Package ‘incidental’

October 13, 2022

Title Implements Empirical Bayes Incidence Curves
Version 0.1
Description Make empirical Bayes incidence curves from reported case data using a specified delay distribution.
Depends R (>= 3.5.0)
License MIT + file LICENSE
LazyData true
RoxygenNote 7.1.1
Imports ggplot2, MASS, matrixStats, numDeriv, dlnm, stats, utils
Suggests knitr, rmarkdown, testthat
VignetteBuilder knitr
Encoding UTF-8
NeedsCompilation no
Author Andrew Miller [aut],
 Lauren Hannah [aut, cre],
 Nicholas Foti [aut],
 Joseph Futoma [aut],
 Apple, Inc. [cph]
Maintainer Lauren Hannah <lauren_hannah@apple.com>
Repository CRAN
Date/Publication 2020-09-16 09:50:03 UTC

R topics documented:
compute_expected_cases .. 2
compute_log_incidence ... 3
covid_delay_dist ... 3
covid_new_york_city ... 4
data_check .. 5
data_processing ... 5
diff_trans ... 6
compute_expected_cases

Description

This function computes expected cases given incidence curve parameters and a delay distribution.

Usage

compute_expected_cases(beta, Q, lnPmat, Tobs)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>beta</td>
<td>parameter vector of num_params</td>
</tr>
<tr>
<td>Q</td>
<td>spline basis matrix, of size Tmod x num_params</td>
</tr>
<tr>
<td>lnPmat</td>
<td>matrix size Tobs x Tobs, log of make_likelihood_matrix</td>
</tr>
<tr>
<td>Tobs</td>
<td>maximum observed time point</td>
</tr>
</tbody>
</table>
compute_log_incidence

Value

A Tobs-length vector that models expected cases

Description

This function computes log likelihood of incidence model given parameters and observations.

Usage

compute_log_incidence(beta, Q, Tobs)

Arguments

beta parameter vector of num_params
Q spline basis matrix, of size Tmod x num_params
Tobs maximum observed time point

Value

I Tobs-length vector that models log incidence curve

covid_delay_dist Delay distribution from COVID-19 pandemic.

Description

Daily case, hospitalization, and death proportions.

Usage

covid_delay_dist

Format

A data frame with 61 entries and 4 columns.

days number of days since infection
case proportion of cases confirmed by a test that are recorded on that day
hospitalization proportion of cases that become hospitalized that are hospitalized on that day
dead proportion of cases that result in death that die on that day
covid_new_york_city

Source

Time from symptoms to recorded cases: Case line data from Florida through 2020-07-14 with same day waits removed. https://open-fdothub.arcgis.com/datasets/florida-covid19-case-line-data.

Description

Daily case, hospitalization, and death proportions by borough through 2020-06-30.

Usage

covid_new_york_city

Format

A data frame with 615 entries and 5 columns.

date record date
borough record borough: Brooklyn, Bronx, Manhattan, Queens, and Staten Island
case number of recorded cases
hospitalization number of new hospital admissions
death number of recorded deaths

Source

data_check

Input data check

Description

Check input data for:

- minimum length of reported
- integer for reported
- positivity for delay_dist and reported
- sums to 1 for delay_dist

Throw an error if any conditions are violated.

Usage

```
data_check(reported, delay_dist)
```

Arguments

- **reported** An integer vector of reported cases.
- **delay_dist** A positive vector that sums to one, which describes the delay distribution.

data_processing

Data processing wrapper

Description

Does basic checks for reported data and delay distribution, front pads, and makes AR extrapolation.

Usage

```
data_processing(
    reported,
    delay_dist,
    num_ar_steps = 10,
    num_ar_samps = 100,
    seed = 1,
    linear_tail = 14,
    front_pad_size = 10,
    extrapolation_prior_precision = 2
)
```
Arguments

- **reported**: An integer vector of reported cases.
- **delay_dist**: A positive vector that sums to one, which describes the delay distribution.
- **num_ar_steps**: An integer number of AR steps after last observation.
- **num_ar_samps**: An integer number of AR samples.
- **seed**: Seed for RNG.
- **linear_tail**: An integer number of days used to fit linear model on tail to be used as a mean for AR extrapolation.
- **front_pad_size**: An integer for initial number of 0's before first observation.
- **extrapolation_prior_precision**: A positive scalar for extrapolation slope shrinkage prior precision.

