Package ‘inet’

March 14, 2022

Type Package
Title Performing Inference on Networks with Regularization
Version 0.1.0
Depends R (>= 3.5.0)
Author Lourens Waldorp <waldorp@uva.nl>, Jonas Haslbeck <jonashaslbeck@gmail.com>
Maintainer Jonas Haslbeck <jonashaslbeck@gmail.com>
Description Performs inference with the lasso in Gaussian Graphical Models. The package consists of wrappers for functions from the 'hdi' package.
Encoding UTF-8
LazyData true
License GPL (>= 2)
Imports hdi, glmnet, MASS
NeedsCompilation no
Repository CRAN
Date/Publication 2022-03-14 09:00:02 UTC

R topics documented:

inet-datasets .. 2
inet-internal ... 2
lasso .. 3
lasso_dsp .. 4
lasso_dsp_boot .. 6
lasso_ms .. 7
OLS ... 9
plot.inet ... 11

Index 13
inet-datasets
Datasets included in inet package

Description

The package includes a dataset with measurements of 17 PTSD symptoms taken from 344 individuals. See McNally et al. (2015) for more details.

Author(s)

Jonas Haslbeck

References

inet-internal
Internal inet functions

Description

Internal inet functions.

Details

These are internal functions.

Value

The only internal function is one that performs input checks for the estimation functions. They return informative errors, if the inputs are not specified properly.

Author(s)

Jonas Haslbeck
Estimate GGM with nodewise regression and the lasso.

Description

Estimate a Gaussian Graphical Model with lasso-regularized nodewise regression, where the regularization parameter is selected with cross-validation. This is a wrapper around the function cv.glmnet() from the glmnet package.

Usage

```r
lasso(data, pbar = TRUE, nfolds = 10, rulereg = "and")
```

Arguments

- `data`: An n x p matrix containing the data, where n are cases and p are variables.
- `pbar`: If `pbar = TRUE`, a progress bar will be displayed.
- `nfolds`: Specifies the number of folds used to select the regularization parameter in each of the p nodewise regressions.
- `rulereg`: Specifies how parameter estimates should be combined across nodewise regressions. The options are the AND-rule (requiring both estimates to be significant) or the OR-rule (only requiring one estimate to be significant). Defaults to `rulereg = "and"`.

Value

The function returns a list with the following entries:

- `est`: A p x p matrix with point estimates for all partial correlations.
- `select`: A p x p indicator matrix indicating which edges have been selected to be present.

Author(s)

Jonas Haslbeck <jonashaslbeck@gmail.com>

References

Examples

Toy example that runs relatively quickly
library(MASS)
p <- 5 # number of variables
data <- mvrnorm(n=100, mu=rep(0, p), Sigma = diag(p))
set.seed(1)
out <- lasso(data = data)

Not run:

Fit GGM to PTSD data
set.seed(1)
out <- lasso(data = ptsd_data)

End(Not run)

\section*{lasso_dsp}

\textit{Estimate GGMs with the desparsified lasso.}

\subsection*{Description}

Estimate Gaussian Graphical Models using the desparsified lasso. This is a wrapper around the function \texttt{lasso.proj} of the \texttt{hdi} package.

\subsection*{Usage}

\begin{verbatim}
lasso_dsp(data, betainit = "cv lasso", ci.level = 0.95,
correction = TRUE, pbar = TRUE, rulereg = "and")
\end{verbatim}

\subsection*{Arguments}

\begin{itemize}
 \item \textbf{data} \begin{footnotesize}An n x p matrix containing the data, where n are cases and p are variables\end{footnotesize}
 \item \textbf{betainit} \begin{footnotesize}Specifying how to estimate lasso solution in initial estimation. Either betainit = "cv lasso" (default) or betainit = "cv lasso". See the manual of the function \texttt{lasso.proj} of the \texttt{hdi} package for more info.\end{footnotesize}
 \item \textbf{ci.level} \begin{footnotesize}Specifies the width of the confidence interval used for testing the null hypothesis that a parameter is different to zero. Defaults to \texttt{ci.level = 0.95}, which corresponds to a critical threshold of 0.05.\end{footnotesize}
 \item \textbf{correction} \begin{footnotesize}If correction = TRUE, the Bonferroni-Holm correction will be applied to p-values on the level of nodewise regressions (see e.g., Hochberg, 1987).\end{footnotesize}
 \item \textbf{pbar} \begin{footnotesize}If \texttt{pbar} = TRUE, a progress bar will be displayed.\end{footnotesize}
 \item \textbf{rulereg} \begin{footnotesize}Specifies how parameter estimates should be combined across nodewise regressions. The options are the AND-rule (requiring both estimates to be significant) or the OR-rule (only requiring one estimate to be significant). Defaults to \texttt{rulereg = "and"}.\end{footnotesize}
\end{itemize}
lasso_dsp

Value

The function returns a list with the following entries:

<table>
<thead>
<tr>
<th>Entry</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>est</td>
<td>A p x p matrix with point estimates for all partial correlations</td>
</tr>
<tr>
<td>est.signf</td>
<td>A p x p matrix with point estimates for all partial correlations with non-significant partial correlations being thresholded to zero.</td>
</tr>
<tr>
<td>signf</td>
<td>A p x p matrix indicating for each partial correlation whether it is significantly different to zero.</td>
</tr>
<tr>
<td>ci.lower</td>
<td>A p x p matrix indicating the lower confidence interval for each partial correlation.</td>
</tr>
<tr>
<td>ci.upper</td>
<td>A p x p matrix indicating the upper confidence interval for each partial correlation.</td>
</tr>
</tbody>
</table>

Author(s)

Jonas Haslbeck <jonashaslbeck@gmail.com>; Lourens Waldorp <waldorp@uva.nl>

References

Examples

Toy example that runs relatively quickly
library(MASS)
p <- 5 # number of variables
data <- mvrnorm(n=100, mu=rep(0, p), Sigma = diag(p))
set.seed(1)
out <- lasso_dsp(data = data)

Not run:

Fit GGM to PTSD data
set.seed(1)
out <- lasso_dsp(data = ptsd_data)

End(Not run)
lasso_dsp_boot

Estimate GGMs with the desparsified lasso using the bootstrap.

Description
Estimate Gaussian Graphical Models using the desparsified lasso using the bootstrap. This is a wrapper around the function `lasso.proj` of the `hdi` package.

Usage

```r
lasso_dsp_boot(data, betainit = "cv lasso", ci.level = 0.95,
correction = TRUE, B = 1000, pbar = TRUE,
rulereg = "and")
```

Arguments

- **data**: An n x p matrix containing the data, where n are cases and p are variables.
- **betainit**: Specifying how to estimate lasso solution in initial estimation. Either `betainit = "cv lasso"` (default) or `betainit = "cv lasso"`. See the manual of the function `lasso.proj` of the `hdi` package for more info.
- **ci.level**: Specifies the width of the confidence interval used for testing the null hypothesis that a parameter is different to zero. Defaults to `ci.level = 0.95`, which corresponds to a critical threshold of 0.05.
- **correction**: If `correction = TRUE`, the Bonferroni-Holm correction will be applied to p-values on the level of nodewise regressions (see e.g., Hochberg, 1987).
- **B**: The number of bootstrap samples used for estimation. Defaults to `B=1000`.
- **pbar**: If `pbar = TRUE`, a progress bar will be displayed.
- **rulereg**: Specifies how parameter estimates should be combined across nodewise regressions. The options are the AND-rule (requiring both estimates to be significant) or the OR-rule (only requiring one estimate to be significant). Defaults to `rulereg = "and"`.

Value
The function returns a list with the following entries:

- **est**: A p x p matrix with point estimates for all partial correlations.
- **est.signf**: A p x p matrix with point estimates for all partial correlations with non-significant partial correlations being thresholded to zero.
- **signf**: A p x p matrix indicating for each partial correlation whether it is significantly different to zero.
- **ci.lower**: A p x p matrix indicating the lower confidence interval for each partial correlation.
- **ci.upper**: A p x p matrix indicating the upper confidence interval for each partial correlation.
lasso_ms

Author(s)
Jonas Haslbeck <jonashaslbeck@gmail.com>; Lourens Waldorp <waldorp@uva.nl>

References

Examples

```r
# Toy example that runs relatively quickly
library(MASS)
p <- 5 # number of variables
data <- mvrnorm(n=100, mu=rep(0, p), Sigma = diag(p))
set.seed(1)
out <- lasso_dsp_boot(data = data, B=2)
# !!! NOTE: this is just for testing purposes; B should be a lot higher (default = 1000)

## Not run:
# Fit GGM to PTSD data
set.seed(1)
out <- lasso_dsp_boot(data = ptsd_data)

## End(Not run)
```

lasso_ms

Estimate GMM with inference via the multi-split method.

Description
Estimate Gaussian Graphical Models with inference base don the multi-split method. This is a wrapper of the function multi.split of the hdi package.

Usage

```
lasso_ms(data, B = 50, fraction = 0.5, ci.level = 0.95,
correction = TRUE, pbar = TRUE, rulereg = "and")
```
Arguments

- `data`: An n x p matrix containing the data, where n are cases and p are variables.
- `B`: The number of sample-splits. Defaults to B=50.
- `fraction`: A number in (0,1), the fraction of data used at each sample split for the model selection process. The remaining data is used for calculating the p-values.
- `ci.level`: Specifies the width of the confidence interval used for testing the null hypothesis that a parameter is different to zero. Defaults to `ci.level = 0.95`, which corresponds to a critical threshold of 0.05.
- `correction`: If `correction = TRUE`, the Bonferroni-Holm correction will be applied to p-values on the level of nodewise regressions (see e.g., Hochberg, 1987).
- `pbar`: If `pbar = TRUE`, a progress bar will be displayed.
- `rulereg`: Specifies how parameter estimates should be combined across nodewise regressions. The options are the AND-rule (requiring both estimates to be significant) or the OR-rule (only requiring one estimate to be significant). Defaults to `rulereg = "and"`.

