Package ‘industRial’

October 13, 2022

Type Package

Date 2021-06-04

Title Data, Functions and Support Materials from the Book “industRial Data Science”

Version 0.1.0

Description Companion package to the book “industRial data science”, J.Ramalho (2021) [https://j-ramalho.github.io/industRial/]. Provides data sets and functions to complete the case studies and contains the book original Rmd files and tutorials.

URL https://github.com/J-Ramalho/industRial

BugReports https://github.com/J-Ramalho/industRial/issues

License GPL (>= 3)

Encoding UTF-8

LazyData true

Imports ggplot2, stats, dplyr, tidyr, magrittr, rlang, lattice, SixSigma

Depends R (>= 3.5.0)

RoxygenNote 7.1.1

Suggests glue, tibble, stringr, scales, purrr, janitor, patchwork, forcats, broom, viridis, learnr, DoE.base, qcc, car, qicharts2, rsm, ggrepel, ggraph, tidygraph, igraph, bookdown, rmarkdown, knitr, agricolae, RcmdrMisc, gt, skimr, ggtext

NeedsCompilation no

Author Joao Ramalho [aut, cre]

Maintainer Joao Ramalho <ramalho.joao@protonmail.com>

Repository CRAN

Date/Publication 2021-06-11 09:40:02 UTC
Description

A data set with charging time in hours required to recharge a lithium-ion battery based on a full factorial design of experiment with four variables (A, B, C, D) coded as +/- 1. Design effects are coded as numerical variables in order to allow to build models without coding the contrasts and then to make predictions on a continuous range from -1 to +1.

A Variable A (numerical)
B Variable B (numerical)
C Variable B (numerical)
D Variable B (numerical)

Replicate The independent repeat of each unique factor combination.

charging_time Battery charging time [h]
chart_Cpk

Usage

battery_charging

Format

A tibble with 32 observations on 6 variables.

Source

Original data set.

References

For a complete case study application refer to https://j-ramalho.github.io/industRial/.

Examples

data(battery_charging)
head(battery_charging)

Building a linear model:
battery_lm <- lm(
 formula = charging_time ~ A * B * C,
 data = battery_charging
)
summary(battery_lm)

chart_Cpk

Create a capability chart for statistical process control

Description

Generate a histogram type chart from a set of consecutive measurements.

Usage

chart_Cpk(data)

Arguments

data A dataset generated by the function process_stats

Details

This type of chart is typically applied in product manufacturing to monitor deviations from the target value over time. It is usually accompanied by the statistical process control time series chart_I and chart_IMR.
Value

This function returns an object of class ggplot

References

For a complete case study application refer to https://j-ramalho.github.io/industRial/

chart_I

Create IMR chart for statistical process control

Description

Generate a single point time series chart from a set of consecutive measurements.

Usage

```r
chart_I(data)
```

Arguments

- **data**
 A dataset generated by the function `process_stats`

Details

This type of chart is typically applied in product manufacturing to monitor deviations from the target value over time. It is usually accompanied by the `chart_IMR`

Value

This function returns an object of class ggplot

References

For a complete case study application refer to https://j-ramalho.github.io/industRial/
Create R MR chart for statistical process control

Description
Generate a moving range chart from a set of consecutive measurements.

Usage
chart_IMR(data)

Arguments
data A dataset generated by the function process_stats

Details
This type of chart is typically applied in product manufacturing to monitor deviations from the target value over time. It is usually accompanied by the chart_IMR

Value
This function returns an object of class ggplot

References
For a complete case study application refer to https://j-ramalho.github.io/industRial/

dial_control Collection of visual defects on watch dial production.

Description
This data set contains observations of visual defects present in watch dials such as indentations and scratches taken during production. It provides a practical case to establish pareto charts typically with a function like paretochart.

Operator The shop floor operator collecting the data
Date Data collection date
Defect Defect type ("Indent", "Scratch")
Location Position on the watch dial referred to as the hour (1h, 2h)
id Part unique id number

Usage
dial_control
Format

An object of class tibble with 58 observations on 4 variables.