Value

A list with elements:

- extrap = a matrix of size (num_ar_samps x n + num_ar_steps + front_pad_size)
- original = a vector of logicals for whether in original time series range

diff_trans

Transpose of the 1st difference operator

Description

This function computes a transpose of the 1st difference operator.

Usage

diff_trans(a)

Arguments

a

Value

The transpose of the first difference operator
Fit incidence curve to reported data

Description

This is a function that fits an incidence curve to a set of reported cases and delay distribution using an empirical Bayes estimation method, which fits parameters for a spline basis. All hyper parameter tuning and data processing are done within this function.

Usage

```r
fit_incidence(
  reported,
  delay_dist,
  dof_grid = seq(6, 20, 2),
  dof_method = "aic",
  lam_grid = 10^(seq(-1, -8, length.out = 20)),
  lam_method = "val",
  percent_thresh = 2,
  regularization_order = 2,
  num_ar_steps = 10,
  num_ar_samps = 100,
  linear_tail = 14,
  front_pad_size = 10,
  extrapolation_prior_precision = 10,
  frac_train = 0.75,
  fisher_approx_cov = TRUE,
  end_pad_size = 50,
  num_samps_per_ar = 10,
  val_restarts = 2,
  seed = 1
)
```

Arguments

- **reported**: An integer vector of reported cases.
- **delay_dist**: A positive vector that sums to one, which describes the delay distribution.
- **dof_grid**: An integer vector of degrees of freedom for the spline basis.
- **dof_method**: Metric to choose "best" spline degrees of freedom: 'aic': Akaike information criterion, 'bic': Bayesian information criterion, 'val': validation likelihood.
- **lam_grid**: A vector of regularization strengths to scan.
- **lam_method**: Metric to choose "best" regularization strength lambda: 'aic': Akaike information criterion, 'bic': Bayesian information criterion, 'val': validation likelihood.
- **percent_thresh**: If using validation likelihood to select best, the largest (strongest) lambda that is within 'percent_thresh' of the highest validation lambda will be selected. Default is 2. Must be greater than 0.
regularization_order
 An integer (typically 0, 1, 2), indicating differencing order for L2 regularization of spline parameters. Default is 2 for second derivative penalty.

num_ar_steps
 An integer number of AR steps after last observation.

num_ar_samps
 An integer number of AR samples.

linear_tail
 An integer number of days used to fit linear model on tail to be used as a mean for AR extrapolation.

front_pad_size
 An integer for initial number of 0’s before first observation.

eextrapolation_prior_precision
 A positive scalar for extrapolation slope shrinkage prior precision.

frac_train
 A numeric between 0 and 1 for fraction of data used to train lambda validation.

fisher_approx_cov
 A flag to use either the Fisher Information (TRUE) or the Hessian (FALSE) to approx posterior covariance over parameters.

end_pad_size
 An integer number of steps the spline is defined beyond the final observation.

num_samps_per_ar
 An integer for the number of Laplace samples per AR fit.

val_restarts
 An integer for the number of times to refit hyperparameters if 'val' is used for either. Set to 1 for faster but more unstable fits.

seed
 Seed for RNG.

Value

A list with the following entries:

- Isamps – sample of the incidence curve from a Laplace approximation per AR sample;
- Ihat – MAP incidence curve estimate;
- Chat – expected cases given MAP incidence curve estimate;
- beta_hats – matrix of beta’s per AR sample;
- best_dof – best degrees of freedom from tuning;
- best_lambda – best regularization parameter from tuning; and
- reported – a copy of reported values used for fitting.

Examples

```r
indiana_model <- fit_incidence(
    reported = spanish_flu$Indiana,
    delay_dist = spanish_flu_delay_dist$proportion)
```
front_zero_pad

Pad reported data with zeros in front

Description

Add zeros in front of reported data avoid infections from before first reported date all being placed on first reported date.

Usage

`front_zero_pad(reported, size)`

Arguments

- `reported` An integer vector of reported cases
- `size` An integer size of zero-padding

Value

An integer vector of cases with size 0’s in front

incidence_to_df

Export incidence model to data frame

Description

Export the output of `fit_incidence` to a data frame with an optional addition of a time index.

