Package ‘incidence2’

Type Package

Title Compute, Handle and Plot Incidence of Dated Events

Version 2.2.3

Description Provides functions and classes to compute, handle and visualise incidence from dated events for a defined time interval. Dates can be provided in various standard formats. The class ‘incidence2’ is used to store computed incidence and can be easily manipulated, subsetted, and plotted. This package is part of the RECON (https://www.repidemicsconsortium.org/) toolkit for outbreak analysis (https://www.reconverse.org).

Encoding UTF-8

License MIT + file LICENSE

BugReports https://github.com/reconverse/incidence2/issues

Depends grates (>= 1.0.0), R (>= 3.5.0)

Imports grDevices, data.table, pillar, utils

RoxygenNote 7.2.3

Suggests outbreaks, dplyr, ggplot2, scales, knitr, rmarkdown, rlang, clock, testthat (>= 3.0.0), tibble

VignetteBuilder knitr

Config/testthat/edition 3

LazyData true

NeedsCompilation no

Author Tim Taylor [aut, cre] (https://orcid.org/0000-0002-8587-7113), Thibaut Jombart [ctb]

Maintainer Tim Taylor <tim.taylor@hiddenelephants.co.uk>

Repository CRAN

Date/Publication 2023-12-05 13:30:02 UTC

R topics documented:

- **accessors**
- **as.data.frame.incidence2**
- **as_incidence**
- **complete_dates**
- **covidregionaldataUK**
- **cumulate**
- **incidence**
- **keep**
- **plot.incidence2**
- **print.incidence2**
- **regroup**
- **summary.incidence2**
- **vibrant**

Index

<table>
<thead>
<tr>
<th>accessor</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>accessors</td>
<td>2</td>
</tr>
<tr>
<td>as.data.frame.incidence2</td>
<td>4</td>
</tr>
<tr>
<td>as_incidence</td>
<td>5</td>
</tr>
<tr>
<td>complete_dates</td>
<td>6</td>
</tr>
<tr>
<td>covidregionaldataUK</td>
<td>7</td>
</tr>
<tr>
<td>cumulate</td>
<td>8</td>
</tr>
<tr>
<td>incidence</td>
<td>8</td>
</tr>
<tr>
<td>keep</td>
<td>11</td>
</tr>
<tr>
<td>plot.incidence2</td>
<td>12</td>
</tr>
<tr>
<td>print.incidence2</td>
<td>14</td>
</tr>
<tr>
<td>regroup</td>
<td>15</td>
</tr>
<tr>
<td>summary.incidence2</td>
<td>16</td>
</tr>
<tr>
<td>vibrant</td>
<td>17</td>
</tr>
</tbody>
</table>

accessors

Access various elements of an incidence object

Description

Access various elements of an incidence object

Usage

```r
get_date_index_name(x, ...)

## Default S3 method:
get_date_index_name(x, ...)

## S3 method for class 'incidence2'
get_date_index_name(x, ...)

get_dates_name(x, ...)

get_count_variable_name(x, ...)

## Default S3 method:
get_count_variable_name(x, ...)

## S3 method for class 'incidence2'
get_count_variable_name(x, ...)

get_count_value_name(x, ...)

## Default S3 method:
```
get_count_value_name(x, ...)

S3 method for class 'incidence2'
get_count_value_name(x, ...)

group_names(x, ...)

Default S3 method:
group_names(x, ...)

S3 method for class 'incidence2'
group_names(x, ...)

date_index(x, ...)

Default S3 method:
date_index(x, ...)

S3 method for class 'incidence2'
date_index(x, ...)

dates(x, ...)

count_variable(x, ...)

Default S3 method:
count_variable(x, ...)

S3 method for class 'incidence2'
count_variable(x, ...)

count_value(x, ...)

Default S3 method:
count_value(x, ...)

S3 method for class 'incidence2'
count_value(x, ...)

groups(x, ...)

