Package ‘infer’

December 2, 2022

Type Package
Title Tidy Statistical Inference
Version 1.0.4
Description The objective of this package is to perform inference using an expressive statistical grammar that coheres with the tidy design framework.
License MIT + file LICENSE
BugReports https://github.com/tidymodels/infer/issues
Depends R (>= 3.5.0)
Imports dplyr (>= 0.7.0), ggplot2, glue (>= 1.3.0), grDevices, magrittr, methods, purrr, rlang (>= 0.2.0), tibble, broom, tidyr, generics, patchwork
Suggests covr, devtools (>= 1.12.0), fs, knitr, nycflights13, rmarkdown, stringr, testthat, vdiffr (>= 1.0.0), parsnip
VignetteBuilder knitr
Config/Needs/website tidyverse/tidytemplate
Encoding UTF-8
LazyData true
RoxygenNote 7.2.1
NeedsCompilation no
Author Andrew Bray [aut], Chester Ismay [aut] (<https://orcid.org/0000-0003-2820-2547>), Evgeni Chasnovski [aut] (<https://orcid.org/0000-0002-1617-4019>), Simon Couch [aut, cre] (<https://orcid.org/0000-0001-5676-5107>), Ben Baumer [aut] (<https://orcid.org/0000-0002-3279-0516>), Mine Cetinkaya-Rundel [aut] (<https://orcid.org/0000-0001-6452-2420>), Ted Laderas [ctb] (<https://orcid.org/0000-0002-6207-7068>), Nick Solomon [ctb],
Johanna Hardin [ctb],
Albert Y. Kim [ctb] (<https://orcid.org/0000-0001-7824-306X>),
Neal Fultz [ctb],
Doug Friedman [ctb],
Richie Cotton [ctb] (<https://orcid.org/0000-0003-2504-802X>),
Brian Fannin [ctb]

Maintainer Simon Couch <simonpatrickcouch@gmail.com>

Repository CRAN

Date/Publication 2022-12-02 00:10:10 UTC

R topics documented:

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>assume</td>
<td>2</td>
</tr>
<tr>
<td>calculate</td>
<td>5</td>
</tr>
<tr>
<td>chisq_stat</td>
<td>9</td>
</tr>
<tr>
<td>chisq_test</td>
<td>10</td>
</tr>
<tr>
<td>deprecated</td>
<td>11</td>
</tr>
<tr>
<td>fit.infer</td>
<td>11</td>
</tr>
<tr>
<td>generate</td>
<td>14</td>
</tr>
<tr>
<td>get_confidence_interval</td>
<td>17</td>
</tr>
<tr>
<td>get_p_value</td>
<td>20</td>
</tr>
<tr>
<td>gss</td>
<td>22</td>
</tr>
<tr>
<td>hypothesize</td>
<td>23</td>
</tr>
<tr>
<td>infer</td>
<td>24</td>
</tr>
<tr>
<td>observe</td>
<td>26</td>
</tr>
<tr>
<td>print.infer</td>
<td>28</td>
</tr>
<tr>
<td>prop_test</td>
<td>29</td>
</tr>
<tr>
<td>rep_sample_n</td>
<td>31</td>
</tr>
<tr>
<td>shade_confidence_interval</td>
<td>32</td>
</tr>
<tr>
<td>shade_p_value</td>
<td>35</td>
</tr>
<tr>
<td>specify</td>
<td>37</td>
</tr>
<tr>
<td>t_stat</td>
<td>39</td>
</tr>
<tr>
<td>t_test</td>
<td>40</td>
</tr>
<tr>
<td>visualize</td>
<td>41</td>
</tr>
<tr>
<td>%>%</td>
<td>45</td>
</tr>
</tbody>
</table>

Index 46

assume Define a theoretical distribution
Description

This function allows the user to define a null distribution based on theoretical methods. In many infer pipelines, assume() can be used in place of generate() and calculate() to create a null distribution. Rather than outputting a data frame containing a distribution of test statistics calculated from resamples of the observed data, assume() outputs a more abstract type of object just containing the distributional details supplied in the distribution and df arguments. However, assume() output can be passed to visualize().get_p_value(), and get_confidence_interval() in the same way that simulation-based distributions can.

To define a theoretical null distribution (for use in hypothesis testing), be sure to provide a null hypothesis via hypothesize(). To define a theoretical sampling distribution (for use in confidence intervals), provide the output of specify(). Sampling distributions (only implemented for t and z) lie on the scale of the data, and will be recentered and rescaled to match the corresponding stat given in calculate() to calculate the observed statistic.

Usage

```
assume(x, distribution, df = NULL, ...)
```

Arguments

- `x`: The output of specify() or hypothesize(), giving the observed data, variable(s) of interest, and (optionally) null hypothesis.
- `distribution`: The distribution in question, as a string. One of "F", "Chisq", "t", or "z".
- `df`: Optional. The degrees of freedom parameter(s) for the distribution supplied, as a numeric vector. For distribution = "F", this should have length two (e.g. c(10, 3)). For distribution = "Chisq" or distribution = "t", this should have length one. For distribution = "z", this argument is not required. The package will supply a message if the supplied df argument is different from recognized values. See the Details section below for more information.
- `...`: Currently ignored.

Details

Note that the assumption being expressed here, for use in theory-based inference, only extends to distributional assumptions: the null distribution in question and its parameters. Statistical inference with infer, whether carried out via simulation (i.e. based on pipelines using generate() and calculate()) or theory (i.e. with assume()), always involves the condition that observations are independent of each other.

infer only supports theoretical tests on one or two means via the t distribution and one or two proportions via the z.

For tests comparing two means, if n1 is the group size for one level of the explanatory variable, and n2 is that for the other level, infer will recognize the following degrees of freedom (df) arguments:

- `min(n1 - 1, n2 - 1)`
- `n1 + n2 - 2`
- The "parameter" entry of the analogous stats::t.test() call
• The "parameter" entry of the analogous \texttt{stats::t.test()} call with \texttt{var.equal = TRUE}

By default, the package will use the "parameter" entry of the analogous \texttt{stats::t.test()} call with \texttt{var.equal = FALSE} (the default).

Value

An infer theoretical distribution that can be passed to helpers like \texttt{visualize()}, \texttt{get_p_value()}, and \texttt{get_confidence_interval()}.

Examples

```r
# construct theoretical distributions ---------------------------------
# F distribution
# with the `partyid` explanatory variable
gss %>%
  specify(age ~ partyid) %>%
  assume(distribution = "F")

# Chi-squared goodness of fit distribution
# on the `finrela` variable
gss %>%
  specify(response = finrela) %>%
  hypothesize(null = "point",
              p = c("far below average" = 1/6,
                    "below average" = 1/6,
                    "average" = 1/6,
                    "above average" = 1/6,
                    "far above average" = 1/6,
                    "DK" = 1/6)) %>%
  assume("Chisq")

# Chi-squared test of independence
# on the `finrela` and `sex` variables
gss %>%
  specify(formula = finrela ~ sex) %>%
  assume(distribution = "Chisq")

# T distribution

gss %>%
  specify(age ~ college) %>%
  assume("t")

# Z distribution

gss %>%
  specify(response = sex, success = "female") %>%
  assume("z")

## Not run:
# each of these distributions can be passed to infer helper
# functions alongside observed statistics!
```
for example, a 1-sample t-test -------------------------------

calculate the observed statistic
obs_stat <- gss %>%
 specify(response = hours) %>%
 hypothesize(null = "point", mu = 40) %>%
 calculate(stat = "t")

construct a null distribution
null_dist <- gss %>%
 specify(response = hours) %>%
 assume("t")

juxtapose them visually
visualize(null_dist) +
 shade_p_value(obs_stat, direction = "both")

calculate a p-value
get_p_value(null_dist, obs_stat, direction = "both")

or, an F test ---

calculate the observed statistic
obs_stat <- gss %>%
 specify(age ~ partyid) %>%
 hypothesize(null = "independence") %>%
 calculate(stat = "F")

construct a null distribution
null_dist <- gss %>%
 specify(age ~ partyid) %>%
 assume(distribution = "F")

juxtapose them visually
visualize(null_dist) +
 shade_p_value(obs_stat, direction = "both")

calculate a p-value
get_p_value(null_dist, obs_stat, direction = "both")

End(Not run)

calculate
Calculate summary statistics

Description

Given the output of `specify()` and/or `hypothesize()`, this function will return the observed statistic specified with the `stat` argument. Some test statistics, such as `Chisq`, `t`, and `z`, require a null
calculate

hypothesis. If provided the output of `generate()`, the function will calculate the supplied stat for each replicate.

Learn more in vignette("infer").

Usage

```r
calculate(
  x,
  stat = c("mean", "median", "sum", "sd", "prop", "count", "diff in means",
           "ratio of props", "odds ratio", "ratio of means"),
  order = NULL,
  ...
)
```

Arguments

- **x**
 The output from `generate()` for computation-based inference or the output from `hypothesize()` piped in to here for theory-based inference.