Usage

`incidence_to_df(x, times = NULL, low_quantile = 0.05, high_quantile = 0.95)`

Arguments

- `x` An “incidence_spline_model” output from `fit_incidence`.
- `times` An optional vector of time indices.
- `low_quantile` A scalar that specifies the low quantile value for the output CI.
- `high_quantile` A scalar that specifies the high quantile value for the output CI.
A data frame with the following entries:

- Time – a time index; if ‘ts’ is ‘NULL’ it is the observation number;
- Reported – the value of ‘reported’;
- Ihat – MAP incidence curve estimate;
- Chat – expected cases given MAP incidence curve estimate;
- LowCI – lower pointwise credible interval bands around the incidence curve; and
- HighCI – higher pointwise credible interval bands around the incidence curve.

Examples

```r
indiana_model <- fit_incidence(
  reported = spanish_flu$Indiana,
  delay_dist = spanish_flu_delay_dist$proportion)
indiana_df <- incidence_to_df(indiana_model, times = spanish_flu$Date)
```

init_params
Initialize spline parameters (beta)

Description

Initialize spline parameters (beta) using a standard Gaussian distribution.

Usage

```
init_params(num_params)
```

Arguments

- **num_params**
 Integer size of desired parameter vector

Value

- vector of size num_params
make_ar_extrap_samps

Make AR samples for extrapolation past end point

Description

Make auto-regressive (AR) samples for extrapolation past end point to help with right-censoring problems.

Usage

```r
make_ar_extrap_samps(
    reported,
    num_ar_steps = 10,
    num_ar_samps = 50,
    seed = 1,
    linear_tail = 14,
    extrapolation_prior_precision = 2
)
```

Arguments

- `reported`: An integer vector of reported cases.
- `num_ar_steps`: An integer number of AR steps after last observation.
- `num_ar_samps`: An integer number of AR samples.
- `seed`: Seed for RNG.
- `linear_tail`: An integer number of days used to fit linear model on tail to be used as a mean for AR extrapolation.
- `extrapolation_prior_precision`: A positive scalar for extrapolation slope shrinkage prior precision.

Value

A matrix of size (num_ar_samps x n + num_ar_steps)

make_likelihood_matrix

Make delay likelihood matrix

Description

This function creates a matrix such that \(P(t, s) = P(C = t | I = s) = \theta_t - s \) for \(s \leq t \) and 0 otherwise.

Usage

```r
make_likelihood_matrix(delay_dist)
```
marg_loglike_poisson

Arguments

- `delay_dist`
 A positive vector that sums to one, which describes the delay distribution.

Value

- A matrix of size `n x n`

make_spline_basis
Create spline basis matrix

Description

This function creates basis matrix for spline model using cubic splines.

Usage

- `make_spline_basis(dof, tgrid)`

Arguments

- `dof`
 An integer degrees of freedom.

- `tgrid`
 A grid of time values.

Value

- A matrix of cubic spline basis values with ‘length(tgrid)’ x ‘dof’ entries.

marg_loglike_poisson
Marginal log likelihood
This function computes the marginal probability of `Pr(reported \ beta)`. Note that `lnPmat` must be zero padded enough (or censored) to match the length of reported cases vector.

Description

Marginal log likelihood This function computes the marginal probability of `Pr(reported \ beta)`. Note that `lnPmat` must be zero padded enough (or censored) to match the length of reported cases vector.

Usage

- `marg_loglike_poisson(beta, reported, Q, lnPmat)`
marg_loglike_poisson_fisher

Arguments

- `beta`: spline parameter vector length `num_params`.
- `reported`: An integer vector of reported cases.
- `Q`: spline basis matrix `Tmod x num_params`.
- `lnPmat`: matrix size `Tobs x Tobs`, log of `make_likelihood_matrix`.

Value

A scalar log likelihood value.

marg_loglike_poisson_fisher

Marginal log likelihood Fisher information matrix

Description

This function computes the Fisher information matrix log likelihood term with respect to `beta`.

Usage

```
marg_loglike_poisson_fisher(beta, reported, Q, lnPmat)
```

Arguments

- `beta`: A spline parameter vector length `num_params`.
- `reported`: An integer vector of reported cases.
- `Q`: A spline basis matrix `Tmod x num_params`.
- `lnPmat`: A matrix size `Tobs x Tobs`, log of `make_likelihood_matrix`.

Value

A numeric vector, gradient of log likelihood value with respect to `beta`.
marg_loglike_poisson_grad

Marginal log likelihood gradient

Description

This function computes the gradient of the log likelihood term with respect to beta.

