Package ‘inferference’

April 21, 2021

Type Package
Title Methods for Causal Inference with Interference
Version 1.0.2
Date 2021-04-21
Author Bradley Saul
Maintainer Bradley Saul <bradleysaul@gmail.com>
Depends R (>= 3.1)
Imports numDeriv (>= 2012.9-1), lme4 (>= 1.1-6), Formula (>= 1.1-2), methods
License GPL (>= 2)
Suggests testthat, knitr, markdown
VignetteBuilder knitr
LazyData true
RoxygenNote 7.1.1
Encoding UTF-8
NeedsCompilation no
Repository CRAN
Date/Publication 2021-04-21 11:20:02 UTC

R topics documented:

diagnose_weights .. 2
direct_effect ... 3
get_args .. 3
indirect_effect .. 4
inferference ... 4
diagnose_weights

Plot histograms of weights from an interference object

Description

Plot histograms of weights from an interference object

Usage

diagnose_weights(obj, allocations = NULL, ...)

Arguments

obj
 an interference object

allocations
 optional numeric vector of allocations for which to print histogram. If NULL (the default), five allocations selected evenly from the first allocation to the last are printed.

... additional arguments passed to hist

Value

histogram of group-level weights
direct_effect

Retrieves Direct Effect estimates

Description
Retrieves the population average direct causal effect for a specified allocation: \(\hat{Y}(0, \alpha) - \hat{Y}(1, \alpha) \).

Usage
direct_effect(object, allocation = NULL, trt.lvl1 = 0)

Arguments
- `object` : an object of class interference
- `allocation` : the allocation scheme for which to estimate direct effects. If NULL, then returns all direct effects.
- `trt.lvl1` : Defaults to 0.

Value
a data.frame with requested values

get_args
Get arguments from a function

Description
Extracts the names of the arguments from a function, and creates a list of those arguments where they exist in

Usage
get_args(FUN, args_list = NULL, ...)

Arguments
- `FUN` : function for which to find arguments
- `args_list` : a list of arguments. Defaults to NULL.
- `...` : any arguments. Those necessary for FUN must be named as appropriate for FUN

Value
list of arguments for FUN
Examples

```r
myargs <- get_args(lm, formula = Sepal.Length ~ Sepal.Width, data = iris )
summary(do.call('lm', myargs))
```

indirect_effect

Retrieves Indirect Effect estimates

Description

Retrieves the population average indirect causal effect for specified allocations: \(\hat{Y}(0, alpha1) - \hat{Y}(0, alpha2) \). This is the effect due to the coverage (allocation) levels.

Usage

```r
indirect_effect(object, allocation1, allocation2 = NULL, trt.lvl = 0)
ie(object, allocation1, allocation2 = NULL, trt.lvl = 0)
```

Arguments

- `object`: an object of class `interference`
- `allocation1`: the allocation scheme for which to estimate indirect effects
- `allocation2`: the allocation scheme for which to estimate indirect effects. If NULL, then returns all indirect effects compared to allocation1.
- `trt.lvl`: Defaults to 0.

Value

a `data.frame` with requested values

interference

Methods for causal inference with interference

Description

Interference occurs when the treatment of one unit affects outcomes of other units. This package provides methods for estimating causal effects in the presence of interference. Currently it implements the IPW estimators proposed by Tchetgen Tchetgen and Vanderweele (2012) (doi: 10.1177/0962280210386779) and developed further in Heydrich-Perez et al. (2014) (doi: 10.1111/biom.12184).

References

Description

Estimate Causal Effects in presence of interference

Usage

interference(
 formula,
 propensity_integrand = "logit_integrand",
 loglihood_integrand = propensity_integrand,
 allocations,
 data,
 model_method = "glmer",
 model_options = list(family = stats::binomial(link = "logit")),
 causal_estimation_method = "ipw",
 causal_estimation_options = list(variance_estimation = "robust"),
 conf.level = 0.95,
 rescale.factor = 1,
 integrate_allocation = TRUE,
 runSilent = TRUE,
 ...
)

Arguments

formula The formula used to define the causal model. Has a minimum of 4 parts, separated by | and ~ in a specific structure: outcome | exposure ~ propensity covariates | group. The order matters, and the pipes split the data frame into corresponding pieces. The part separated by ~ is passed to the chosen model_method used to estimate or fix propensity parameters.