- **stat**
 A string giving the type of the statistic to calculate. Current options include "mean", "median", "sum", "sd", "prop", "count", "diff in means", "diff in medians", "diff in props", "Chisq", "F", "slopes", "correlation", "t", "z", "ratio of props", "odds ratio", "ratio of means", and "correlation". `infer` only supports theoretical tests on one or two means via the "t" distribution and one or two proportions via the "z".

- **order**
 A string vector of specifying the order in which the levels of the explanatory variable should be ordered for subtraction (or division for ratio-based statistics), where order = c("first", "second") means ("first" - "second"), or the analogue for ratios. Needed for inference on difference in means, medians, proportions, ratios, t, and z statistics.

- **...**
 To pass options like `na.rm = TRUE` into functions like `mean()`, `sd()`, etc. Can also be used to supply hypothesized null values for the "t" statistic or additional arguments to `stats::chisq.test()`.

Value

A tibble containing a stat column of calculated statistics.

Missing levels in small samples

In some cases, when bootstrapping with small samples, some generated bootstrap samples will have only one level of the explanatory variable present. For some test statistics, the calculated statistic in these cases will be NaN. The package will omit non-finite values from visualizations (with a warning) and raise an error in p-value calculations.
Reproducibility

When using the infer package for research, or in other cases when exact reproducibility is a priority, be sure to set the seed for R’s random number generator. infer will respect the random seed specified in the `set.seed()` function, returning the same result when generating data given an identical seed. For instance, we can calculate the difference in mean age by college degree status using the gss dataset from 10 versions of the gss resampled with permutation using the following code.

```r
set.seed(1)

gss %>%
  specify(age ~ college) %>%
  hypothesize(null = "independence") %>%
  generate(reps = 5, type = "permute") %>%
  calculate("diff in means", order = c("degree", "no degree"))
```

```r
## Response: age (numeric)
## Explanatory: college (factor)
## Null Hypothesis: independence
## # A tibble: 5 × 2
##    replicate   stat
##      <int>   <dbl>
## 1        1 -0.531
## 2        2 -2.35
## 3        3  0.764
## 4        4  0.280
## 5        5  0.350
```

Setting the seed to the same value again and rerunning the same code will produce the same result.

```r
# set the seed
set.seed(1)

gss %>%
  specify(age ~ college) %>%
  hypothesize(null = "independence") %>%
  generate(reps = 5, type = "permute") %>%
  calculate("diff in means", order = c("degree", "no degree"))
```

```r
## Response: age (numeric)
## Explanatory: college (factor)
## Null Hypothesis: independence
## # A tibble: 5 × 2
##    replicate   stat
##      <int>   <dbl>
## 1        1 -0.531
## 2        2 -2.35
## 3        3  0.764
## 4        4  0.280
## 5        5  0.350
```
Please keep this in mind when writing infer code that utilizes resampling with generate().

See Also

visualize(), get_p_value(), and get_confidence_interval() to extract value from this function's outputs.

Other core functions: generate(), hypothesize(), specify()

Examples

```r
# calculate a null distribution of hours worked per week under
# the null hypothesis that the mean is 40
# calculate the corresponding observed statistic
# calculate a null distribution assuming independence between age
# of respondent and whether they have a college degree
# calculate the corresponding observed statistic
# some statistics require a null hypothesis
# more in-depth explanation of how to use the infer package
```

Not run:

```
# Not run:
vignette("infer")
```

End(Not run)
chisq_stat

Tidy chi-squared test statistic

Description

@description

Usage

chisq_stat(x, formula, response = NULL, explanatory = NULL, ...)

Arguments

x
A data frame that can be coerced into a tibble.

formula
A formula with the response variable on the left and the explanatory on the right.

response
The variable name in x that will serve as the response. This is alternative to using the formula argument.

explanatory
The variable name in x that will serve as the explanatory variable.

...
Additional arguments for chisq.test().

Details

A shortcut wrapper function to get the observed test statistic for a chisq test. Uses chisq.test(), which applies a continuity correction. This function has been deprecated in favor of the more general observe().

See Also

Other wrapper functions: chisq_test(), observe(), prop_test(), t_stat(), t_test()

Other functions for calculating observed statistics: observe(), t_stat()

Examples

chi-squared test statistic for test of independence
of college completion status depending and one's
self-identified income class
chisq_stat(gss, college ~ finrela)

chi-squared test statistic for a goodness of fit
test on whether self-identified income class
follows a uniform distribution
chisq_stat(gss,
 response = finrela,
 p = c("far below average" = 1/6,
 "below average" = 1/6,
 "average" = 1/6,
 "above average" = 1/6,
chisq_test

chisq_test

A tidier version of `chisq.test()` for goodness of fit tests and tests of independence.

Usage

```r
chisq_test(x, formula, response = NULL, explanatory = NULL, ...)
```

Arguments

- **x**: A data frame that can be coerced into a tibble.
- **formula**: A formula with the response variable on the left and the explanatory on the right.
- **response**: The variable name in `x` that will serve as the response. This is alternative to using the `formula` argument.
- **explanatory**: The variable name in `x` that will serve as the explanatory variable.
- **...**: Additional arguments for `chisq.test()`.

See Also

Other wrapper functions: `chisq_stat()`, `observe()`, `prop_test()`, `t_stat()`, `t_test()`

Examples

```r
# chi-squared test of independence for college completion
# status depending on one's self-identified income class
chisq_test(gss, college ~ finrela)

# chi-squared goodness of fit test on whether self-identified
# income class follows a uniform distribution
chisq_test(gss, response = finrela, 
           p = c("far below average" = 1/6,
                   "below average" = 1/6, 
                   "average" = 1/6, 
                   "above average" = 1/6, 
                   "far above average" = 1/6, 
                   "DK" = 1/6))
```

"far above average" = 1/6,
"DK" = 1/6)
Description

These functions and objects should no longer be used. They will be removed in a future release of infer.

Usage

conf_int(x, level = 0.95, type = "percentile", point_estimate = NULL)

p_value(x, obs_stat, direction)

Arguments

x See the non-deprecated function.
level See the non-deprecated function.
type See the non-deprecated function.
point_estimate See the non-deprecated function.
obs_stat See the non-deprecated function.
direction See the non-deprecated function.

See Also

get_p_value(), get_confidence_interval(), generate()

fit.infer Fit linear models to infer objects

Description

Given the output of an infer core function, this function will fit a linear model using stats::glm() according to the formula and data supplied earlier in the pipeline. If passed the output of specify() or hypothesize(), the function will fit one model. If passed the output of generate(), it will fit a model to each data resample, denoted in the replicate column. The family of the fitted model depends on the type of the response variable. If the response is numeric, fit() will use family = "gaussian" (linear regression). If the response is a 2-level factor or character, fit() will use family = "binomial" (logistic regression). To fit character or factor response variables with more than two levels, we recommend parsnip::multinom_reg().

infer provides a fit "method" for infer objects, which is a way of carrying out model fitting as applied to infer output. The "generic," imported from the generics package and re-exported from this package, provides the general form of fit() that points to infer's method when called on an infer object. That generic is also documented here.

Learn more in vignette("infer").
Usage

```r
## S3 method for class 'infer'
fit(object, ...)
```

Arguments

- `object`: Output from an infer function—likely `generate()` or `specify()`—which specifies the formula and data to fit a model to.
- `...`: Any optional arguments to pass along to the model fitting function. See `stats::glm()` for more information.

Details

Randomization-based statistical inference with multiple explanatory variables requires careful consideration of the null hypothesis in question and its implications for permutation procedures. Inference for partial regression coefficients via the permutation method implemented in `generate()` for multiple explanatory variables, consistent with its meaning elsewhere in the package, is subject to additional distributional assumptions beyond those required for one explanatory variable. Namely, the distribution of the response variable must be similar to the distribution of the errors under the null hypothesis’ specification of a fixed effect of the explanatory variables. (This null hypothesis is reflected in the variables argument to `generate()`. By default, all of the explanatory variables are treated as fixed.) A general rule of thumb here is, if there are large outliers in the distributions of any of the explanatory variables, this distributional assumption will not be satisfied; when the response variable is permuted, the (presumably outlying) value of the response will no longer be paired with the outlier in the explanatory variable, causing an outsize effect on the resulting slope coefficient for that explanatory variable.

More sophisticated methods that are outside of the scope of this package requiring fewer—or less strict—distributional assumptions exist. For an overview, see "Permutation tests for univariate or multivariate analysis of variance and regression" (Marti J. Anderson, 2001), doi:10.1139/cjfas583-626.

Value

A `tibble` containing the following columns:

- `replicate`: Only supplied if the input object had been previously passed to `generate()`. A number corresponding to which resample of the original data set the model was fitted to.
- `term`: The explanatory variable (or intercept) in question.
- `estimate`: The model coefficient for the given resample (`replicate`) and explanatory variable (`term`).

