Package ‘incidentally’

April 8, 2022

Title Generates Incidence Matrices and Bipartite Graphs
Version 0.9.0
Description Functions to generate incidence matrices and bipartite graphs that have (1) a fixed fill rate, (2) given marginal sums, (3) marginal sums that follow given distributions, or (4) are generated by a social process mirroring team, group, or organization formation.
License GPL-3
Encoding UTF-8
RoxygenNote 7.1.2
Depends R (>= 2.10)
Imports igraph, methods, stats
Suggests rmarkdown, knitr
VignetteBuilder knitr
URL https://www.zacharyneal.com/backbone,
 https://github.com/zpneal/incidentally
BugReports https://github.com/zpneal/incidentally/issues
NeedsCompilation no
Author Zachary Neal [aut, cre] (<https://orcid.org/0000-0003-3076-4995>)
Maintainer Zachary Neal <zpneal@msu.edu>
Repository CRAN
Date/Publication 2022-04-08 08:22:30 UTC

R topics documented:

add.blocks .. 2
curveball ... 3
incidence.from.adjacency ... 4
incidence.from.distribution 5
incidence.from.probability .. 6
incidence.from.vector ... 7
incidentally ... 7
add.blocks

Description

add.blocks shuffles an incidence matrix to have a block structure or planted partition while preserving the row and column sums.

Usage

```r
add.blocks(I, blocks = 2, density = 0.5, max.tries = 1e+05)
```

Arguments

- `I`: matrix: An incidence matrix.
- `blocks`: integer: number of blocks to add (between 2 and 26).
- `density`: numeric: desired within-block density.
- `max.tries`: numeric: number of ineligible re-wiring attempts before giving up.

Details

Stochastic block and planted partition models generate graphs in which the probability that two nodes are connected depends on whether they are members of the same or different blocks/partitions. Functions such as `sample_sbm` can randomly sample from stochastic block models with given probabilities. In contrast, `add.blocks` attempts to generate a block model that preserves the degree sequences (i.e., a matrix with preserved row and column sums).

Each row and each column node are randomly assigned to one of `blocks` number of groups. Then checkerboard swaps are performed that increase the within-block density, until `density` is achieved. Eligible swaps are identified randomly, so the re-wiring can be slow when `I` is large. The process can get stuck when no eligible swaps remain but the target density has not been achieved; if this happens, increase `max.tries` to keep looking for eligible swaps or reduce the target density.

Value

matrix: An incidence matrix, row and column names begin with a letter indicating their block membership.

Examples

```r
I <- incidence.from.probability(R = 20, C = 20, P = .5)
I <- add.blocks(I, blocks = 2, density = .7)
```
curveball

Randomize a binary matrix using the curveball algorithm

Description

curveball randomizes a binary matrix, preserving the row and column sums

Usage

curveball(M, trades = 5 * nrow(M))

Arguments

M a binary matrix
trades integer: number of trades; the default is 5 * nrow(M) (approx. mixing time)

Details

Strona et al. (2014) provided an initial implementation of the Curveball algorithm in R. curveball() is a modified R implementation that is slightly more efficient. For an even more efficient algorithm, see backbone::fastball().

Value

A random binary matrix with same row sums and column sums as M

References

Examples

M <- incidence.from.probability(5,5,.5) #A matrix
Mrand <- curveball(M) #Random matrix with same row/col sums
all.equal(rowSums(M), rowSums(curveball(M)))
all.equal(colSums(M), colSums(curveball(M)))
incidence.from.adjacency

Generates an incidence matrix from an adjacency matrix

Description

incidence.from.adjacency generates an incidence matrix from an adjacency matrix or network using a given generative model.

Usage

incidence.from.adjacency(G, k = 1, p = 1, d = 2, model = "team", class = NULL)

Arguments

G
A symmetric, binary adjacency matrix of class matrix or Matrix, a data.frame containing a symbolic edge list in the first two columns, or an undirected, unweighted unipartite graph of class igraph.

k
integer: Number of artifacts to generate

p
numeric: Tuning parameter for artifacts, 0 <= p <= 1

d
numeric: Number of dimensions in Blau space, d >= 2

model
string: Generative model, one of c("team", "group", "blau") (see details)

class
string: Return object as matrix, igraph, or edgelist. If NULL, object is returned in the same class as G.

Details

Given a unipartite network composed of \(i \) agents (i.e. nodes) that can be represented by an \(i \times i \) adjacency matrix, incidence.from.adjacency generates a random \(i \times k \) incidence matrix that indicates whether agent \(i \) is associated with artifact \(k \). Generative models differ in how they conceptualize artifacts and how they associate agents with these artifacts.

The **Team Model** (model == "team") mirrors a team formation process, where each artifact represents a new team formed from the incumbants of a prior team (with probability \(p \)) and newcomers (with probability 1-p).

The **Group Model** (model == "group") mirrors a social group formation process, where each artifact represents a social group. Group members attempt to recruit non-member friends, who join the group if it would have a density of at least \(p \).