Default S3 method:
groups(x, ...)

S3 method for class 'incidence2'
groups(x, ...)

Arguments

- **x**: An R object.
- **...**: Not currently used.

Value

- `get_date_index_name()`: The name of the date_index variable of x.
- `get_dates_name()`: Alias for `get_date_index_name()`.
- `get_count_variable_name()`: The name of the count variable of x.
- `get_count_value_name()`: The name of the count value of x.
- `get_group_names()`: The name(s) of the group variable(s) of x.
- `get_date_index()`: The date_index variable of x.
- `get_dates()`: Alias for `get_date_index()`.
- `get_count_variable()`: The count variable of x.
- `get_count_value()`: The count value of x.
- `get_groups()`: List of the group variable(s) of x.

Examples

```r
if (requireNamespace("outbreaks", quietly = TRUE)) {
  data(ebola_sim_clean, package = "outbreaks")
  dat <- ebola_sim_clean$linelist
  i <- incidence(dat, date_index = "date_of_onset",
                 groups = c("gender", "hospital"))

  get_count_variable_name(i)
  get_group_names(i)
  get_dates_name(i)
}
```

Description

Convert incident object to a data frame

Usage

```r
## S3 method for class 'incidence2'
as.data.frame(x, row.names, optional, ...)
```
Arguments

x <incidence2> object.
row.names Not used.
optional Not used.
...
Not used.

Examples

dat <- data.frame(
 dates = Sys.Date() + 1:100,
 names = rep(c("Jo", "John"), 5)
)
dat <- incidence(dat, date_index = "dates", groups = "names")
as.data.frame(dat)

Description

Generic for coercion to an <incidence2> object.

Usage

as_incidence(x, ...)

Default S3 method:
as_incidence(x, ...)

S3 method for class 'incidence2'
as_incidence(x, ...)

Arguments

x An R object.
...
Additional arguments to be passed to or from other methods.

Value

An <incidence2> object.
complete_dates

Complete dates for all group combinations

Description

This function ensures that an incidence object has the same range of dates for each grouping. By default missing counts will be filled with 0L.

Usage

```r
complete_dates(x, expand = TRUE, fill = 0L, by = 1L, allow_POSIXct = FALSE)
```

Arguments

- `x` <incidence2> object.
- `expand` [logical]
 - Should a range of dates from the minimum to maximum value of the date index also be created.
 - If `expand` is TRUE (default) then complete_dates will attempt to use `function(x) seq(min(x), max(x), by = 1)` to generate a complete sequence of dates.
- `fill` [numeric]
 - The value to replace missing counts by.
 - Defaults to 0L.
- `by` [Defunct]
 - Ignored.
- `allow_POSIXct` [logical]
 - Should this function work with POSIXct dates?
 - Defaults to FALSE.

Value

An <incidence2> object.

Examples

```r
x <- data.frame(
  dates = Sys.Date() + c(1,3,4),
  groups = c("grp1", "grp2", "grp1"),
  counts = 1:3
)

i <- incidence(x, date_index = "dates", groups = "groups", counts = "counts")
complete_dates(i)
```
Regional data for COVID-19 cases in the UK

Description

A dataset containing the daily time-series of cases, tests, hospitalisations, and deaths for UK.

Usage

covidregionaldataUK

Format

A data frame with 6370 rows and 26 variables:

- **date** the date that the counts were reported (YYYY-MM-DD)
- **region** the region name
- **region_code** the region code
- **cases_new** new reported cases for that day
- **cases_total** total reported cases up to and including that day
- **deaths_new** new reported deaths for that day
- **deaths_total** total reported deaths up to and including that day
- **recovered_new** new reported recoveries for that day
- **recovered_total** total reported recoveries up to and including that day
- **hosp_new** new reported hospitalisations for that day
- **hosp_total** total reported hospitalisations up to and including that day (note this is cumulative total of new reported, not total currently in hospital).
- **tested_new** tests for that day
- **tested_total** total tests completed up to and including that day

Details

Extracted using the covidregionaldata package on 2021-06-03.