Reproducibility

When using the infer package for research, or in other cases when exact reproducibility is a priority, be sure the set the seed for R’s random number generator. `infer` will respect the random seed specified in the `set.seed()` function, returning the same result when `generate()`ing data given an identical seed. For instance, we can calculate the difference in mean age by college degree status.
using the gss dataset from 10 versions of the gss resampled with permutation using the following code.

```r
set.seed(1)

gss %>%
  specify(age ~ college) %>%
  hypothesize(null = "independence") %>%
  generate(reps = 5, type = "permute") %>%
  calculate("diff in means", order = c("degree", "no degree"))

## Response: age (numeric)
## Explanatory: college (factor)
## Null Hypothesis: independence
## # A tibble: 5 × 2
##  replicate   stat
##      <int>   <dbl>
## 1       1  -0.531
## 2       2  -2.35
## 3       3   0.764
## 4       4   0.280
## 5       5   0.350
```

Setting the seed to the same value again and rerunning the same code will produce the same result.

```r
# set the seed
set.seed(1)

gss %>%
  specify(age ~ college) %>%
  hypothesize(null = "independence") %>%
  generate(reps = 5, type = "permute") %>%
  calculate("diff in means", order = c("degree", "no degree"))

## Response: age (numeric)
## Explanatory: college (factor)
## Null Hypothesis: independence
## # A tibble: 5 × 2
##  replicate   stat
##      <int>   <dbl>
## 1       1  -0.531
## 2       2  -2.35
## 3       3   0.764
## 4       4   0.280
## 5       5   0.350
```

Please keep this in mind when writing infer code that utilizes resampling with `generate()`.
Examples

fit a linear model predicting number of hours worked per week using respondent age and degree status.
observed_fit <- gss %>%
 specify(hours ~ age + college) %>%
 fit()

observed_fit

fit 100 models to resamples of the gss dataset, where the response `hours` is permuted in each. note that this code is the same as the above except for the addition of the `generate` step.
null_fits <- gss %>%
 specify(hours ~ age + college) %>%
 hypothesize(null = "independence") %>%
 generate(reps = 100, type = "permute") %>%
 fit()

null_fits

for logistic regression, just supply a binary response variable! (this can also be made explicit via the `family` argument in ...)
gss %>%
 specify(college ~ age + hours) %>%
 fit()

more in-depth explanation of how to use the infer package
Not run:
vignette("infer")
End(Not run)

generate

Generate resamples, permutations, or simulations

Description

Generation creates a simulated distribution from `specify()`. In the context of confidence intervals, this is a bootstrap distribution based on the result of `specify()`. In the context of hypothesis testing, this is a null distribution based on the result of `specify()` and `hypothesize()`.

Learn more in `vignette("infer")`.

Usage

generate(x, reps = 1, type = NULL, variables = !!response_expr(x), ...)

generate

Arguments

- `x` A data frame that can be coerced into a tibble.
- `reps` The number of resamples to generate.
- `type` The method used to generate resamples of the observed data reflecting the null hypothesis. Currently one of "bootstrap", "permute", or "draw" (see below).
- `variables` If `type = "permute"`, a set of unquoted column names in the data to permute (independently of each other). Defaults to only the response variable. Note that any derived effects that depend on these columns (e.g., interaction effects) will also be affected.
- `...` Currently ignored.

Value

A tibble containing `reps` generated datasets, indicated by the `replicate` column.

Generation Types

The `type` argument determines the method used to create the null distribution.

- **bootstrap**: A bootstrap sample will be drawn for each replicate, where a sample of size equal to the input sample size is drawn (with replacement) from the input sample data.
- **permute**: For each replicate, each input value will be randomly reassigned (without replacement) to a new output value in the sample.
- **draw**: A value will be sampled from a theoretical distribution with parameter `p` specified in `hypothesize()` for each replicate. This option is currently only applicable for testing on one proportion. This generation type was previously called "simulate", which has been superseded.

Reproducibility

When using the infer package for research, or in other cases when exact reproducibility is a priority, be sure the set the seed for R's random number generator. infer will respect the random seed specified in the `set.seed()` function, returning the same result when generating data given an identical seed. For instance, we can calculate the difference in mean age by college degree status using the `gss` dataset from 10 versions of the `gss` resampled with permutation using the following code.

```r
set.seed(1)
gss %>%
  specify(age ~ college) %>%
  hypothesize(null = "independence") %>%
  generate(reps = 5, type = "permute") %>%
  calculate("diff in means", order = c("degree", "no degree"))
```
Response: age (numeric)
Explanatory: college (factor)
Null Hypothesis: independence
A tibble: 5 × 2
replicate stat
<int> <dbl>
1 1 -0.531
2 2 -2.35
3 3 0.764
4 4 0.280
5 5 0.350

Setting the seed to the same value again and rerunning the same code will produce the same result.

```r
# set the seed
set.seed(1)
gss %>%
  specify(age ~ college) %>%
  hypothesize(null = "independence") %>%
  generate(reps = 5, type = "permute") %>%
  calculate("diff in means", order = c("degree", "no degree"))
```

Please keep this in mind when writing infer code that utilizes resampling with `generate()`.

See Also

Other core functions: `calculate()`, `hypothesize()`, `specify()`

Examples

```r
# generate a null distribution by taking 200 bootstrap samples
# gss %>%
#   specify(response = hours) %>%
#   hypothesize(null = "point", mu = 40) %>%
#   generate(reps = 200, type = "bootstrap")
```
get_confidence_interval

Compute confidence interval

Description

Compute a confidence interval around a summary statistic. Both simulation-based and theoretical methods are supported, though only type = "se" is supported for theoretical methods.

Learn more in vignette("infer").

Usage

get_confidence_interval(x, level = 0.95, type = NULL, point_estimate = NULL)

get_ci(x, level = 0.95, type = NULL, point_estimate = NULL)

Arguments

x A distribution. For simulation-based inference, a data frame containing a distribution of calculate()d statistics or fit()ed coefficient estimates. This object should have been passed to generate() before being supplied or calculate() to fit(). For theory-based inference, output of assume(). Distributions for confidence intervals do not require a null hypothesis via hypothesize().

level A numerical value between 0 and 1 giving the confidence level. Default value is 0.95.
get_confidence_interval

type
A string giving which method should be used for creating the confidence interval. The default is "percentile" with "se" corresponding to (multiplier * standard error) and "bias-corrected" for bias-corrected interval as other options.

point_estimate
A data frame containing the observed statistic (in a calculate()-based workflow) or observed fit (in a fit()-based workflow). This object is likely the output of calculate() or fit() and need not to have been passed to generate(). Set to NULL by default. Must be provided if type is "se" or "bias-corrected".

Details

A null hypothesis is not required to compute a confidence interval. However, including hypothesize() in a pipeline leading to get_confidence_interval() will not break anything. This can be useful when computing a confidence interval using the same distribution used to compute a p-value.

Theoretical confidence intervals (i.e. calculated by supplying the output of assume() to the x argument) require that the point estimate lies on the scale of the data. The distribution defined in assume() will be recentered and rescaled to align with the point estimate, as can be shown in the output of visualize() when paired with shade_confidence_interval(). Confidence intervals are implemented for the following distributions and point estimates:

- distribution = "t": point_estimate should be the output of calculate() with stat = "mean" or stat = "diff in means"
- distribution = "z": point_estimate should be the output of calculate() with stat = "prop" or stat = "diff in props"

Value

A tibble containing the following columns:

- term: The explanatory variable (or intercept) in question. Only supplied if the input had been previously passed to fit().
- lower_ci, upper_ci: The lower and upper bounds of the confidence interval, respectively.

Aliases

get_ci() is an alias of get_confidence_interval(). conf_int() is a deprecated alias of get_confidence_interval().

See Also

Other auxiliary functions: get_p_value()

Examples

```r
boot_dist <- gss %>%
  # We're interested in the number of hours worked per week
  specify(response = hours) %>%
  # Generate bootstrap samples
  generate(reps = 1000, type = "bootstrap") %>%
```
Calculate mean of each bootstrap sample
```
calculate(stat = "mean")
```

```
boot_dist %>%
  # Calculate the confidence interval around the point estimate
  get_confidence_interval(
    # At the 95% confidence level; percentile method
    level = 0.95
  )

# for type = "se" or type = "bias-corrected" we need a point estimate
```
```
sample_mean <- gss %>%
  specify(response = hours) %>%
  calculate(stat = "mean")
```

```
boot_dist %>%
  get_confidence_interval(
    point_estimate = sample_mean,
    # At the 95% confidence level
    level = 0.95,
    # Using the standard error method
    type = "se"
  )
```

using a theoretical distribution -----------------------------------

```
# define a sampling distribution
sampling_dist <- gss %>%
  specify(response = hours) %>%
  assume("t")
```

```
# get the confidence interval---note that the
# point estimate is required here
get_confidence_interval(  
  sampling_dist,  
  level = .95,  
  point_estimate = sample_mean
)
```