Value

The function returns a list with the following entries:

- `est`: A p x p matrix with point estimates for all partial correlations.
- `est.signf`: A p x p matrix with point estimates for all partial correlations with non-significant partial correlations being thresholded to zero.
- `signf`: A p x p matrix indicating for each partial correlation whether it is significantly different to zero.
- `ci.lower`: A p x p matrix indicating the lower confidence interval for each partial correlation.
- `ci.upper`: A p x p matrix indicating the upper confidence interval for each partial correlation.

Author(s)

Jonas Haslbeck <jonashaslbeck@gmail.com>; Lourens Waldorp <waldorp@uva.nl>

References

Examples

Toy example that runs relatively quickly
library(MASS)
p <- 5 # number of variables
data <- mvrnorm(n=100, mu=rep(0, p), Sigma = diag(p))
set.seed(1)
out <- lasso_ms(data = data, B=2)
!!! NOTE: this is just for testing purposes; B should a lot higher (default = 50)

Not run:

Fit GGM to empirical PTSD data
set.seed(1)
out <- lasso_ms(data = ptsd_data)

End(Not run)

OLS

Estimate GMM via nodewise regression and hypothesis tests.

Description

Estimate Gaussian Graphical Model with nodewise regression, selecting edges with standard hypothesis tests and the Bonferroni-Holm Correction.

Usage

```r
OLS(data, pbar = TRUE, correction = TRUE,
ci.level = 0.95, rulereg = "and")
```

Arguments

data An n x p matrix containing the data, where n are cases and p are variables
pbar If pbar = TRUE, a progress bar will be displayed.
correction If correction = TRUE, the Bonferroni-Holm correction will be applied to p-values on the level of nodewise regressions (see e.g., Hochberg, 1987).
ci.level Specifies the width of the confidence interval used for testing the null hypothesis that a parameter is different to zero. Defaults to ci.level = 0.95, which corresponds to a critical threshold of 0.05.
rulereg Specifies how parameter estimates should be combined across nodewise regressions. The options are the AND-rule (requiring both estimates to be significant) or the OR-rule (only requiring one estimate to be significant). Defaults to rulereg = "and".
Value

The function returns a list with the following entries:

- `est`: A $p \times p$ matrix with point estimates for all partial correlations.
- `est.signf`: A $p \times p$ matrix with point estimates for all partial correlations with non-significant partial correlations being thresholded to zero.
- `signf`: A $p \times p$ matrix indicating for each partial correlation whether it is significantly different to zero.
- `ci.lower`: A $p \times p$ matrix indicating the lower confidence interval for each partial correlation.
- `ci.upper`: A $p \times p$ matrix indicating the upper confidence interval for each partial correlation.

Author(s)

Jonas Haslbeck <jonashaslbeck@gmail.com>

References

Examples

```r
# Toy example that runs relatively quickly
library(MASS)
p <- 5 # number of variables
data <- mvrnorm(n=100, mu=rep(0, p), Sigma = diag(p))
out <- OLS(data = data)

## Not run:

# Fit GGM to PTSD data
out <- OLS(data = ptsd_data)

## End(Not run)
```
Description

Plot point estimates and confidence intervals for models estimated with the `lasso_ms`, `lasso_dsp`, `lasso_dsp_boot` and OLS functions.

Usage

```r
## S3 method for class 'inet'
plot(x, labels = NULL, order = FALSE, subset = NULL,
cex.labels = 0.80, cex.axis = 0.75, ...)
```

Arguments

- `x`: The output object from either `lasso_ms`, `lasso_dsp`, `lasso_dsp_boot` or OLS.
- `labels`: A p-vector of characters specifying the labels for variables.
- `order`: If `order = TRUE`, the edges are listed in decreasing order based on the point estimate.
- `subset`: Allows to only display a subset of the edges. For example, if `subset = 1:20` the first 20 edges are displayed. This is especially useful for larger networks, in which all edges are unlikely to fit into a single figure.
- `cex.labels`: The font size of the edge labels.
- `cex.axis`: The font size of the axes.
- `...`: Additional arguments.

Value

Plots a figure showing point estimates and confidence intervals for all interaction parameters.

Author(s)

Jonas Haslbeck <jonashaslbeck@gmail.com>

Examples

```r
# Quick toy example
library(MASS)
p <- 5  # number of variables
data <- mvrnorm(n=100, mu=rep(0, p), Sigma = diag(p))
out <- OLS(data = data)

# point estimates + CIs; show 3 largest effects only
plot(out, labels = colnames(ptsd_data),
```
Not run:

Fit GGM to empirical PTSD data
set.seed(1)
out <- lasso_dsp(data = ptsd_data)

Plot first 20 edges
plot(out, labels = colnames(ptsd_data),
 order=TRUE, subset = 1:20)

End(Not run)
Index

inet-datasets, 2
inet-internal, 2
input_checks/inet-internal), 2

lasso, 3
lasso_dsp, 4
lasso_dsp_boot, 6
lasso_ms, 7

OLS, 9

plot.inet, 11
ptsd_data/inet-datasets), 2