Source

Original data set.

References

For a complete case study application refer to https://j-ramalho.github.io/industRial/.

Examples

`head(dial_control)`

ebike_hardening Cycles to failure of ebikes frames after temperature treatment.

Description

A data set with the results of aging tests on several groups of ebikes frames (g1, g2, ...). Each entry corresponds to the number of cycles to failure for each level of treatment temperature.

 temperature Position of the part on the device
g1 group 1, remaining groups have names g2 to g5

Usage

ebike_hardening

Format

A tibble with 4 observations on 6 variables.

Details

The ebike_hardening2 dataset contains alternative data that gives non significant results in the analysis of variance study.

Source

Original data set.

References

For a complete case study application refer to https://j-ramalho.github.io/industRial/.

Examples

data(ebike_hardening)
expand_formula

Formula expansion

Description

Takes a linear model formula and returns its expanded version.

Usage

```
expand_formula(formulae)
```

Arguments

- `formulae` Takes as input an object of class `formula`, e.g.: `Y ~ A * B`, see `?formula` for syntax details.

Details

Supports verification and understanding of the creation of linear models syntax such as `*`, `+` and other conventions.

Value

Returns a character vector such as `A + B + A:B`.

References

For an example application refer to https://j-ramalho.github.io/industRial/

industRial

*industRial: companion package to the book "industRial data science"

Description

This package contains datasets and toy functions to run the examples from the book "industRial data science". It also contains all the book original Rmd files and the `learnr` Rmd original tutorial files.

Author(s)

João Ramalho

References

For complete case studies refer to https://j-ramalho.github.io/industRial/
Description

This data set contains laboratory measurements of the dry matter content of different fruit juices obtained with two different measurement devices. One of the devices is considered the reference (REF) and the other one is a new device (DRX) on which a linearity and bias study has to be performed.

- **product** The juice base fruit ("Apple", "Beetroot")
- **drymatter_TGT** Target drymatter content in [g]
- **speed** Production line speed
- **particle_size** Dry matter powder particle size [micrometers]
- **part** Part number
- **drymatter_DRX** Drymatter content measured with device DRX
- **drymatter_REF** Drymatter content measured with reference device

Usage

juice_drymatter

Format

An object of class tibble with 108 observations on 7 variables.

Source

Adapted from a real gage bias and linearity study performed in 2021 on industrial beverages dry matter content measurement. The structure of the data corresponds to a full factorial design of 5 factors (3 with 3 levels and 2 with 2 levels).

References

For a complete case study application refer to https://j-ramalho.github.io/industRial/.

Examples

```r
library(dplyr)
# Calculate the bias between the new device and the reference:
juice_drymatter <- juice_drymatter %>% dplyr::mutate(bias = drymatter_DRX - drymatter_REF)
# Establish the analysis of variance:
juice_drymatter_aov <- aov(
    bias ~ drymatter_TGT * speed * particle_size,
    data = juice_drymatter)
summary(juice_drymatter_aov)
```
Calculate percentage of out of specification for Statistical Process Control

Description

This function takes process variables and calculates the probability that parts are produced out of specification on the long run.

Usage

off_spec(UCL, LCL, mean, sd)

Arguments

- `UCL`: the process upper control limit
- `LCL`: the process lower control limit
- `mean`: the process mean
- `sd`: the process standard deviation

Value

This function returns an object of class numeric

References

For a complete case study application refer to https://j-ramalho.github.io/industRial/

Examples

off_spec(100, 0, 10, 3)

Correlation matrix of the input variables of an experiment design in perfume formulation.

Description

The data set contains the expected correlation (expressed in 1 to 10) of an experiment anonymized input variables. The dataset consists in a double entry table with the same variables in row and column. It is coded as a tibble but subsequent utilization in network plots requires it to be converted to a matrix format.

Usage

perfume_experiment
Format
A tibble with 22 observations on 23 variables.

Source
Original data set.

References
For a complete case study application refer to https://j-ramalho.github.io/industRial/.