using a model fitting workflow -----------------------

```
# fit a linear model predicting number of hours worked per
# week using respondent age and degree status.
observed_fit <- gss %>%
  specify(hours ~ age + college) %>%
  fit()
```

```
observed_fit
```

```
# fit 100 models to resamples of the gss dataset, where the response
# `hours` is permuted in each. note that this code is the same as
# the above except for the addition of the `generate` step.
null_fits <- gss %>%
```

```
# using a theoretical distribution
sampling_dist %>%
  # define a sampling distribution
  assume("t")
```

```
# get the confidence interval---note that the
# point estimate is required here
get_confidence_interval(  
  sampling_dist,  
  level = .95,  
  point_estimate = sample_mean
)
```

```
# using a model fitting workflow
```
```
# fit a linear model predicting number of hours worked per
# week using respondent age and degree status.
observed_fit <- gss %>%
  specify(hours ~ age + college) %>%
  fit()
```

```
observed_fit
```

```
# fit 100 models to resamples of the gss dataset, where the response
# `hours` is permuted in each. note that this code is the same as
# the above except for the addition of the `generate` step.
null_fits <- gss %>%
```

```
# using a theoretical distribution
sampling_dist %>%
  # define a sampling distribution
  assume("t")
```

```
# get the confidence interval---note that the
# point estimate is required here
get_confidence_interval(  
  sampling_dist,  
  level = .95,  
  point_estimate = sample_mean
)
```

```
# using a model fitting workflow
```
```
# fit a linear model predicting number of hours worked per
# week using respondent age and degree status.
observed_fit <- gss %>%
  specify(hours ~ age + college) %>%
  fit()
```

```
observed_fit
```

```
# fit 100 models to resamples of the gss dataset, where the response
# `hours` is permuted in each. note that this code is the same as
# the above except for the addition of the `generate` step.
null_fits <- gss %>%
```

```
# using a theoretical distribution
sampling_dist %>%
  # define a sampling distribution
  assume("t")
```

```
# get the confidence interval---note that the
# point estimate is required here
get_confidence_interval(  
  sampling_dist,  
  level = .95,  
  point_estimate = sample_mean
)
```

```
# using a model fitting workflow
```
```
# fit a linear model predicting number of hours worked per
# week using respondent age and degree status.
observed_fit <- gss %>%
  specify(hours ~ age + college) %>%
  fit()
```

```
observed_fit
```

```
# fit 100 models to resamples of the gss dataset, where the response
# `hours` is permuted in each. note that this code is the same as
# the above except for the addition of the `generate` step.
null_fits <- gss %>%
```

```
# using a theoretical distribution
sampling_dist %>%
  # define a sampling distribution
  assume("t")
```

```
# get the confidence interval---note that the
# point estimate is required here
get_confidence_interval(  
  sampling_dist,  
  level = .95,  
  point_estimate = sample_mean
)
```

```
# using a model fitting workflow
```
```
# fit a linear model predicting number of hours worked per
# week using respondent age and degree status.
observed_fit <- gss %>%
  specify(hours ~ age + college) %>%
  fit()
```

```
observed_fit
```

```
# fit 100 models to resamples of the gss dataset, where the response
# `hours` is permuted in each. note that this code is the same as
# the above except for the addition of the `generate` step.
null_fits <- gss %>%
```

```
# using a theoretical distribution
sampling_dist %>%
  # define a sampling distribution
  assume("t")
```

```
# get the confidence interval---note that the
# point estimate is required here
get_confidence_interval(  
  sampling_dist,  
  level = .95,  
  point_estimate = sample_mean
)
```

```
# using a model fitting workflow
```
```
# fit a linear model predicting number of hours worked per
# week using respondent age and degree status.
observed_fit <- gss %>%
  specify(hours ~ age + college) %>%
  fit()
```

```
observed_fit
```

```
# fit 100 models to resamples of the gss dataset, where the response
# `hours` is permuted in each. note that this code is the same as
# the above except for the addition of the `generate` step.
null_fits <- gss %>%
```

```
# using a theoretical distribution
sampling_dist %>%
  # define a sampling distribution
  assume("t")
```

```
# get the confidence interval---note that the
# point estimate is required here
get_confidence_interval(  
  sampling_dist,  
  level = .95,  
  point_estimate = sample_mean
)
```

```
# using a model fitting workflow
```
```
# fit a linear model predicting number of hours worked per
# week using respondent age and degree status.
observed_fit <- gss %>%
  specify(hours ~ age + college) %>%
  fit()
```

```
observed_fit
```

```
# fit 100 models to resamples of the gss dataset, where the response
# `hours` is permuted in each. note that this code is the same as
# the above except for the addition of the `generate` step.
null_fits <- gss %>%
```

```
# using a theoretical distribution
sampling_dist %>%
  # define a sampling distribution
  assume("t")
```

```
# get the confidence interval---note that the
# point estimate is required here
get_confidence_interval(  
  sampling_dist,  
  level = .95,  
  point_estimate = sample_mean
)
```

```
# using a model fitting workflow
```
```
# fit a linear model predicting number of hours worked per
# week using respondent age and degree status.
observed_fit <- gss %>%
  specify(hours ~ age + college) %>%
  fit()
```

```
observed_fit
```

```
# fit 100 models to resamples of the gss dataset, where the response
# `hours` is permuted in each. note that this code is the same as
# the above except for the addition of the `generate` step.
null_fits <- gss %>%
```

```
# using a theoretical distribution
sampling_dist %>%
  # define a sampling distribution
  assume("t")
```

```
# get the confidence interval---note that the
# point estimate is required here
get_confidence_interval(  
  sampling_dist,  
  level = .95,  
  point_estimate = sample_mean
)
```

```
# using a model fitting workflow
```
```
# fit a linear model predicting number of hours worked per
# week using respondent age and degree status.
observed_fit <- gss %>%
  specify(hours ~ age + college) %>%
  fit()
```

```
observed_fit
```

```
# fit 100 models to resamples of the gss dataset, where the response
# `hours` is permuted in each. note that this code is the same as
# the above except for the addition of the `generate` step.
null_fits <- gss %>%
```

```
# using a theoretical distribution
sampling_dist %>%
  # define a sampling distribution
  assume("t")
```

```
# get the confidence interval---note that the
# point estimate is required here
get_confidence_interval(  
  sampling_dist,  
  level = .95,  
  point_estimate = sample_mean
)
```

```
# using a model fitting workflow
```
```
# fit a linear model predicting number of hours worked per
# week using respondent age and degree status.
observed_fit <- gss %>%
  specify(hours ~ age + college) %>%
  fit()
```

```
observed_fit
```

```
# fit 100 models to resamples of the gss dataset, where the response
# `hours` is permuted in each. note that this code is the same as
# the above except for the addition of the `generate` step.
null_fits <- gss %>%
```

```
# using a theoretical distribution
sampling_dist %>%
  # define a sampling distribution
  assume("t")
```

```
# get the confidence interval---note that the
# point estimate is required here
get_confidence_interval(  
  sampling_dist,  
  level = .95,  
  point_estimate = sample_mean
)
```

```
# using a model fitting workflow
```
```
# fit a linear model predicting number of hours worked per
# week using respondent age and degree status.
observed_fit <- gss %>%
  specify(hours ~ age + college) %>%
  fit()
```

```
observed_fit
```

```
# fit 100 models to resamples of the gss dataset, where the response
# `hours` is permuted in each. note that this code is the same as
# the above except for the addition of the `generate` step.
null_fits <- gss %>%
```
```
specify(hours ~ age + college) %>%
hypothesize(null = "independence") %>%
generate(reps = 100, type = "permute") %>%
fit()

null_fits

get_confidence_interval(
  null_fits,
  point_estimate = observed_fit,
  level = .95
)

# more in-depth explanation of how to use the infer package
## Not run:
vignette("infer")
## End(Not run)
```

get_p_value

Compute p-value

Description

Compute a p-value from a null distribution and observed statistic. Learn more in vignette("infer").

Usage

```
get_p_value(x, obs_stat, direction)
```

Default S3 method:
```
get_p_value(x, obs_stat, direction)
```

S3 method for class 'infer_dist'
```
get_p_value(x, obs_stat, direction)
```

Arguments

- **x**
 A null distribution. For simulation-based inference, a data frame containing a distribution of `calculate()`d statistics or `fit()`ed coefficient estimates. This object should have been passed to `generate()` before being supplied or `calculate()` to `fit()`. For theory-based inference, the output of `assume()`.

- **obs_stat**
 A data frame containing the observed statistic (in a `calculate()`-based workflow) or observed fit (in a `fit()`-based workflow). This object is likely the output of `calculate()` or `fit()` and need not to have been passed to `generate()`.
get_p_value

direction
A character string. Options are "less", "greater", or "two-sided". Can also use "left", "right", "both", "two-sided", or "two.sided", "two.sided".

Value
A tibble containing the following columns:

• term: The explanatory variable (or intercept) in question. Only supplied if the input had been previously passed to fit().
• p_value: A value in [0, 1] giving the probability that a statistic/coefficient as or more extreme than the observed statistic/coefficient would occur if the null hypothesis were true.

Aliases
get_pvalue() is an alias of get_p_value(). p_value is a deprecated alias of get_p_value().

