temperature recording.
env_temp environmental temperature, calculated per as hour average using incRenv.
icR_score Incubation scores (0/1) as calculated by incRscan

Details

see incR_prep and incRenv for more details on the variables of this data set and how it was produced.
Index

*Topic datasets
  incr_envdata, 13
  incr_procdata, 13
  incr_rawdata, 14

crepuscule, 12

ggplot2, 7

incr, 2
incr-package (incr), 2
incr_envdata, 13
incr_procdata, 13
incr_rawdata, 13, 14
incract, 2, 2, 4, 5, 12
incratt, 2, 3, 5
incrbouts, 2, 4
incRenviron, 2, 5, 5, 11, 13, 14
incrplot, 7, 7
incRprep, 2–8, 8, 9–14
incrScan, 2–8, 9, 10–12, 14
incrShiny, 2, 11

strptime, 8