Examples
data(perfume_experiment)

data(pet_delivery)

Description
Measurements of tensile strength of two different deliveries of PET raw material used in the clothing industry. The two data sets follow approximately a normal distribution.

A Tensile strength measurements for product A [Mpa] (numeric)
B Tensile strength measurements for product B [Mpa] (numeric)

Usage
pet_delivery

Format
An object of class tibble with 28 observations on 2 variables.

Source
Original data set.

References
For a complete case study application refer to https://j-ramalho.github.io/industRial/.

Examples
data(pet_delivery)
Description

The data corresponds to full factorial design with two factors coded as +/- and 3 replicates for each combination.

A PET formulation A (factor)
B PET formulation B (factor)
replicate the measurement replicate I to III (factor)
yield the output variable measured on the PET, (numerical)

Usage

pet_doe

Format

An object of classes design and data.frame with 12 observations of 4 variables.

Source

Original data set generated with the function fac.design form the package DoE.base.

References

For a complete case study application refer to https://j-ramalho.github.io/industRial/

Examples

data(pet_doe)
contrasts(pet_doe$A)

process_Cpk Calculate process capability index for Statistical Process Control

Description

This function takes process variables and calculates the Cpk index which is a measure of the process centering and variability against specification.

Usage

process_Cpk(UCL, LCL, mean, sd)
Arguments

UCL the process upper control limit
LCL the process lower control limit
mean the process mean
sd the process standard deviation

Value

This function returns an object of class numeric

References

For a complete case study application refer to https://j-ramalho.github.io/industRial/

Examples

```
process_Cpk(100, 0, 10, 3)
```

Description

This function takes process variables and calculates summary statistics and presents them in a easy readable table format.

Usage

```
process_stats(data, part_spec_percent)
```

Arguments

- `data` This function takes the dataset tablet_thickness cleaned with the clean_names function from the janitor package
- `part_spec_percent` the process tolerance in percentage.

Value

This function returns an object with class tibble (tbl_df)

References

For a complete case study application refer to https://j-ramalho.github.io/industRial/
process_stats_table

Summary statistics table outputs for Statistical Process Control

Description

This function takes summary statistics and presents them in an easy readable table format.

Usage

```
process_stats_table(data)
```

Arguments

- `data` A data set generated by the function `process_stats`

Value

This function returns an object with classes `gt_tbl` and `list`.

References

For a complete case study application refer to https://j-ramalho.github.io/industRial/

solarcell_fill

Yearly outputs and fill factor of solar cells of different types.

Description

A dataset with the energy output resulting from tests on solar cells made of three different configurations. The fill factor provides an indication of the cell quality and is a non controlled variable that can be taken into consideration in an analysis of covariance to better assess the output variation from material to material.

- **material** The solar cell material (character)
- **output** The yearly energy output (numeric)
- **fillfactor** The fill factor measured for each cell (numeric)

Usage

```
solarcell_fill
```

Format

A tibble with 15 observations of 3 variables.
solarcell_output

Source
Original data set.

References
For a complete case study application refer to https://j-ramalho.github.io/industRial/.

Examples
hist(solarcell_fill$output)

data(solarcell_output)

Description
A dataset with the energy output resulting from tests on solarcells made of three different raw materials / configurations.

material
The solar cell type (character)

run
The test run (numeric)

T-10
The yearly output for the test result at temperature of 10°C

T20
The yearly output for the test result at temperature of 20°C

T50
The yearly output for the test result at temperature of 50°C

Usage
solarcell_output

Format
A tibble with 12 observations of 5 variables.

Source
Original data set.

References
For a complete case study application refer to https://j-ramalho.github.io/industRial/.

Examples
data(solarcell_output)
Description

Extracts stand alone plots from the ss.rr function of the SixSigma package.