propensity_integrand A function, which may be created by the user, used to compute the IP weights. This defaults to logit_integrand, which calculates the product of inverse logits for individuals in a group: \[\prod_{j=1}^{n} \left\{ r \times h_{ij}(b_i) \right\}^{A_{ij}} \left\{ 1 - r \times h_{ij}(b_i) \right\}^{1-A_{ij}} f_b(b_i; \theta_s) \] where \[h_{ij}(b_i) = \text{logit}^{-1}(X_{ij} \theta_a + b_i) \] and \(b_i \) is a group-level random effect, \(f_b \) is a \(\mathcal{N}(0, \theta_s) \) density, and \(r \) is a known randomization probability which may be useful if a participation vector is included in the formula. If no random effect was included in the formula, logit_integrand essentially ignores the random effect and \(f_b(b_i; \theta_s) \) integrates to 1. See details for arguments that can be passed to logit_integrand.
loglihood_integrand
A function, which may be created by the user, that defines the log likelihood of
the logit model used for robust variance estimation. Generally, this will be the
same function as propensity_integrand. Indeed, this is the default.

allocations
a vector of values in (0, 1). Increasing the number of elements of the allocation
vector greatly increases computation time; however, a larger number of allocations
will make plots look nicer. A minimum of two allocations is required.

data
the analysis data frame. This must include all the variables defined in the
formula.

model_method
the method used to estimate or set the propensity model parameters. Must be one
of 'glm', 'glmer', or 'oracle'. Defaults to 'glmer'. For a fixed effects only
model use 'glm', and to include random effects use 'glmer'. logit_integrand
only supports a single random effect for the grouping variable, so if more ran-
dom effects are included in the model, different propensity_integrand and
loglihood_integrand functions should be defined. When the propensity pa-
rameters are known (as in simulations) or if estimating parameters by other
methods, use the 'oracle' option. See model_options for details on how to
pass the oracle parameters.

model_options
a list of options passed to the function in model_method. Defaults to list(family
= binomial(link = 'logit')). When model_method = 'oracle', the list must
have two elements (1) fixed_effects and (2) random_effects. If the model
did not include random effects, set random_effects = NULL.

causal_estimation_method
currently only supports 'ipw'.

causal_estimation_options
A list. Current options are: (1) variance_estimation is either 'naive' or
'robust'. See details. Defaults to 'robust'.

conf.level
level for confidence intervals. Defaults to 0.95.

rescale.factor
a scalar multiplication factor by which to rescale outcomes and effects. Defaults
to 1.

integrate_allocation
Indicator of whether the integrand function uses the allocation parameter. De-
defaults to TRUE.

runSilent
if FALSE, status of computations are printed to console. Defaults to TRUE.

...
Used to pass additional arguments to internal functions such as numDeriv::grad()
or integrate(). Additionally, arguments can be passed to the propensity_integrand
and loglihood_integrand functions.

Details
The following formula includes a random effect for the group: outcome | exposure ~ propensity
covariates + (1|group) | group. In this instance, the group variable appears twice. If the study
design includes a "participation" variable, this is easily added to the formula: outcome | exposure
| participation ~ propensity covariates | group.

logit_integrand has two options that can be passed via the ... argument:
logit_integrand

- randomization: a scalar. This is the \(r \) in the formula just above. It defaults to 1 in the case that a participation vector is not included. The vaccine study example demonstrates use of this argument.
- integrate_allocation: TRUE/FALSE. When group sizes grow large (over 1000), the product term of logit_integrand tends quickly to 0. When set to TRUE, the IP weights tend less quickly to 0. Defaults to FALSE.

If the true propensity model is known (e.g. in simulations) use variance_estimation = 'naive'; otherwise, use the default variance_estimation = 'robust'. Refer to the web appendix of Heydrich-Perez et al. (2014) (doi: 10.1111/biom.12184) for complete details.

Value

Returns a list of overall and group-level IPW point estimates, overall and group-level IPW point estimates (using the weight derivatives), derivatives of the loglihood, the computed weight matrix, the computed weight derivative array, and a summary.

References

logit_integrand

Default integrand for the group-level propensity score

Description

Computes the following function:

\[
\prod_{j=1}^{n} (r h_j(b))^{A_j} (1 - r h_j(b))^{1-A_j} f_b(b; \theta_b)
\]

where \(r \) is the randomization scheme. \(X \) is the covariate(s) vectors. \(fixef \) is the vector of fixed effects. \(b \) is the random (group-level) effect. \(ranef \) is the random effect variance.