Source

https://CRAN.R-project.org/package=covidregionaldata
cumulate

Description

cumulate() computes the cumulative incidence over time for an <incidence2> object.

Usage

cumulate(x)

Arguments

 x [incidence2] object.

Examples

dat <- data.frame(
 dates = as.integer(c(0,1,2,2,3,5,7)),
 groups = factor(c(1, 2, 3, 3, 3, 3, 1))
)
i <- incidence(dat, date_index = "dates", groups = "groups")
cumulate(i)

incidence

Description

incidence() calculates event the incidence of different events across specified time periods and groupings.

Usage

incidence(
 x,
 date_index,
 groups = NULL,
 counts = NULL,
 count_names_to = "count_variable",
 count_values_to = "count",
 date_names_to = "date_index",
 rm_na_dates = TRUE,
Arguments

x
A data frame object representing a linelist or pre-aggregated dataset.

date_index
[character]
The time index(es) of the given data.
This should be the name(s) corresponding to the desired date column(s) in x.
A name vector can be used for convenient relabelling of the resultant output.
Multiple indices only make sense when x is a linelist.

groups
[character]
An optional vector giving the names of the groups of observations for which
incidence should be grouped.

counts
[character]
The count variables of the given data. If NULL (default) the data is taken to be
a linelist of individual observations.

count_names_to
[character]
The column to create which will store the counts column names provided that
counts is not NULL.

count_values_to
[character]
The name of the column to store the resultant count values in.

date_names_to
[character]
The name of the column to store the date variables in.

rm_na_dates
[logical]
Should NA dates be removed prior to aggregation?

interval
An optional scalar integer or string indicating the (fixed) size of the desired time
interval you wish to use for computing the incidence.
Defaults to NULL in which case the date_index columns are left unchanged.
Numeric values are coerced to integer and treated as a number of days to group.
Text strings can be one of:

* day or daily
* week(s) or weekly
* epiweek(s)
* isoweek(s)
* month(s) or monthly
* yearmonth(s)
* quarter(s) or quarterly
* yearquarter(s)
* year(s) or yearly

More details can be found in the "Interval specification" section.
offset Only applicable when interval is not NULL.

An optional scalar integer or date indicating the value you wish to start counting periods from relative to the Unix Epoch:

- Default value of NULL corresponds to 0L.
- For other integer values this is stored scaled by n (offset <- as.integer(offset) %% n).
- For date values this is first converted to an integer offset (offset <- floor(as.numeric(offset))) and then scaled via n as above.

Not currently used.

Details

<incidence2> objects are a sub class of data frame with some additional invariants. That is, an <incidence2> object must:

- have one column representing the date index (this does not need to be a date object but must have an inherent ordering over time);
- have one column representing the count variable (i.e. what is being counted) and one variable representing the associated count;
- have zero or more columns representing groups;
- not have duplicated rows with regards to the date and group variables.

Value

An object of class <incidence2, data.frame>.

Interval specification

Where interval is specified, incidence(), predominantly uses the grates package to generate appropriate date groupings. The grouping used depends on the value of interval. This can be specified as either an integer value or a string corresponding to one of the classes:

- integer values: <grates_period> object, grouped by the specified number of days.
- day, daily: <Date> objects.
- week(s), weekly, isoweek: <grates_isoweek> objects.
- epiweek(s): <grates_epiweek> objects.
- month(s), monthly, yearmonth: <grates_yearmonth> objects.
- quarter(s), quarterly, yearquarter: <grates_yearquarter> objects.
- year(s) and yearly: <grates_year> objects.

For "day" or "daily" interval, we provide a thin wrapper around as.Date() that ensures the underlying data are whole numbers and that time zones are respected. Note that additional arguments are not forwarded to as.Date() so for greater flexibility users are advised to modifying your input prior to calling incidence().