Zero p-value
Though a true p-value of 0 is impossible, get_p_value() may return 0 in some cases. This is due to the simulation-based nature of the {infer} package; the output of this function is an approximation based on the number of reps chosen in the generate() step. When the observed statistic is very unlikely given the null hypothesis, and only a small number of reps have been generated to form a null distribution, it is possible that the observed statistic will be more extreme than every test statistic generated to form the null distribution, resulting in an approximate p-value of 0. In this case, the true p-value is a small value likely less than 3/reps (based on a poisson approximation).

In the case that a p-value of zero is reported, a warning message will be raised to caution the user against reporting a p-value exactly equal to 0.

See Also
Other auxillary functions: get_confidence_interval()

Examples

using a simulation-based null distribution --------------------

find the point estimate---mean number of hours worked per week
point_estimate <- gss %>%
 specify(response = hours) %>%
 calculate(stat = "mean")

starting with the gss dataset
gss %>%
 # ...we're interested in the number of hours worked per week
 specify(response = hours) %>%
 # hypothesizing that the mean is 40
 hypothesize(null = "point", mu = 40) %>%
 # generating data points for a null distribution
 generate(reps = 1000, type = "bootstrap") %>%
 # finding the null distribution

calculate(stat = "mean") %>%
get_p_value(obs_stat = point_estimate, direction = "two-sided")

using a theoretical null distribution -------------------------------------

calculate the observed statistic
obs_stat <- gss %>%
specify(response = hours) %>%
hypothesize(null = "point", mu = 40) %>%
calculate(stat = "t")

define a null distribution
null_dist <- gss %>%
specify(response = hours) %>%
assume("t")

calculate a p-value
get_p_value(null_dist, obs_stat, direction = "both")

using a model fitting workflow --

fit a linear model predicting number of hours worked per
week using respondent age and degree status.
observed_fit <- gss %>%
specify(hours ~ age + college) %>%
fit()

observed_fit

fit 100 models to resamples of the gss dataset, where the response
`hours` is permuted in each. note that this code is the same as
the above except for the addition of the `generate` step.
null_fits <- gss %>%
specify(hours ~ age + college) %>%
hypothesize(null = "independence") %>%
generate(reps = 100, type = "permute") %>%
fit()

null_fits

get_p_value(null_fits, obs_stat = observed_fit, direction = "two-sided")

more in-depth explanation of how to use the infer package
Not run:
vignette("infer")
End(Not run)
Description

The General Social Survey is a high-quality survey which gathers data on American society and opinions, conducted since 1972. This data set is a sample of 500 entries from the GSS, spanning years 1973-2018, including demographic markers and some economic variables. Note that this data is included for demonstration only, and should not be assumed to provide accurate estimates relating to the GSS. However, due to the high quality of the GSS, the unweighted data will approximate the weighted data in some analyses.

Usage

gss

Format

A tibble with 500 rows and 11 variables:

year year respondent was surveyed
age age at time of survey, truncated at 89
sex respondent’s sex (self-identified)
college whether or not respondent has a college degree, including junior/community college
partyid political party affiliation
hompop number of persons in household
hours number of hours worked in week before survey, truncated at 89
income total family income
class subjective socioeconomic class identification
finrela opinion of family income
weight survey weight

Source

https://gss.norc.org

hypothesize

Declare a null hypothesis

Description

Declare a null hypothesis about variables selected in specify().
Learn more in vignette("infer").

Usage

hypothesize(x, null, p = NULL, mu = NULL, med = NULL, sigma = NULL)
hypothesise(x, null, p = NULL, mu = NULL, med = NULL, sigma = NULL)
Arguments

x
A data frame that can be coerced into a tibble.

null
The null hypothesis. Options include "independence" and "point".

p
The true proportion of successes (a number between 0 and 1). To be used with point null hypotheses when the specified response variable is categorical.

mu
The true mean (any numerical value). To be used with point null hypotheses when the specified response variable is continuous.

med
The true median (any numerical value). To be used with point null hypotheses when the specified response variable is continuous.

sigma
The true standard deviation (any numerical value). To be used with point null hypotheses.

Value

A tibble containing the response (and explanatory, if specified) variable data with parameter information stored as well.

See Also

Other core functions: calculate(), generate(), specify()

Examples

hypothesize independence of two variables

```r
gss %>%
specify(college ~ partyid, success = "degree") %>%
hypothesize(null = "independence")
```

hypothesize a mean number of hours worked per week of 40

```r
gss %>%
specify(response = hours) %>%
hypothesize(null = "point", mu = 40)
```

more in-depth explanation of how to use the infer package

```r
## Not run:
vignette("infer")

## End(Not run)
```
Details

For an overview of how to use the core functionality, see vignette("infer")

Author(s)

Maintainer: Simon Couch <simonpatrickcouch@gmail.com> (ORCID)

Authors:

- Andrew Bray <abray@reed.edu>
- Chester Ismay <chester.ismay@gmail.com> (ORCID)
- Evgeni Chasnovski <evgeni.chasnovski@gmail.com> (ORCID)
- Ben Baumer <ben.baumer@gmail.com> (ORCID)
- Mine Cetinkaya-Rundel <mine@stat.duke.edu> (ORCID)

Other contributors:

- Ted Laderas <tedladeras@gmail.com> (ORCID) [contributor]
- Nick Solomon <nick.solomon@datacamp.com> [contributor]
- Johanna Hardin <Jo.Hardin@pomona.edu> [contributor]
- Albert Y. Kim <albert.ys.kim@gmail.com> (ORCID) [contributor]
- Neal Fultz <nfultz@gmail.com> [contributor]
- Doug Friedman <doug.nhp@gmail.com> [contributor]
- Richie Cotton <richie@datacamp.com> (ORCID) [contributor]
- Brian Fannin <captain@pirategrunt.com> [contributor]

See Also

Useful links:

- https://github.com/tidymodels/infer
- https://infer.tidymodels.org/
- https://infer.tidymodels.org
- Report bugs at https://github.com/tidymodels/infer/issues
Description

This function is a wrapper that calls `specify()`, `hypothesize()`, and `calculate()` consecutively that can be used to calculate observed statistics from data. `hypothesize()` will only be called if a point null hypothesis parameter is supplied.

Learn more in vignette("infer").

Usage

```r
observe(
  x,
  formula,
  response = NULL,
  explanatory = NULL,
  success = NULL,
  null = NULL,
  p = NULL,
  mu = NULL,
  med = NULL,
  sigma = NULL,
  stat = c("mean", "median", "sum", "sd", "prop", "count", "diff in means",
           "diff in medians", "diff in props", "Chisq", "F", "slope", "correlation", "t", "z",
           "ratio of props", "odds ratio"),
  order = NULL,
  ...
)
```

Arguments

- **x**
 - A data frame that can be coerced into a tibble.
- **formula**
 - A formula with the response variable on the left and the explanatory on the right. Alternatively, a response and explanatory argument can be supplied.
- **response**
 - The variable name in `x` that will serve as the response. This is an alternative to using the `formula` argument.
- **explanatory**
 - The variable name in `x` that will serve as the explanatory variable. This is an alternative to using the `formula` argument.
- **success**
 - The level of response that will be considered a success, as a string. Needed for inference on one proportion, a difference in proportions, and corresponding z stats.
- **null**
 - The null hypothesis. Options include "independence" and "point".
- **p**
 - The true proportion of successes (a number between 0 and 1). To be used with point null hypotheses when the specified response variable is categorical.
mu The true mean (any numerical value). To be used with point null hypotheses when the specified response variable is continuous.

med The true median (any numerical value). To be used with point null hypotheses when the specified response variable is continuous.

sigma The true standard deviation (any numerical value). To be used with point null hypotheses.

stat A string giving the type of the statistic to calculate. Current options include "mean", "median", "sum", "sd", "prop", "count", "diff in means", "diff in medians", "diff in props", "Chisq" (or "chisq"), "F" (or "f"), "t", "z", "ratio of props", "slope", "odds ratio", "ratio of means", and "correlation". infer only supports theoretical tests on one or two means via the "t" distribution and one or two proportions via the "z".

order A string vector of specifying the order in which the levels of the explanatory variable should be ordered for subtraction (or division for ratio-based statistics), where order = c("first", "second") means ("first" - "second"), or the analogue for ratios. Needed for inference on difference in means, medians, proportions, ratios, t, and z statistics.

... To pass options like na.rm = TRUE into functions like mean(), sd(), etc. Can also be used to supply hypothesized null values for the "t" statistic or additional arguments to stats::chisq.test().

Value
A 1-column tibble containing the calculated statistic stat.