Usage

\[
\text{logit_integrand}(b, X, A, \text{parameters}, \text{allocation} = A, \text{randomization} = 1)
\]
Arguments

- **b**: vector argument of values necessary for `integrate`.
- **X**: n by length(fixed effects) matrix of covariates.
- **A**: vector of binary treatments
- **parameters**: vector of fixed effect (and random effect if applicable). Random effect should be last element in vector.
- **allocation**: The allocation strategy. Defaults to A so that is essentially ignored if allocation is not set to a value within (0, 1).
- **randomization**: Randomization probability. Defaults to 1.

Value

value of the integrand

log_likelihood

Log Likelihood

Description

Used by `score_matrix` to compute the log likelihood.

Usage

```
log_likelihood(parameters, integrand, ...)
```

Arguments

- **parameters**: vector of parameters passed to integrand
- **integrand**: Defaults to logit_integrand
- **...**: additional arguments passed to integrand function.

Value

value of log likelihood
overall_effect
Retrieve Overall Effect Estimates

Description
Retrieves the population average overall causal effect: \(\hat{Y}(\alpha_1) - \hat{Y}(\alpha_2) \)

Usage

```r
overall_effect(object, allocation1, allocation2 = NULL)
oe(object, allocation1, allocation2 = NULL)
```

Arguments

- `object`: an object of class `interference`
- `allocation1`: the allocation scheme for which to estimate overall effects
- `allocation2`: the allocation scheme for which to estimate overall effects

Value

a data.frame with a single row with requested values

print.interference
Prints a summary of an interference object

Description
Prints a summary of an interference object

Usage

```r
# S3 method for class 'interference'
print(x, ...)
```

Arguments

- `x`: object of class `interference`
- `...`: ignored
score_calc

Compute scores for a single group

Description

Used by score_matrix to log likelihood derivatives for a single group.

Usage

score_calc(parameters, integrand, hide.errors = TRUE, ...)

Arguments

parameters vector of parameters passed to integrand
integrand function to used for the integrand. Defaults to logit_integrand.
hide.errors Hide errors printed from grad. Defaults to true.
... additional arguments pass to the integrand function.

Value

length(theta) vector of scores

score_matrix

Calculate matrix of log Likelihood derivatives

Description

Calculate matrix of log Likelihood derivatives

Usage

score_matrix(integrand, X, A, G, parameters, runSilent = TRUE, ...)

Arguments

integrand function passed to log_likelihood. Defaults to logit_integrand
X covariate matrix
A vector of treatment assignments
G vector of group assignments
parameters vector of parameters passed to integrand
runSilent If FALSE, prints errors to console. Defaults to TRUE.
... additional arguments passed to integrand or grad. For example, one can change the method argument in grad.
total_effect

Value

N X length(params) matrix of scores

Description

Retrieves the population average total causal effect for specified allocations: \(\hat{Y}(0, \alpha_1) - \hat{Y}(1, \alpha_2) \)

Usage

total_effect(object, allocation1, allocation2 = NULL, trt.lvl1 = 0)

te(object, allocation1, allocation2 = NULL, trt.lvl1 = 0)

Arguments

- **object**: an object of class interference
- **allocation1**: the allocation scheme for which to estimate total effects
- **allocation2**: the allocation scheme for which to estimate total effects. If NULL, then returns all indirect effects compared to allocation1.
- **trt.lvl1**: Defaults to 0.

Value

a data.frame with requested values

vaccinesim

Vaccine Study Sample Data

Description

Format

da dataset with 6 variables and 3000 rows

- Y: the outcome (0 - no cholera; 1 - cholera)
- X1: an individual’s age (in decades)
- X2: an individual’s distance from river
- A: an indicator of vaccination (0 - no vaccine; 1 - vaccine)
- B: an indicator of participation (0 - did not participate in vaccine trial, 1 - did participate)
- group: group membership
References

Voting Contagion Experiment Data

Description

A dataset of a voting contagion experiment. See Nickerson (2008) for more details. The variables used in the package vignette are documented here.

Format

a dataset with 21 variables and 7722 rows

- familyhousehold ID
- denver1 = subject in Denver, 0 = Minneapolis
- treatment1 = voting encouragement, 2 = recycling message, 3 = not contacted
- reached1 = subject answered door, 0 = not
- hsecontact1 = household contacted by canvassers, 0 = not
- voted02p1 = voted in '02 primary, 0 = not
- partyparty affiliation
- age
- gender

References

wght_calc

Description

Calculates the IPW for a single group. Used by `wght_matrix` to create a matrix of weights for each group and allocation scheme.