See Also

browseVignettes("grates") for more details on the grate object classes.
Examples

```r
if (requireNamespace("outbreaks", quietly = TRUE)) {
  data(ebola_sim_clean, package = "outbreaks")
  dat <- ebola_sim_clean$linelist
  incidence(dat, "date_of_onset")
  incidence(dat, "date_of_onset", groups = c("gender", "hospital"))
}
```

keep first, last and peak occurrences

Description

`keep_first()` and `keep_last()` keep the first and last n rows to occur for each grouping when in ascending date order. `keep_peaks()` keeps the rows with the maximum count value for each group.

Usage

```r
keep_first(x, n, complete_dates = TRUE, ...)
keep_last(x, n, complete_dates = TRUE, ...)
keep_peaks(x, complete_dates = TRUE, first_only = FALSE, ...)
```

Arguments

- `x <incidence2>` object.
- `n [integer]` Number of entries to keep. double vectors will be converted via `as.integer(n)`.
- `complete_dates [bool]` Should `complete_dates()` be called on the data prior to keeping the first entries. Defaults to TRUE.
- `...` Other arguments passed to `complete_dates()`.
- `first_only [bool]` Should only the first peak (by date) be kept. Defaults to TRUE.

Value

Incidence object with the chosen entries.
Examples

```r
if (requireNamespace("outbreaks", quietly = TRUE)) {
    data(ebola_sim_clean, package = "outbreaks")
    dat <- ebola_sim_clean$linelist
    inci <- incidence(dat, "date_of_onset")
    keep_first(inci, 3)
    keep_last(inci, 3)
}
```

plot.incidence2

Plot an incidence object

Description

`plot()` can be used to provide a bar plot of an incidence object. Due to the complexities with automating plotting it is somewhat experimental in nature and it may be better to use ggplot2 directly.

Usage

```r
## S3 method for class 'incidence2'
plot(
    x,
    y,
    width = 1,
    colour_palette = vibrant,
    border_colour = NA,
    na_colour = "grey",
    alpha = 0.7,
    fill = NULL,
    legend = c("right", "left", "bottom", "top", "none"),
    title = NULL,
    angle = 0,
    size = NULL,
    nrow = NULL,
    n_breaks = 6L,
    show_cases = FALSE,
    ...
)
```

Arguments

- `x` <incidence2> object.
plot.incidence2

y
Not used.
Required for compatibility with the plot() generic.

width
[numeric]
Value between 0 and 1 indicating the relative size of the bars to the interval.
Default 1.

colour_palette
[function]
The color palette to be used for the different count variables.
Defaults to vibrant (see ?palettes).

border_colour
[character]
The color to be used for the borders of the bars.
Use NA (default) for invisible borders.

na_colour
[character]
The colour to plot NA values in graphs.
Defaults to grey.

alpha
[numeric]
The alpha level for color transparency, with 1 being fully opaque and 0 fully transparent.
Defaults to 0.7.

fill
[character]
Which variable to colour plots by.
Must be a group or count variable and will mean that variable is not used for facetting.
If NULL no distinction if made for plot colours.

legend
[character]
Position of legend in plot.
Only applied if fill is not NULL.
One of "right" (default), "left", "bottom", "top" or "none".

title
[character]
Optional title for the graph.

angle
[numeric]
Rotation angle for text.

size
[numeric]
text size in pts.

nrow
[integer]
Number of rows used for facetting if there are group variables present and just one count in the incidence object.
Numeric values are coerced to integer via as.integer().

n_breaks
[integer]
Approximate number of breaks calculated using scales::breaks_pretty.
Numeric values are coerced to integer via as.integer().
Default 6L.
show_cases [logical]

if TRUE, then each observation will be shown individually in a square format. Normally only used for outbreaks with a small number of cases. Defaults to FALSE.

... Not currently used.