See Also
Other wrapper functions: chisq_stat(), chisq_test(), prop_test(), t_stat(), t_test()
Other functions for calculating observed statistics: chisq_stat(), t_stat()

Examples
calculating the observed mean number of hours worked per week
gss %>% observe(hours ~ NULL, stat = "mean")

equivalently, calculating the same statistic with the core verbs
gss %>%
 specify(response = hours) %>%
 calculate(stat = "mean")

calculating a t statistic for hypothesized mu = 40 hours worked/week
gss %>%
 observe(hours ~ NULL, stat = "t", null = "point", mu = 40)

equivalently, calculating the same statistic with the core verbs
gss %>%
 specify(response = hours) %>%
 hypothesize(null = "point", mu = 40) %>%
calculate(stat = "t")

similarly for a difference in means in age based on whether
the respondent has a college degree
observe(
 gss,
 age ~ college,
 stat = "diff in means",
 order = c("degree", "no degree")
)

equivalently, calculating the same statistic with the core verbs
gss %>%
 specify(age ~ college) %>%
 calculate("diff in means", order = c("degree", "no degree"))

for a more in-depth explanation of how to use the infer package
Not run:
vignette("infer")

End(Not run)

print.infer

Print methods

Description

Print methods

Usage

```r
## S3 method for class 'infer'
print(x, ...)
```

```r
## S3 method for class 'infer_layer'
print(x, ...)
```

```r
## S3 method for class 'infer_dist'
print(x, ...)
```

Arguments

- `x` An object of class infer, i.e. output from `specify()` or `hypothesize()`, or of class `infer_layer`, i.e. output from `shade_p_value()` or `shade_confidence_interval()`.
- `...` Arguments passed to methods.
prop_test

Tidy proportion test

Description

A tidier version of `prop.test()` for equal or given proportions.

Usage

```r
prop_test(
  x,
  formula,
  response = NULL,
  explanatory = NULL,
  p = NULL,
  order = NULL,
  alternative = "two-sided",
  conf_int = TRUE,
  conf_level = 0.95,
  success = NULL,
  correct = NULL,
  z = FALSE,
  ...
)
```

Arguments

- `x` A data frame that can be coerced into a tibble.
- `formula` A formula with the response variable on the left and the explanatory on the right, where an explanatory variable NULL indicates a test of a single proportion.
- `response` The variable name in `x` that will serve as the response. This is alternative to using the `formula` argument. This is an alternative to the formula interface.
- `explanatory` The variable name in `x` that will serve as the explanatory variable. Optional. This is an alternative to the formula interface.
- `p` A numeric vector giving the hypothesized null proportion of success for each group.
- `order` A string vector specifying the order in which the proportions should be subtracted, where `order = c("first", "second")` means "first" - "second". Ignored for one-sample tests, and optional for two sample tests.
- `alternative` Character string giving the direction of the alternative hypothesis. Options are "two-sided" (default), "greater", or "less". Only used when testing the null that a single proportion equals a given value, or that two proportions are equal; ignored otherwise.
conf_int A logical value for whether to report the confidence interval or not. TRUE by default, ignored if p is specified for a two-sample test. Only used when testing the null that a single proportion equals a given value, or that two proportions are equal; ignored otherwise.

conf_level A numeric value between 0 and 1. Default value is 0.95. Only used when testing the null that a single proportion equals a given value, or that two proportions are equal; ignored otherwise.

success The level of response that will be considered a success, as a string. Only used when testing the null that a single proportion equals a given value, or that two proportions are equal; ignored otherwise.

correct A logical indicating whether Yates’ continuity correction should be applied where possible. If z = TRUE, the correct argument will be overwritten as FALSE. Otherwise defaults to correct = TRUE.

z A logical value for whether to report the statistic as a standard normal deviate or a Pearson’s chi-square statistic. z^2 is distributed chi-square with 1 degree of freedom, though note that the user will likely need to turn off Yates’ continuity correction by setting correct = FALSE to see this connection.

... Additional arguments for prop.test().

See Also
Other wrapper functions: chisq_stat(), chisq_test(), observe(), t_stat(), t_test()

Examples

two-sample proportion test for difference in proportions of
college completion by respondent sex
prop_test(gss,
 college ~ sex,
 order = c("female", "male"))

one-sample proportion test for hypothesized null
proportion of college completion of .2
prop_test(gss,
 college ~ NULL,
 p = .2)

report as a z-statistic rather than chi-square
and specify the success level of the response
prop_test(gss,
 college ~ NULL,
 success = "degree",
 p = .2,
 z = TRUE)
rep_sample_n

Perform repeated sampling

Description

These functions extend the functionality of `dplyr::sample_n()` and `dplyr::slice_sample()` by allowing for repeated sampling of data. This operation is especially helpful while creating sampling distributions—see the examples below!

Usage

```r
rep_sample_n(tbl, size, replace = FALSE, reps = 1, prob = NULL)

rep_slice_sample(.data, n = NULL, prop = NULL, replace = FALSE, weight_by = NULL, reps = 1)
```

Arguments

- **tbl, .data** Data frame of population from which to sample.
- **size, n, prop** size and n refer to the sample size of each sample. The size argument to `rep_sample_n()` is required, while in `rep_slice_sample()` sample size defaults to 1 if not specified. prop, an argument to `rep_slice_sample()`, refers to the proportion of rows to sample in each sample, and is rounded down in the case that `prop * nrow(.data)` is not an integer. When using `rep_slice_sample()`, please only supply one of n or prop.
- **replace** Should samples be taken with replacement?
- **reps** Number of samples to take.
- **prob, weight_by** A vector of sampling weights for each of the rows in .data—must have length equal to `nrow(.data)`.

Details

`rep_sample_n()` and `rep_slice_sample()` are designed to behave similar to their dplyr counterparts. As such, they have at least the following differences:

- In case `replace = FALSE` having size bigger than number of data rows in `rep_sample_n()` will give an error. In `rep_slice_sample()` having such `n` or `prop > 1` will give warning and output sample size will be set to number of rows in data.

Note that the `dplyr::sample_n()` function has been superseded by `dplyr::slice_sample()`.
shade_confidence_interval

Value

A tibble of size reps \times n rows corresponding to reps samples of size n from .data, grouped by replicate.

Examples

```r
library(dplyr)
library(ggplot2)
library(tibble)

# take 1000 samples of size n = 50, without replacement
slices <- gss %>%
  rep_slice_sample(n = 50, reps = 1000)

slices

# compute the proportion of respondents with a college degree in each replicate
p_hats <- slices %>%
  group_by(replicate) %>%
  summarize(prop_college = mean(college == "degree"))

# plot sampling distribution
ggplot(p_hats, aes(x = prop_college)) +
  geom_density() +
  labs(
    x = "p_hat", y = "Number of samples",
    title = "Sampling distribution of p_hat"
  )

# sampling with probability weights. Note probabilities are automatically renormalized to sum to 1
df <- tibble(
  id = 1:5,
  letter = factor(c("a", "b", "c", "d", "e"))
)

rep_slice_sample(df, n = 2, reps = 5, weight_by = c(.5, .4, .3, .2, .1))
```

shade_confidence_interval

Add information about confidence interval

Description

shade_confidence_interval() plots a confidence interval region on top of visualize() output. The output is a ggplot2 layer that can be added with +. The function has a shorter alias, shade_ci(). Learn more in vignette("infer").
shade_confidence_interval

Usage

shade_confidence_interval(
 endpoints,
 color = "mediumaquamarine",
 fill = "turquoise",
 ...,
)

shade_ci(endpoints, color = "mediumaquamarine", fill = "turquoise", ...)

Arguments

endpoints The lower and upper bounds of the interval to be plotted. Likely, this will be the output of get_confidence_interval(). For calculate()-based workflows, this will be a 2-element vector or a 1 x 2 data frame containing the lower and upper values to be plotted. For fit()-based workflows, a (p + 1) x 3 data frame with columns term, lower_ci, and upper_ci, giving the upper and lower bounds for each regression term. For use in visualizations of assume() output, this must be the output of get_confidence_interval().

color A character or hex string specifying the color of the end points as a vertical lines on the plot.

fill A character or hex string specifying the color to shade the confidence interval. If NULL then no shading is actually done.

... Other arguments passed along to \texttt{ggplot2} functions.

Value

If added to an existing infer visualization, a \texttt{ggplot2} object displaying the supplied intervals on top of its corresponding distribution. Otherwise, an infer_layer list.