Usage

```r
ss.rr.plots(
  var,  # Measured variable
  part, # Factor for parts
  appr, # Factor for appraisers (operators, machines, ...)
  lsl = NA, # Numeric value of lower specification limit used with USL to calculate Study Variation as %Tolerance
  usl = NA, # Numeric value of upper specification limit used with LSL to calculate Study Variation as %Tolerance
  sigma = 6, # Numeric value for number of std deviations to use in calculating Study Variation
  data, # Data frame containing the variables
  main = "Six Sigma Gage R&R Study", # Main title for the graphic output
  sub = "", # Subtitle for the graphic output (recommended the name of the project)
  alphaLim = 0.05, # Limit to take into account interaction
  errorTerm = "interaction", # Which term of the model should be used as error term (for the model with interaction)
  digits = 4 # Number of decimal digits for output
)
```

Arguments

- `var`: Measured variable
- `part`: Factor for parts
- `appr`: Factor for appraisers (operators, machines, ...)
- `lsl`: Numeric value of lower specification limit used with USL to calculate Study Variation as %Tolerance
- `usl`: Numeric value of upper specification limit used with LSL to calculate Study Variation as %Tolerance
- `sigma`: Numeric value for number of std deviations to use in calculating Study Variation
- `data`: Data frame containing the variables
- `main`: Main title for the graphic output
- `sub`: Subtitle for the graphic output (recommended the name of the project)
- `alphaLim`: Limit to take into account interaction
- `errorTerm`: Which term of the model should be used as error term (for the model with interaction)
- `digits`: Number of decimal digits for output
syringe_diameter

Details
This is a modified version of the function `ss.rr` from the SixSigma package that allows to extract the individual plots from the output report. The input arguments of the function are the same as the original function. See the original function help with `?ss.rr` for full documentation.

Value
Generates a list output that can be assigned to a user created variable. The plots can then be accessed with the syntax variable$plot1 to plot6.

References
For an example application refer to https://j-ramalho.github.io/industRial/

syringe_diameter | Production measurements of the inner diameter of syringes barrels.

Description
This dataset contains process control measurements of the barrel diameters of pharmaceutical syringes. The sampling rate is hourly and the sample size is 6 syringes.

Hour The sampling hour expressed as Hour1, Hour2 (character)
Sample1 Syringe diameter of sample 1 (numerical)
Sample2 Syringe diameter of sample 2 (numerical)

Usage
```
syringe_diameter
```

Format
A tibble with 25 observations on 7 variables.

Source
Original data set.

References
For a complete case study application refer to https://j-ramalho.github.io/industRial/.

Examples
```
data(syringe_diameter)
```
tablet_thickness

tablet_thickness *Thickness measurements of pharmaceutical tablets*

Description

This data set contains physical measurements of pharmaceutical tablets (pills) including measurement room conditions. The data and the insights it provides are typical of an industrial context with high production throughput and stringent dimensional requirements.

Usage

tablet_thickness

Format

An object of class tibble with 675 observations on 11 variables

Details

The data set contains other variables not used in the text book related with to the measurement room conditions (not listed).

- **Position** Position of the part on the measurement device
- **Size** Size class (L, M, S)
- **Tablet** Part number (L001, L002, ...)
- **Replicate** Measurement replicate, a sequential numbers
- **Day** Measurement Day, a sequential numbers
- **Date [DD.MM.YYYY]** Measurement date (POSIXct)
- **Operator** Operator name (fictitious)
- **Thickness [micron]** Tablet thickness (micrometers)
- **Temperature [°C]** Room temperature

Source

Based on a gage r&R (gage reproducibility and repeatability) study performed in 2020 on a physical measurement of parts coming out of a high throughput industrial equipment.

References

For a complete case study application refer to https://j-ramalho.github.io/industRial/

Examples

data(tablet_thickness)
tablet_weight

Description

This data set contains weight measurements of pharmaceutical tablets (pills). The data and the insights it provides are typical of an industrial context with high production throughput and stringent dimensional requirements.

Usage

tablet_weight

Format

An object of class tibble with 137 observations on 3 variables

Details

The data set contains other variables not used in the text book related with to the measurement room conditions (not listed).

- **part_id** Unique sequencial identifier given during production (numeric)
- **Weight Target Value** Tablet weight target specification value in [mg] (numeric)
- **Weight Value** Tablet weight measured value [m] (numeric)

Source

Anonymized data based on statistical process control data obtained in a high volume production setup.