The **Blau Space Model** (model == "blau") mirrors an organization (the artifact) recruiting members from social space, where those within the organization’s niche join with probability \(p \), and those outside the niche join with probability 1-p.

Value

An incidence matrix of class matrix, or a bipartite graph as an edgelist of igraph object.
Examples

```r
G <- igraph::erdos.renyi.game(10, .4)
I <- incidence.from.adjacency(G, k = 1000, p = .95,
                           model = "team")
```

incidence.from.distribution

Generates an incidence matrix with row and column sums that follow given distributions

Description

`incidence.from.distribution` generates a random incidence matrix with row and column sums that approximately follow beta distributions with given parameters.

Usage

```r
incidence.from.distribution(
  R,                  \[
  C,
  P,
  rowdist = c(1, 1), \[
  coldist = c(1, 1), \[
  class = "matrix"
)
```

Arguments

- `R`
 integer: number of rows

- `C`
 integer: number of columns

- `P`
 numeric: probability that a cell contains a 1

- `rowdist`
 vector length 2: Row marginals will approximately follow a Beta(a,b) distribution

- `coldist`
 vector length 2: Column marginals will approximately follow a Beta(a,b) distribution

- `class`
 string: the class of the returned backbone graph, one of c("matrix", "igraph")

Value

An incidence matrix of class `matrix` or a bipartite graph of class `igraph`.

Examples

I <- incidence.from.distribution(R = 100, C = 100, P = 0.1, rowdist = c(1,1), coldist = c(1,1)) #Uniform
I <- incidence.from.distribution(R = 100, C = 100, P = 0.1, rowdist = c(1,10), coldist = c(1,10)) #Right-tailed
I <- incidence.from.distribution(R = 100, C = 100, P = 0.1, rowdist = c(10,1), coldist = c(10,1)) #Left-tailed
I <- incidence.from.distribution(R = 100, C = 100, P = 0.1, rowdist = c(10,10), coldist = c(10,10)) #Normal
I <- incidence.from.distribution(R = 100, C = 100, P = 0.1, rowdist = c(10000,10000), coldist = c(10000,10000)) #Constant

inci\text{dence.}\text{from.}\text{probability}

Generates an incidence matrix with a given cell-filling probability

Description

inci\text{dence.}\text{from.}\text{probability} generates a random incidence matrix in which each cell is filled with a 1 with a given probability.

Usage

inci\text{dence.}\text{from.}\text{probability}(R, C, P = 0, constrain = TRUE, class = "matrix")

Arguments

\begin{itemize}
 \item \textbf{R} integer: number of rows
 \item \textbf{C} integer: number of columns
 \item \textbf{P} numeric: probability that a cell contains a 1; if \text{P} = 0 a probability will be chosen randomly
 \item \textbf{constrain} boolean: ensure that no rows or columns sum to 0 (i.e., contain all 0s) or to 1 (i.e., contain all 1s)
 \item \textbf{class} string: the class of the returned backbone graph, one of c("matrix", \text{igraph}).
\end{itemize}

Value

An incidence matrix of class \text{matrix} or a bipartite graph of class \text{igraph}.

Examples

I <- incidence.from.probability(R = 10, C = 10)
I <- incidence.from.probability(R = 10, C = 10, P = .5)
I <- incidence.from.probability(R = 10, C = 10, P = .5, class = "igraph")
incidence.from.vector

Generates an incidence matrix with given row and column marginal sums

Description

incidence.from.vector generates a random incidence matrix with given row and column sums

Usage

incidence.from.vector(R, C, class = "matrix")

Arguments

R numeric vector: row marginal sums
C numeric vector: column marginal sums
class string: the class of the returned backbone graph, one of c("matrix", "igraph")

Value

An incidence matrix of class matrix or a bipartite graph of class igraph.

Examples

I <- incidence.from.vector(R = c(1,1,2), C = c(1,1,2))
I <- incidence.from.vector(R = c(1,1,2), C = c(1,1,2), class = "igraph")

incidentally

incidentally: Generates incidence matrices and bipartite graphs

Description

Functions to generate incidence matrices and bipartite graphs that have (1) a fixed fill rate, (2) given marginal sums, (3) marginal sums that follow given distributions, or (4) are generated by a social process mirroring team, group, or organization formation.

Incidence matrices can be generated:

• ...with a fixed fill rate: incidence.from.probability().
• ...with given marginals: incidence.from.vector().
• ...with marginals that follow given distributions: incidence.from.distribution().
• ...from a network, by a social process mirroring team, group, or organization formation incidence.from.adjacency().
• ...with a block structure or planted partition: add.blocks().
Index

add.blocks, 2
add.blocks(), 7

curveball, 3

igraph, 4–7
incidence.from.adjacency, 4
incidence.from.adjacency(), 7
incidence.from.distribution, 5
incidence.from.distribution(), 7
incidence.from.probability, 6
incidence.from.probability(), 7
incidence.from.vector, 7
incidence.from.vector(), 7
incidentally, 7

sample_sbm, 2