See Also

Other visualization functions: \texttt{shade_p_value()}

Examples

find the point estimate---mean number of hours worked per week
point_estimate <- gss %>%
 specify(response = hours) %>%
 calculate(stat = "mean")

...and a bootstrap distribution
boot_dist <- gss %>%
 # ...we're interested in the number of hours worked per week
 specify(response = hours) %>%
 # generating data points
 generate(reps = 1000, type = "bootstrap") %>%
 # finding the distribution from the generated data
 calculate(stat = "mean")
find a confidence interval around the point estimate

```r
ci <- boot_dist %>%
  get_confidence_interval(point_estimate = point_estimate,
                          level = .95,
                          type = "se")
```

and plot it!

```r
boot_dist %>%
  visualize() +
  shade_confidence_interval(ci)
```

or just plot the bounds

```r
boot_dist %>%
  visualize() +
  shade_confidence_interval(ci, fill = NULL)
```

you can shade confidence intervals on top of
theoretical distributions, too---the theoretical
distribution will be recentered and rescaled to
align with the confidence interval

```r
sampling_dist <- gss %>%
  specify(response = hours) %>%
  assume(distribution = "t")
visualize(sampling_dist) +
  shade_confidence_interval(ci)
```

to visualize distributions of coefficients for multiple
explanatory variables, use a `fit()`-based workflow

fit 1000 linear models with the `hours` variable permuted

```r
null_fits <- gss %>%
  specify(hours ~ age + college) %>%
  hypothesize(null = "independence") %>%
  generate(reps = 1000, type = "permute") %>%
  fit()
null_fits
```

fit a linear model to the observed data

```r
obs_fit <- gss %>%
  specify(hours ~ age + college) %>%
  fit()
obs_fit
```

get confidence intervals for each term

```r
conf_ints <-
shade_p_value

```
get_confidence_interval(
 null_fits,
 point_estimate = obs_fit,
 level = .95
)

visualize distributions of coefficients
generated under the null
visualize(null_fits)

add a confidence interval shading layer to juxtapose
the null fits with the observed fit for each term
visualize(null_fits) +
 shade_confidence_interval(conf_ints)

more in-depth explanation of how to use the infer package
Not run:
vignette("infer")
End(Not run)
```

---

## shade_p_value

Shade histogram area beyond an observed statistic

### Description

`shade_p_value()` plots a p-value region on top of `visualize()` output. The output is a ggplot2 layer that can be added with `+`. The function has a shorter alias, `shade_pvalue()`. Learn more in `vignette("infer")`.

### Usage

```
shade_p_value(obs_stat, direction, color = "red2", fill = "pink", ...)
```

```
shade_pvalue(obs_stat, direction, color = "red2", fill = "pink", ...)
```

### Arguments

- **obs_stat** The observed statistic or estimate. For `calculate()`-based workflows, this will be a 1-element numeric vector or a 1 x 1 data frame containing the observed statistic. For `fit()`-based workflows, a (p + 1) x 2 data frame with columns `term` and `estimate` giving the observed estimate for each term.

- **direction** A string specifying in which direction the shading should occur. Options are "less", "greater", or "two-sided". Can also give "left", "right", "both", "two-sided", "two sided", or "two.sided". If `NULL`, the function will not shade any area.
color A character or hex string specifying the color of the observed statistic as a vertical line on the plot.

fill A character or hex string specifying the color to shade the p-value region. If NULL, the function will not shade any area.

... Other arguments passed along to \ggplot2\ functions. For expert use only.

Value

If added to an existing infer visualization, a \ggplot2\ object displaying the supplied statistic on top of its corresponding distribution. Otherwise, an infer_layer list.

See Also

Other visualization functions: \shade_confidence_interval()\n
Examples

# find the point estimate---mean number of hours worked per week
point_estimate <- gss %>%
  specify(response = hours) %>%
  hypothesize(null = "point", mu = 40) %>%
  calculate(stat = "t")

# ...and a null distribution
null_dist <- gss %>%
  # ...we're interested in the number of hours worked per week
  specify(response = hours) %>%
  # hypothesizing that the mean is 40
  hypothesize(null = "point", mu = 40) %>%
  # generating data points for a null distribution
  generate(reps = 1000, type = "bootstrap") %>%
  # estimating the null distribution
  calculate(stat = "t")

# shade the p-value of the point estimate
null_dist %>%
  visualize() +
  shade_p_value(obs_stat = point_estimate, direction = "two-sided")

# you can shade confidence intervals on top of
# theoretical distributions, too!
null_dist_theory <- gss %>%
  specify(response = hours) %>%
  assume(distribution = "t")

null_dist_theory %>%
  visualize() +
  shade_p_value(obs_stat = point_estimate, direction = "two-sided")

# to visualize distributions of coefficients for multiple
# explanatory variables, use a `fit()`-based workflow

# fit 1000 linear models with the `hours` variable permuted
null_fits <- gss %>%
  specify(hours ~ age + college) %>%
  hypothesize(null = "independence") %>%
  generate(reps = 1000, type = "permute") %>%
  fit()

null_fits

# fit a linear model to the observed data
obs_fit <- gss %>%
  specify(hours ~ age + college) %>%
  fit()

obs_fit

# visualize distributions of coefficients
# generated under the null
visualize(null_fits)

# add a p-value shading layer to juxtapose the null
# fits with the observed fit for each term
visualize(null_fits) +
  shade_p_value(obs_fit, direction = "both")

# the direction argument will be applied
# to the plot for each term
visualize(null_fits) +
  shade_p_value(obs_fit, direction = "left")

# more in-depth explanation of how to use the infer package
## Not run:
vignette("infer")

## End(Not run)

---

**specify**

*Specify response and explanatory variables*

**Description**

`specify()` is used to specify which columns in the supplied data frame are the relevant response (and, if applicable, explanatory) variables. Note that character variables are converted to factors. Learn more in `vignette("infer")`. 
Usage

`specify(x, formula, response = NULL, explanatory = NULL, success = NULL)`

Arguments

- **x**: A data frame that can be coerced into a tibble.
- **formula**: A formula with the response variable on the left and the explanatory on the right. Alternatively, a `response` and `explanatory` argument can be supplied.
- **response**: The variable name in `x` that will serve as the response. This is an alternative to using the `formula` argument.
- **explanatory**: The variable name in `x` that will serve as the explanatory variable. This is an alternative to using the `formula` argument.
- **success**: The level of response that will be considered a success, as a string. Needed for inference on one proportion, a difference in proportions, and corresponding z stats.

Value

A tibble containing the response (and explanatory, if specified) variable data.

See Also

Other core functions: `calculate()`, `generate()`, `hypothesize()`

Examples

```r
specifying for a point estimate on one variable
gss %>%
 specify(response = age)

specify a relationship between variables as a formula...
gss %>%
 specify(age ~ partyid)

...or with named arguments!
gss %>%
 specify(response = age, explanatory = partyid)

more in-depth explanation of how to use the infer package
Not run:
vignette("infer")

End(Not run)
```
t_stat

**Description**

A shortcut wrapper function to get the observed test statistic for a t test. This function has been deprecated in favor of the more general `observe()`.

**Usage**

```r
t_stat(
 x,
 formula,
 response = NULL,
 explanatory = NULL,
 order = NULL,
 alternative = "two-sided",
 mu = 0,
 conf_int = FALSE,
 conf_level = 0.95,
 ...
)
```

**Arguments**

- `x`: A data frame that can be coerced into a tibble.
- `formula`: A formula with the response variable on the left and the explanatory on the right.
- `response`: The variable name in `x` that will serve as the response. This is alternative to using the `formula` argument.
- `explanatory`: The variable name in `x` that will serve as the explanatory variable.
- `order`: A string vector of specifying the order in which the levels of the explanatory variable should be ordered for subtraction, where `order = c("first", "second")` means ("first" - "second").
- `alternative`: Character string giving the direction of the alternative hypothesis. Options are "two-sided" (default), "greater", or "less".
- `mu`: A numeric value giving the hypothesized null mean value for a one sample test and the hypothesized difference for a two sample test.
- `conf_int`: A logical value for whether to include the confidence interval or not. TRUE by default.
- `conf_level`: A numeric value between 0 and 1. Default value is 0.95.
- `...`: Pass in arguments to `infer` functions.

**See Also**

- Other wrapper functions: `chisq_stat()`, `chisq_test()`, `observe()`, `prop_test()`, `t_test()`
- Other functions for calculating observed statistics: `chisq_stat()`, `observe()`
Examples

```r
library(tidyr)

gss %>%
 t_stat(response = hours, mu = 40)

gss %>%
 tidyr::drop_na(college) %>%
 t_stat(formula = hours ~ college,
 order = c("degree", "no degree"),
 alternative = "two-sided")
```

---

### t_test

**Tidy t-test**

A tidier version of `t.test()` for two sample tests.

#### Usage