Usage

```r
marg_loglike_poisson_grad(beta, reported, Q, lnPmat)
```

Arguments

- `beta`: spline parameter vector length `num_params`
- `reported`: An integer vector of reported cases.
- `Q`: spline basis matrix `Tmod x num_params`
- `lnPmat`: matrix size `Tobs x Tobs`, log of `make_likelihood_matrix`

Value

A numeric vector, gradient of log likelihood value with respect to beta.

plot.incidence_spline_model

Plot model from fit_incidence

Description

Plot time, reported cases, incidence curve with credible interval, and implied case curve.

Usage

```r
## S3 method for class 'incidence_spline_model'
plot(x, ...)
```

Arguments

- `x`: An "incidence_spline_model" output from `fit_incidence`.
- `...`: Other parameters that can be included:
 - `times`: an optional vector of time indices.
 - `plot_Chat`: a logical for whether Chat should be plotted.
 - `plot_reported`: a logical for whether reported cases should be plotted.
 - `plot_CI`: a logical for whether CI should be plotted.
Examples

```r
indiana_model <- fit_incidence(
  reported = spanish_flu$Indiana,
  delay_dist = spanish_flu_delay_dist$proportion)
plot(indiana_model, times = spanish_flu$Date)
```

poisson_objective
Poisson objective function

Description

This function computes Poisson objective function including regularizer.

Usage

```r
poisson_objective(beta, lam, reported, Q, lnPmat, regularization_order)
```

Arguments

- `beta`
spline parameter vector length num_params
- `lam`
positive scalar regularization strength
- `reported`
An integer vector of reported cases.
- `Q`
spline basis matrix Tmod x num_params
- `lnPmat`
matrix size Tobs x Tobs, log of make_likelihood_matrix
- `regularization_order`
An integer (typically 0, 1, 2), indicating differencing order for L2 regularization of spline parameters. Default is 2 for second derivative penalty.

Value

scalar objective function value
poisson_objective_grad

Poisson objective function gradient

Description

This function computes the Poisson objective function (including regularizer) gradient.

Usage

```r
poisson_objective_grad(beta, lam, reported, Q, lnPmat, regularization_order)
```

Arguments

- `beta`: spline parameter vector length num_params
- `lam`: positive scalar regularization strength
- `reported`: An integer vector of reported cases.
- `Q`: spline basis matrix Tmod x num_params
- `lnPmat`: matrix size Tobs x Tobs, log of make_likelihood_matrix
- `regularization_order`: An integer (typically 0, 1, 2), indicating differencing order for L2 regularization of spline parameters. Default is 2 for second derivative penalty.

Value

scalar objective function value

table

poisson_objective_post_cov_approx

Compute Fisher information matrix for Poisson objective

Description

This function computes the Fisher information matrix for a regularized Poisson objective function.

Usage

```r
poisson_objective_post_cov_approx(
    beta,
    lam,
    reported,
    Q,
    lnPmat,
    regularization_order
)
```
Arguments

beta A vector of spline parameters.
lam A regularization penalty parameter.
reported A vector of reported values.
Q A spline basis matrix.
lnPmat A matrix size Tobs x Tobs, log of make_likelihood_matrix.
regularization_order
An integer that specifies the regularization order.

Value

Fisher information matrix of a regularized Poisson objective function.

Description

This function computes regularization penalty term based on the betas and a difference.

Usage

regfun(beta, regularization_order = 2)

Arguments

beta A spline parameter vector length num_params.
regularization_order
An integer (typically 0, 1, 2), indicating differencing order for L2 regularization of spline parameters. Default is 2 for second derivative penalty.

Value

A scalar regularization value.
regfun_grad

\textit{Beta regularization function gradient}

\subsubsection{Description}
This function computes regularization penalty term gradient based on the betas and difference order.

\subsubsection{Usage}
\begin{verbatim}
regfun_grad(beta, regularization_order = 2)
\end{verbatim}

\subsubsection{Arguments}
- \textbf{beta}: spline parameter vector length \texttt{num_params}
- \textbf{regularization_order}: An integer (typically 0, 1, 2), indicating differencing order for L2 regularization of spline parameters. Default is 2 for second derivative penalty.

\subsubsection{Value}
scalar regularization value

regfun_hess

\textit{Beta regularization function Hessian}

\subsubsection{Description}
This function computes regularization penalty term Hessian based on the betas and differencing order.

