Package ‘injurytools’

February 1, 2023

Title A Toolkit for Sports Injury Data Analysis
Version 1.0.1
Description Sports Injury Data analysis aims to identify and describe the magnitude of the injury problem, and to gain more insights (e.g. determine potential risk factors) by statistical modelling approaches. The 'injurytools' package provides standardized routines and utilities that simplify such analyses. It offers functions for data preparation, informative visualizations and descriptive and model-based analyses.
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 7.2.1
Suggests covr, gridExtra, kableExtra, knitr, RColorBrewer, rmarkdown, spelling, testthat (>= 3.0.0)
Config/testthat/edition 3
Language en-US
Imports checkmate, dplyr, forcats, ggplot2, lubridate, magrittr, metR, purrr, rlang, stats, stringr, tidyr, tidyselect, withr
Depends R (>= 2.10)
VignetteBuilder knitr
URL https://github.com/lzumeta/injurytools,
 https://lzumeta.github.io/injurytools/
BugReports https://github.com/lzumeta/injurytools/issues
NeedsCompilation no
Author Lore Zumeta Olaskoaga [aut, cre]
 (https://orcid.org/0000-0001-6141-1469),
 Dae-Jin Lee [aut] (https://orcid.org/0000-0002-8995-8535)
Maintainer Lore Zumeta Olaskoaga <lzumeta@bcamath.org>
Repository CRAN
Date/Publication 2023-02-01 08:50:05 UTC
R topics documented:

\begin{itemize}
 \item \texttt{cut_injd} \hfill 2
 \item \texttt{date2season} \hfill 3
 \item \texttt{gg_injbarplot} \hfill 4
 \item \texttt{gg_injphoto} \hfill 5
 \item \texttt{gg_injprev_polar} \hfill 6
 \item \texttt{gg_injriskmatrix} \hfill 7
 \item \texttt{injd} \hfill 9
 \item \texttt{injprev} \hfill 10
 \item \texttt{injsummary} \hfill 11
 \item \texttt{is_injd} \hfill 13
 \item \texttt{is_injds} \hfill 14
 \item \texttt{prepare_data} \hfill 14
 \item \texttt{raw_df_exposures} \hfill 17
 \item \texttt{raw_df_injuries} \hfill 18
 \item \texttt{season2year} \hfill 19
\end{itemize}

Index \hfill 20

\begin{tabular}{ll}
\hline
\texttt{cut_injd} & \textit{Cut the range of the follow-up} \\
\hline
\end{tabular}

Description

Given an \texttt{injd} object, cut the range of the time period such that the limits of the observed dates, first and last observed dates, are \texttt{date0} and \texttt{datef}, respectively. It is possible to specify just one date, i.e. the two dates of the range do not necessarily have to be entered. See Note section.

Usage

\begin{verbatim}
cut_injd(injd, date0, datef)
\end{verbatim}

Arguments

\begin{itemize}
 \item \texttt{injd} \hfill Prepared data, an \texttt{injd} object.
 \item \texttt{date0} \hfill Starting date of class \texttt{Date} or \texttt{numeric}. If \texttt{numeric}, it should refer to a year (e.g. \texttt{date} = 2018). Optional.
 \item \texttt{datef} \hfill Ending date. Same class as \texttt{date0}. Optional.
\end{itemize}

Value

An \texttt{injd} object with a shorter follow-up period.

Note

Be aware that by modifying the follow-up period of the cohort, the study design is being altered. This function should not be used, unless there is no strong argument supporting it. And in that case, it should be used with caution.
Examples

 # Prepare data
 df_injuries <- prepare_inj(df_injuries = raw_df_injuries,
 player = "player_name",
 date_injured = "from",
 date_recovered = "until")
 df_exposures <- prepare_exp(df_exposures = raw_df_exposures,
 player = "player_name",
 date = "year",
 time_expo = "minutes_played")
 injd <- prepare_all(data_exposures = df_exposures,
 data_injuries = df_injuries,
 exp_unit = "matches_minutes")
 cut_injd(injd, date0 = 2018)

date2season

Get the season

Description
Get the season given the date.

Usage
date2season(date)

Arguments
date A vector of class Date or integer/numeric. If it is integer/numeric, it should refer to the year in which the season started (e.g. date = 2015 to refer to the 2015/2016 season)

Value
Character specifying the respective competition season given the date. The season (output) follows this pattern: "2005/2006".

Examples
date <- Sys.Date()
date2season(date)
gg_injbarplot

Plot player’s injury incidence/burden ranking

Description

A bar chart that shows player-wise injury summary statistics, either injury incidence or injury burden, ranked in descending order.

Usage

```r
gg_injbarplot(injds, type = c("incidence", "burden"), title = NULL)
```

Arguments

- `injds` injds S3 object (see `injsummary()`).
- `type` A character value indicating whether to plot injury incidence’s or injury burden’s ranking. One of “incidence” or “burden”, respectively.
- `title` Text for the main title.

Value

A ggplot object (to which optionally more layers can be added).

Examples

```r
df_exposures <- prepare_exp(raw_df_exposures, player = "player_name", date = "year", time_expo = "minutes_played")
df_injuries <- prepare_inj(raw_df_injuries, player = "player_name", date_injured = "from", date_recovered = "until")
injd <- prepare_all(data_exposures = df_exposures, data_injuries = df_injuries, exp_unit = "matches_minutes")

injds <- injsummary(injd)

p1 <- gg_injbarplot(injds, type = "incidence", title = "Overall injury incidence per player")
p2 <- gg_injbarplot(injds, type = "burden", title = "Overall injury burden per player")

# install.packages("gridExtra")
# library(gridExtra)
if (require("gridExtra")) {
  gridExtra::grid.arrange(p1, p2, nrow = 1)
}
```
gg_injphoto

Plot injuries over the follow-up period

Description

Given an `injd` S3 object it plots an overview of the injuries sustained by each player/athlete in the cohort during the follow-up. Each subject timeline is depicted horizontally where the red cross indicates the exact injury date, the blue circle the recovery date and the bold black line indicates the duration of the injury (time-loss).