```r
t_test(
 x,
 formula = NULL,
 response = NULL,
 explanatory = NULL,
 order = NULL,
 alternative = "two-sided",
 mu = 0,
 conf_int = TRUE,
 conf_level = 0.95,
 ...)
```

#### Arguments

- **x** A data frame that can be coerced into a tibble.
- **formula** A formula with the response variable on the left and the explanatory on the right.
- **response** The variable name in `x` that will serve as the response. This is alternative to using the `formula` argument.
- **explanatory** The variable name in `x` that will serve as the explanatory variable.
order: A string vector of specifying the order in which the levels of the explanatory variable should be ordered for subtraction, where order = c("first", "second") means ("first" - "second").

alternative: Character string giving the direction of the alternative hypothesis. Options are "two-sided" (default), "greater", or "less".

mu: A numeric value giving the hypothesized null mean value for a one sample test and the hypothesized difference for a two sample test.

conf_int: A logical value for whether to include the confidence interval or not. TRUE by default.

conf_level: A numeric value between 0 and 1. Default value is 0.95.

...: For passing in other arguments to t.test().

See Also

Other wrapper functions: chisq_stat(), chisq_test(), observe(), prop_test(), t_stat()

Examples

library(tidyr)

# t test for number of hours worked per week
# by college degree status

gss %>%
  tidyr::drop_na(college) %>%
  t_test(formula = hours ~ college,
         order = c("degree", "no degree"),
         alternative = "two-sided")

# see vignette("infer") for more explanation of the
# intuition behind the infer package, and vignette("t_test")
# for more examples of t-tests using infer

visualize(data, bins = 15, method = "simulation", dens_color = "black", ...)

visualise(data, bins = 15, method = "simulation", dens_color = "black", ...)

Description

Visualize statistical inference

Visualize the distribution of the simulation-based inferential statistics or the theoretical distribution (or both!).

Learn more in vignette("infer").

Usage

visualize(data, bins = 15, method = "simulation", dens_color = "black", ...)

visualise(data, bins = 15, method = "simulation", dens_color = "black", ...)
Arguments

data  A distribution. For simulation-based inference, a data frame containing a distribution of `calculate()`d statistics or `fit()`ed coefficient estimates. This object should have been passed to `generate()` before being supplied or `calculate()` to `fit()`. For theory-based inference, the output of `assume()`.

bins  The number of bins in the histogram.

method  A string giving the method to display. Options are "simulation", "theoretical", or "both" with "both" corresponding to "simulation" and "theoretical". If data is the output of `assume()`, this argument will be ignored and default to "theoretical".

dens_color  A character or hex string specifying the color of the theoretical density curve.

...  Other arguments passed along to `ggplot2` functions.

Details

In order to make the visualization workflow more straightforward and explicit, `visualize()` now only should be used to plot distributions of statistics directly. A number of arguments related to shading p-values and confidence intervals are now deprecated in `visualize()` and should now be passed to `shade_p_value()` and `shade_confidence_interval()`, respectively. `visualize()` will raise a warning if deprecated arguments are supplied.

Value

For `calculate()`-based workflows, a ggplot showing the simulation-based distribution as a histogram or bar graph. Can also be used to display theoretical distributions.

For `assume()`-based workflows, a ggplot showing the theoretical distribution.

For `fit()`-based workflows, a `patchwork` object showing the simulation-based distributions as a histogram or bar graph. The interface to adjust plot options and themes is a bit different for `patchwork` plots than `ggplot2` plots. The examples highlight the biggest differences here, but see `patchwork::plot_annotation()` and `patchwork::&.gg` for more details.

See Also

`shade_p_value()`, `shade_confidence_interval()`.

Examples

```r
generate a null distribution
null_dist <- gss %>%
 # we're interested in the number of hours worked per week
 specify(response = hours) %>%
 # hypothesizing that the mean is 40
 hypothesize(null = "point", mu = 40) %>%
 # generating data points for a null distribution
 generate(reps = 1000, type = "bootstrap") %>%
 # calculating a distribution of means
 calculate(stat = "mean")
```
# or a bootstrap distribution, omitting the hypothesize() step,  
# for use in confidence intervals
boot_dist <- gss %>%  
  specify(response = hours) %>%  
  generate(reps = 1000, type = "bootstrap") %>%  
  calculate(stat = "mean")

# we can easily plot the null distribution by piping into visualize
null_dist %>%
  visualize()

# we can add layers to the plot as in ggplot, as well...  
# find the point estimate---mean number of hours worked per week
point_estimate <- gss %>%  
  specify(response = hours) %>%  
  calculate(stat = "mean")

# find a confidence interval around the point estimate
CI <- boot_dist %>%  
  get_confidence_interval(point_estimate = point_estimate,  
    # at the 95% confidence level
    level = .95,  
    # using the standard error method
    type = "se")

# display a shading of the area beyond the p-value on the plot
null_dist %>%
  visualize() +  
  shade_p_value(obs_stat = point_estimate, direction = "two-sided")

# ...or within the bounds of the confidence interval
null_dist %>%
  visualize() +  
  shade_confidence_interval(CI)

# plot a theoretical sampling distribution by creating  
# a theory-based distribution with `assume()`
sampling_dist <- gss %>%  
  specify(response = hours) %>%  
  assume(distribution = "t")

visualize(sampling_dist)

# you can shade confidence intervals on top of  
# theoretical distributions, too---the theoretical  
# distribution will be recentered and rescaled to  
# align with the confidence interval
visualize(sampling_dist) +  
  shade_confidence_interval(CI)

# to plot both a theory-based and simulation-based null distribution,
# use a theorized statistic (i.e. one of t, z, F, or Chisq)
# and supply the simulation-based null distribution
null_dist_t <- gss %>%
  specify(response = hours) %>%
  hypothesize(null = "point", mu = 40) %>%
  generate(reps = 1000, type = "bootstrap") %>%
  calculate(stat = "t")

obs_stat <- gss %>%
  specify(response = hours) %>%
  hypothesize(null = "point", mu = 40) %>%
  calculate(stat = "t")

visualize(null_dist_t, method = "both")

visualize(null_dist_t, method = "both") +
  shade_p_value(obs_stat, "both")

# to visualize distributions of coefficients for multiple
# explanatory variables, use a `fit()`-based workflow

# fit 1000 models with the `hours` variable permuted
null_fits <- gss %>%
  specify(hours ~ age + college) %>%
  hypothesize(null = "independence") %>%
  generate(reps = 1000, type = "permute") %>%
  fit()

null_fits

# visualize distributions of resulting coefficients
visualize(null_fits)

# the interface to add themes and other elements to patchwork
# plots (outputted by `visualize` when the inputted data
# is from the `fit()` function) is a bit different than adding
# them to ggplot2 plots.
library(ggplot2)

# to add a ggplot2 theme to a `calculate()`-based visualization, use `+
null_dist %>% visualize() + theme_dark()

# to add a ggplot2 theme to a `fit()`-based visualization, use `&`
null_fits %>% visualize() & theme_dark()

# More in-depth explanation of how to use the infer package
## Not run:
vignette("infer")

## End(Not run)
Like \{dplyr\}, \{infer\} also uses the pipe (\%\%\%) function from \texttt{magrittr} to turn function composition into a series of iterative statements.

**Arguments**

- \texttt{lhs, rhs}
  
  Inference functions and the initial data frame.
Index

* auxiliary functions
  get_confidence_interval, 17
  get_p_value, 20

* core functions
  calculate, 5
  generate, 14
  hypothesize, 23
  specify, 37

* datasets
  gss, 22

* functions for calculating observed statistics
  chisq_stat, 9
  observe, 26
  t_stat, 39

* visualization functions
  shade_confidence_interval, 32
  shade_p_value, 35

* wrapper functions
  chisq.test(), 9
  chisq_test, 10
  observe, 26
  prop_test, 29
  t_stat, 39
  t_test, 40

%>%, 45

assume, 2
assume(), 17, 18, 20, 33, 42

calculate, 5, 16, 24, 38
calculate(), 3, 17, 18, 20, 26, 33, 35, 42
chisq.test(), 9, 10
chisq_stat, 9, 10, 27, 30, 39, 41
chisq.test, 9, 10, 27, 30, 39, 41
conf_int (deprecated), 11
deprecated, 11
dplyr::sample_n(), 31
dplyr::slice_sample(), 31

fit(), 17, 18, 20, 21, 33, 35, 42
fit.infer, 11
generate, 8, 14, 24, 38
generate(), 3, 6, 11, 12, 17, 18, 20, 42
get_ci (get_confidence_interval), 17
get_confidence_interval, 17, 21
get_confidence_interval(), 3, 4, 8, 11, 33
get_p_value, 18, 20
get_p_value(), 3, 4, 8, 11
get_pvalue (get_p_value), 20
gss, 22
hypothesise (hypothesize), 23
hypothesize, 8, 16, 23, 38
hypothesize(), 3, 5, 6, 11, 15, 17, 18, 26, 28
infer, 24
infer-package (infer), 24
mean(), 6, 27
observe, 9, 10, 26, 30, 39, 41
observe(), 9, 39
p_value (deprecated), 11
parsnip::multinom_reg(), 11
patchwork::&.gg, 42
patchwork::plot_annotation(), 42
print.infer, 28
print.infer_dist (print.infer), 28
print.infer_layer (print.infer), 28
prop.test(), 29, 30
prop_test, 9, 10, 27, 29, 39, 41
rep_sample_n, 31
rep_slice_sample (rep_sample_n), 31
sd(), 6, 27
shade_ci (shade_confidence_interval), 32
shade_confidence_interval, 32, 36
INDEX

shade_confidence_interval(), 18, 28, 42
shade_p_value, 33, 35
shade_p_value(), 28, 42
shade_pvalue(shade_p_value), 35
specify, 8, 16, 24, 37
specify(), 3, 5, 11, 12, 23, 26, 28
stats::chisq.test(), 6, 27
stats::glm(), 11, 12
t.test(), 40, 41
t_stat, 9, 10, 27, 30, 39, 41
t_test, 9, 10, 27, 30, 39, 40
tibble, 9, 10, 12, 15, 18, 21, 24, 26, 29, 38–40

visualise (visualize), 41
visualize, 41
visualize(), 3, 4, 8, 18, 32, 35, 42