Details

- Faceting will occur automatically if either grouping variables or multiple counts are present.
- If there are multiple count variables, each count will occupy a different row of the resulting plot.
- Utilises ggplot2 so this must be installed to use.

Value

- A `ggplot2::ggplot()` object.

Examples

```r
if (requireNamespace("outbreaks", quietly = TRUE) && requireNamespace("ggplot2", quietly = TRUE)) {
  withAutoprint({
    data(ebola_sim_clean, package = "outbreaks")
    dat <- ebola_sim_clean$linelist
    inci <- incidence(dat, date_index = "date_of_onset", groups = "hospital")
    plot(inci, angle = 45)
    inci2 <- regroup(inci)
    plot(inci2)
  })
}
```

print.incidence2

Print an incidence object.

Description

Printing of <incidence2> objects is handled via the pillar package.

Usage

```r
## S3 method for class 'incidence2'
print(x, ...)
```
Arguments

x <incidence2> object.

... Additional arguments passed through to pillar::tbl_format_setup().

Examples

```r
if (requireNamespace("outbreaks", quietly = TRUE)) {
  data(ebola_sim_clean, package = "outbreaks")
  dat <- ebola_sim_clean$linelist
  (out <- incidence(dat, "date_of_onset"))
  # use 'n' to print more lines
  print(out, n = 20L)
}
```

regroup
Regroup 'incidence' objects

Description

This function regroups an <incidence2> object across the specified groups. The resulting <incidence2> object will contains counts summed over the groups present in the input.

Usage

```r
regroup(x, groups = NULL)
```

Arguments

x <incidence2> object.

groups [character]
 The groups to sum over.
 If NULL (default) then the function returns the corresponding object with no groupings.

Examples

```r
if (requireNamespace("outbreaks", quietly = TRUE)) {
  data(ebola_sim_clean, package = "outbreaks")
  dat <- ebola_sim_clean$linelist
  i <- incidence(
    dat,
```
Summary of an incidence object

Description

Summary of an incidence object

Usage

S3 method for class 'incidence2'
summary(object, ...)

Arguments

object An 'incidence' object.
... Not used.

Value

object (invisibly).

Examples

data(ebola_sim_clean, package = "outbreaks")
dat <- ebola_sim_clean$linelist
inci <- incidence(dat, "date_of_onset", groups = c("gender", "hospital"))
summary(inci)
vibrant

vibrant
Color palettes used in incidence

Description

These functions are color palettes used in incidence. The palettes come from https://personal.sron.nl/~pault/#sec:qualitative and exclude grey, which is reserved for missing data.

Usage

vibrant(n)
muted(n)

Arguments

n
[integer]
Number of colours.
double vectors will be converted via as.integer(n).

Examples

vibrant(5)
muted(10)
Index

* datasets
 - covidregionaldataUK, 7
 - <Date>, 10
 - <grates_epiweek>, 10
 - <grates_isoweek>, 10
 - <grates_period>, 10
 - <grates_year>, 10
 - <grates_yearmonth>, 10
 - <grates_yearquarter>, 10

 - accessors, 2
 - as.data.frame.incidence2, 4
 - as.incidence, 5
 - complete_dates, 6
 - covidregionaldataUK, 7
 - cumulate, 8

 - get_count_value (accessors), 2
 - get_count_value_name (accessors), 2
 - get_count_variable (accessors), 2
 - get_count_variable_name (accessors), 2
 - get_date_index (accessors), 2
 - get_date_index_name (accessors), 2
 - get_dates (accessors), 2
 - get_dates_name (accessors), 2
 - get_group_names (accessors), 2
 - get_groups (accessors), 2

 - incidence, 8

 - keep, 11
 - keep_first (keep), 11
 - keep_last (keep), 11
 - keep_peaks (keep), 11

 - muted (vibrant), 17

 - palettes (vibrant), 17
 - plot.incidence2, 12
 - print.incidence2, 14

 - regroup, 15

 - summary.incidence2, 16

 - vibrant, 17