\subsubsection{Usage}
\begin{verbatim}
regfun_hess(beta, regularization_order = 2)
\end{verbatim}

\subsubsection{Arguments}
- \textbf{beta}: spline parameter vector length \texttt{num_params}
- \textbf{regularization_order}: An integer (typically 0, 1, 2), indicating differencing order for L2 regularization of spline parameters. Default is 2 for second derivative penalty.

\subsubsection{Value}
scalar regularization value
sample_laplace_log_incidence_poisson

Generate Laplace samples of incidence

Description

This function generates Laplace samples of posterior distribution for a vector of reported incidence.

Usage

```r
sample_laplace_log_incidence_poisson(
  beta_hat,
  beta_cov,
  reported,
  Q,
  num_samps_per_ar = 10
)
```

Arguments

- `beta_hat`: Maximum likelihood solution for beta parameter.
- `beta_cov`: Covariance of objective solution (either Fisher information or Hessian inverse).
- `reported`: An integer vector of reported cases.
- `Q`: Spline basis matrix.
- `num_samps_per_ar`: Number of Laplace samples to return for each AR path.

Value

A matrix of `num_samps_per_ar` log incidence curve samples from laplace approximation of distribution.

scan_spline_dof

Scan spline degrees of freedom

Description

This function holds the regularization parameter value fixed and scans spline degrees of freedom.
scan_spline_dof

Usage

```r
scan_spline_dof(
  reported,
  delay_dist,
  dof_grid,
  method = "bic",
  lam = 0,
  regularization_order = 2,
  reported_val = NULL,
  end_pad_size = 0,
  fisher_approx_cov = FALSE
)
```

Arguments

- **reported**: An integer vector of reported cases.
- **delay_dist**: A positive vector that sums to one, which describes the delay distribution.
- **dof_grid**: An integer vector of degrees of freedom for the spline basis.
- **method**: Metric to choose "best" dof: 'aic', 'bic', 'val'. If method='val', reported_val must be non NULL and match reported size.
- **lam**: A fixed value for the beta parameter regularization strength.
- **regularization_order**: An integer (typically 0, 1, 2), indicating differencing order for L2 regularization of spline parameters. Default is 2 for second derivative penalty.
- **reported_val**: Validation time series of equal size to reported vector for use with 'val' method. Default is NULL.
- **end_pad_size**: An integer number of steps the spline is defined beyond the final observation.
- **fisher_approx_cov**: A flag to use either the Fisher Information (TRUE) or the Hessian (FALSE) to approx posterior covariance over parameters.

Value

A list of degree of freedom fit statistics:

- best_dof = best degrees of freedom
- dof_resdf = data frame of fit statistics (lambda, dof, aic, bic, val_lls, train_lls)
scan_spline_lam Scan spline regularization parameter

Description

This function holds degrees of freedom fixed and scans regularization parameter values.

Usage

scan_spline_lam(
 reported,
 delay_dist,
 lam_grid,
 method = "val",
 percent_thresh = 2,
 dof = 10,
 regularization_order = 2,
 reported_val = NULL,
 end_pad_size = 0,
 fisher_approx_cov = TRUE
)

Arguments

reported An integer vector of reported cases.
delay_dist A positive vector that sums to one, which describes the delay distribution.
lam_grid A vector of regularization strengths to scan.
method Metric to choose "best" dof: 'aic', 'bic', 'val'. If method='val', reported_val must be non NULL and match reported size.
percent_thresh If using validation likelihood to select best, the largest (strongest) lambda that is within 'percent_thresh' of the highest validation lambda will be selected. Default is 2. Must be greater than 0.
dof Degrees of freedom for spline basis.
regularization_order
 An integer (typically 0, 1, 2), indicating differencing order for L2 regularization of spline parameters. Default is 2 for second derivative penalty.
reported_val Validation time series of equal size to reported vector for use with 'val' method. Default is NULL.
end_pad_size An integer number of steps the spline is defined beyond the final observation.
fisher_approx_cov
 A flag to use either the Fisher Information (TRUE) or the Hessian (FALSE) to approx posterior covariance over parameters.
Value
List of outputs:

- best_lam = best lambda
- lam_resdf = data frame of fit statistics (lambda, dof, aic, bic, val_lls, train_lls)

spanish_flu

Daily flu mortality from 1918 flu pandemic.