References

For a complete case study application refer to https://j-ramalho.github.io/industRial/

Examples

```
hist(tablet_weight$'Weight value')
```
theme_industRial

Custom theme "industRial" for the book industRial Data Science plots

Description

This theme aims at optimal balance between readability and precision. It has adapted from the package cowplot by Claus O.Wilke and reflects the principles of his book Fundamentals of Data Visualization

Usage

theme_industRial(
 font_size = 14,
 font_family = "",
 line_size = 0.5,
 rel_small = 12/14,
 rel_tiny = 11/14,
 rel_large = 16/14,
 base_size = font_size,
 base_family = font_family
)

Arguments

font_size defaults to 14
font_family defaults to ""
line_size defaults to 0.5
rel_small defaults to 12/14
rel_tiny defaults to 11/14
rel_large defaults to 16/14
base_size internal arguments, defaults to font_size
base_family internal arguments, defaults to font_family

Details

Apply this theme by adding it at the end of the code of any ggplot chart. It basically combines the half open theme with a grid background from cowplot

Value

This function returns an object of classes theme and gg from the ggplot2 package

References

For a complete case study application refer to https://j-ramalho.github.io/industRial/
Examples

```r
library(dplyr)
library(ggplot2)

pet_delivery %>%
  ggplot(aes(x = A)) +
  geom_histogram(color = "grey", fill = "grey90") +
  labs(title = "PET clothing case study",
       subtitle = "Raw data plot",
       x = "Treatment",
       y = "Tensile strength [MPa]") +
  theme_industRial()
```

theme_qcc

Custom theme "qcc" for the book industRial Data Science plots

Description

This theme provides a similar look and feel to the package qcc statistical process control charts (SPC) which have themselves a resemblance with Minitab charts. This theme aims at providing a layout that is familiar to readers of Minitab chart to help in reducing transition to R build reports and charts.

Usage

```r
theme_qcc(base_size = 12, base_family = "")
```

Arguments

- `base_size` font size, defaults to 12
- `base_family` font family defaults to ""

Details

Apply this theme by adding it at the end of the code of any `ggplot` chart. It basically provides a grey background and some highlights to help reading key process statistics such as the population mean.

Value

This function returns an object of classes theme and gg from the ggplot2 package

References

For a complete case study application refer to https://j-ramalho.github.io/industRial/
Examples

```r
library(dplyr)
library(ggplot2)

pet_delivery %>%
grpplot(aes(x = A)) +
geom_histogram(color = "grey", fill = "grey90") +
labs(title = "PET clothing case study",
    subtitle = "Raw data plot",
    x = "Treatment",
    y = "Tensile strength [MPa]") +
theme_qcc()
```
Index

* datasets
 battery_charging, 2
 dial_control, 5
 ebike_hardening, 6
 juice_drymatter, 8
 perfume_experiment, 9
 pet_delivery, 10
 pet_doe, 11
 solarcell_fill, 13
 solarcell_output, 14
 syringe_diameter, 16
 tablet_thickness, 17
 tablet_weight, 18
 battery_charging, 2
 chart_Cpk, 3
 chart_I, 3, 4
 chart_IMR, 3–5, 5
 dial_control, 5
 ebike_hardening, 6
 ebike_hardening2 (ebike_hardening), 6
 expand_formula, 7
 fac.design, 11
 ggplot, 19, 20
 industRial, 7
 industRial-package (industRial), 7
 juice_drymatter, 8
 off_spec, 9
 paretochart, 5
 perfume_experiment, 9
 pet_delivery, 10
 pet_doe, 11
 process_Cpk, 11
 process_stats, 3–5, 12, 13
 process_stats_table, 13
 qcc, 20
 solarcell_fill, 13
 solarcell_output, 14
 ss.rr, 16
 ss.rr.plots, 15
 syringe_diameter, 16
 tablet_thickness, 17
 tablet_weight, 18
 theme_industRial, 19
 theme_qcc, 20