Usage

```r
call(wght_calc(parameters, integrand, allocation, integrate_allocation = TRUE, ...))
```

Arguments

- `parameters` vector of parameter values
- `integrand` function to pass to the argument 'f' of `integrate`
- `allocation` the allocation ratio for which to compute the weight
- `integrate_allocation` Indicator of whether the integrand function uses the allocation parameter. Defaults to `TRUE`.
- `...` other arguments passed to integrand.

Details

If `allocation` is an argument in the integrand function and `integrate_allocation` == `TRUE`, then the weight is calculated as:

\[
\frac{1}{Pr(A|X)}
\]

Otherwise, the weight is computed by:

\[
\frac{\prod_{j=1}^{n} \alpha_j^A (1 - \alpha)^{1 - A_j} \Pr(A|X)}{Pr(A|X)}
\]

Value

scalar result of the integral
Create an array of group weight derivatives

Description

Uses `wght_deriv_calc` to compute the weight derivatives for each group per coverage level.

Usage

```r
wght_deriv_array(
  parameters,
  integrand,
  allocations,
  X,
  A,
  G,
  runSilent = TRUE,
  integrate_allocation = TRUE,
  ...
)
```

Arguments

- **parameters**: vector of parameters passed to `integrand`
- **integrand**: function to pass to the argument 'f' of `integrate`.
- **allocations**: coverage levels in [0, 1]. Can be vector.
- **X**: covariate matrix
- **A**: vector of treatment assignments
- **G**: vector of group assignments
- **runSilent**: if FALSE, errors are printed to console. Defaults to TRUE.
- **integrate_allocation**: Indicator of whether the integrand function uses the allocation parameter. Defaults to TRUE.
- **...**: other arguments passed to integrand.

Value

A length(unique(group)) X length(params) X length(alphas) array of group weight derivatives
wght_deriv_calc
Compute the derivative(s) of a weight

Description

Takes the derivative of the `wght_calc` function with respect to each parameter in `params`.

Usage

```r
wght_deriv_calc(
    integrand,
    parameters,
    allocation,
    integrate_allocation = TRUE,
    ...
)
```

Arguments

- `integrand`: function to pass to the argument 'f' of `integrate`.
- `parameters`: vector of parameter values
- `allocation`: the allocation ratio for which to compute the weight
- `integrate_allocation`: Indicator of whether the integrand function uses the allocation parameter. Defaults to TRUE.
- `...`: other arguments passed to integrand.

Value

vector of derivatives with respect to element of `params`

wght_matrix
Creates a number of groups by number of allocation schemes matrix of group weights. Allocation schemes are selected by the user.

Description

Groups should be numbered 1, ..., N
Usage

\texttt{wght_matrix(}
\begin{itemize}
 \item \texttt{integrand},
 \item \texttt{allocations},
 \item \texttt{X},
 \item \texttt{A},
 \item \texttt{G},
 \item \texttt{parameters},
 \item \texttt{runSilent = TRUE},
 \item \texttt{integrate_allocation = TRUE},
 \item \ldots
\end{itemize}
\texttt{)}

Arguments

- \texttt{integrand}: function to pass to the argument ‘f’ of \texttt{integrate}.
- \texttt{allocations}: coverage levels in [0, 1]. Can be vector.
- \texttt{X}: covariate matrix
- \texttt{A}: vector of treatment assignments
- \texttt{G}: vector of group assignments
- \texttt{parameters}: vector of parameters passed to \texttt{integrand}
- \texttt{runSilent}: if FALSE, errors are printed to console. Defaults to TRUE.
- \texttt{integrate_allocation}: Indicator of whether the integrand function uses the allocation parameter. Defaults to TRUE.
- \ldots: other arguments passed to integrand.

Value

- a length(unique(group)) X length(alphas) matrix of group weights
Index

* datasets
 - vaccinesim, 11
 - voters, 12

diagnose_weights, 2
direct_effect, 3

get_args, 3
grad, 10

hist, 2

ie (indirect_effect), 4
indirect_effect, 4
interference, 4
integrate, 8, 13–16
interference, 5

log_likelihood, 8, 10
logit_integrand, 7, 10

oe (overall_effect), 9
overall_effect, 9

print.interference, 9

score_calc, 10
score_matrix, 8, 10, 10

te (total_effect), 11
total_effect, 11

vaccinesim, 11
voters, 12

wght_calc, 13, 15
wght_deriv_array, 14
wght_deriv_calc, 14, 15
wght_matrix, 13, 15