Description
Daily mortality data from 1918-09-01 through 1918-12-31 in Indiana, Kansas, and Philadelphia

Usage

```r
spanish_flu
```

Format
A data frame with 122 entries for 3 locations

- **Date** date
- **Indiana** daily deaths for all of Indiana
- **Kansas** daily deaths for all of Kansas
- **Philadelphia** daily deaths for Philadelphia

Source

spanish_flu_delay_dist

Delay distribution from 1918 flu pandemic.

Description
Daily death proportions.

Usage

```r
spanish_flu_delay_dist
```
train_and_validate

Format

A data frame with 31 entries and 3 columns.

- **days** number of days since infection
- **proportion** proportion of deaths that happen on that day

Source

train_and_validate
Train and validate model on reported data

Description

This function fit models with selected hyperparameters on reported data and return a matrix of posterior Laplace samples.

Usage

```r
train_and_validate(
  reported,
  delay_dist,
  lam,
  dof,
  beta0 = NULL,
  regularization_order = 2,
  reported_val = NULL,
  end_pad_size = 0,
  fisher_approx_cov = TRUE,
  num_samps_per_ar = 10
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>reported</code></td>
<td>An integer vector of reported cases.</td>
</tr>
<tr>
<td><code>delay_dist</code></td>
<td>A positive vector that sums to one, which describes the delay distribution.</td>
</tr>
<tr>
<td><code>lam</code></td>
<td>A fixed value for the beta parameter regularization strength.</td>
</tr>
<tr>
<td><code>dof</code></td>
<td>Degrees of freedom for spline basis.</td>
</tr>
<tr>
<td><code>beta0</code></td>
<td>(optional) Initial setting of spline parameters (before optimization)</td>
</tr>
<tr>
<td><code>regularization_order</code></td>
<td>An integer (typically 0, 1, 2), indicating differencing order for L2 regularization of spline parameters. Default is 2 for second derivative penalty.</td>
</tr>
</tbody>
</table>
train_val_split

reported_val Validation time series of equal size to reported vector for use with ‘val’ method. Default is NULL.
end_pad_size And integer number of steps the spline is defined beyond the final observation.
fisher_approx_cov A flag to use either the Fisher Information (TRUE) or the Hessian (FALSE) to approx posterior covariance over parameters.
num_samps_per_ar An integer for the number of Laplace samples per AR fit.

Value

A list of results of train and validate, including:

• train_ll = training log likelihood
• val_ll = validation log likelihood (if ‘reported_val’ is not ‘NULL’)
• Isamps = samples of the incidence curve from a Laplace approximation
• Ihat = MAP estimate of the incidence curve
• Chat = expected cases given MAP incidence curve
• beta_hat = MAP estimate of spline parameters
• beta_cov = covariance of spline parameters
• beta_hess = Hessian of spline parameters

train_val_split Split reported case data

Description

Split reported case integer time series into train and validate time series through thinning.

Usage

train_val_split(reported, frac_train = 0.75)

Arguments

reported An integer vector of reported cases.
frac_train A numeric between 0 and 1 for fraction of data used to train lambda validation.

Value

A list(reported_train, reported_val) where the elements reported_train and reported_val are both length, Tobs, and ‘frac_train’ of the counts fall in reported_train, the rest in reported_val.
Index

* datasets
 - covid_delay_dist, 3
 - covid_new_york_city, 4
 - spanish_flu, 22
 - spanish_flu_delay_dist, 22

compute_expected_cases, 2
compute_log_incidence, 3
covid_delay_dist, 3
covid_new_york_city, 4
data_check, 5
data_processing, 5
diff_trans, 6

fit_incidence, 7, 9, 14
front_zero_pad, 9

incidence_to_df, 9
init_params, 10

make_ar_extrap_samps, 11
make_likelihood_matrix, 11
make_spline_basis, 12
marg_loglike_poisson, 12
marg_loglike_poisson_fisher, 13
marg_loglike_poisson_grad, 14

plot.incidence_spline_model, 14
poisson_objective, 15
poisson_objective_grad, 16
poisson_objective_post_cov_approx, 16

regfun, 17
regfun_grad, 18
regfun_hess, 18

sample_laplace_log_incidence_poisson, 19
scan_spline_dof, 19
scan_spline_lam, 21

spanish_flu, 22
spanish_flu_delay_dist, 22

train_and_validate, 23
train_val_split, 24