Usage

```r
gg_injphoto(injd, title = NULL, fix = FALSE, by_date = "1 months")
```

Arguments

- **injd**
 - Prepared data. An `injd` object.
- **title**
 - Text for the main title.
- **fix**
 - A logical value indicating whether to limit the range of date (x scale) to the maximum observed exposure date or not to limit the x scale, regardless some recovery dates might be longer than the maximum observed exposure date.
- **by_date**
 - Increment of the date sequence at which x-axis tick-marks are to drawn. An argument to be passed to `base::seq.Date()`.

Value

A ggplot object (to which optionally more layers can be added).

Examples

```r
df_exposures <- prepare_exp(raw_df_exposures, player = "player_name", date = "year", time_expo = "minutes_played")
df_injuries <- prepare_inj(raw_df_injuries, player = "player_name", date_injured = "from", date_recovered = "until")
injd <- prepare_all(data_exposures = df_exposures, data_injuries = df_injuries, exp_unit = "minutes")

gg_injphoto(injd, title = "Injury Overview", by_date = "1 years")
```
gg_injprev_polar

Plot polar area diagrams representing available/injured players proportions

Description

Plot the proportions of available and injured players in the cohort, on a monthly or season basis, by a polar area diagram. Further information on the type of injury may be specified so that the injured players proportions are disaggregated and reported according to this variable.

Usage

```r
gg_injprev_polar(
  injd,
  by = c("monthly", "season"),
  var_type_injury = NULL,
  title = "Polar area diagram\ninjured and available (healthy) players"
)
```

Arguments

- `injd`: Prepared data, an `injd` object.
- `by`: Character, one of "monthly" or "season", specifying the periodicity according to which to calculate the proportions of available and injured players/athletes.
- `var_type_injury`: Character specifying the name of the column on the basis of which to classify the injuries and calculate proportions of the injured players. It should refer to a (categorical) variable that describes the "type of injury". Defaults to `NULL`.
- `title`: Text for the main title.

Value

A `ggplot` object (to which optionally more layers can be added).

Examples

```r
df_exposures <- prepare_exp(raw_df_exposures, player = "player_name",
                           date = "year", time_expo = "minutes_played")
df_injuries <- prepare_inj(raw_df_injuries, player = "player_name",
                        date_injured = "from", date_recovered = "until")
injd <- prepare_all(data_exposures = df_exposures,
                    data_injuries = df_injuries,
                    exp_unit = "matches_minutes")
```
library(ggplot2)
our_palette <- c("seagreen3", "red3", rev(RColorBrewer::brewer.pal(5, "Reds")))

gg_injprev_polar(injd, by = "monthly", var_type_injury = "injury_type",
title = "Polar area diagram\ninjured and available (healthy) players per month") +
scale_fill_manual(values = our_palette)

Description

Given an injds S3 object, it depicts risk matrix plots, a graph in which the injury incidence (frequency) is plotted against the average days lost per injury (consequence). The point estimate of injury incidence together with its confidence interval is plotted, according to the method used when running injsummary() function. On the y-axis, the mean time-loss per injury together with ± IQR (days) is plotted. The number shown inside the point and the point size itself, report the injury burden (days lost per player-exposure time), the bigger the size the greater the burden. See References section.

Usage

gg_injriskmatrix(
injds,
var_type_injury = NULL,
add_contour = TRUE,
title = NULL,
xlab = "Incidence (injuries per _)",
ylab = "Mean time-loss (days) per injury",
errh_height = 1,
errv_width = 0.05
)

Arguments

injds injds S3 object (see injsummary())
var_type_injury Character specifying the name of the column. A (categorical) variable referring to the "type of injury" (e.g. muscular/articular/others or overuse/not-overuse etc.) according to which visualize injury summary statistics (optional, defaults to NULL).
add_contour Logical, whether or not to add contour lines of the product between injury incidence and mean severity (i.e. 'incidence x average time-loss'), which leads to injury burden (defaults to TRUE).
title
Text for the main title passed to `ggplot2::ggtitle()`.

xlab
x-axis label to be passed to `ggplot2::xlab()`.

ylab
y-axis label to be passed to `ggplot2::ylab()`.

errh_height
Set the height of the horizontal interval whiskers; the height argument for `ggplot2::geom_errorbarh()`.

errv_width
Set the width of the vertical interval whiskers; the width argument for `ggplot2::geom_errorbar()`.

Value
A ggplot object (to which optionally more layers can be added).

References

Examples
```r
df_exposures <- prepare_exp(raw_df_exposures, player = "player_name",
                            date = "year", time_expo = "minutes_played")
df_injuries <- prepare_inj(raw_df_injuries, player = "player_name",
                           date_injured = "from", date_recovered = "until")
injd <- prepare_all(data_exposures = df_exposures,
                    data_injuries = df_injuries,
                    exp_unit = "matches_minutes")
injds <- injsummary(injd)
injds2 <- injsummary(injd, var_type_injury = "injury_type")

gg_injriskmatrix(injds)
gg_injriskmatrix(injds2, var_type_injury = "injury_type", title = "Risk matrix")
```
Example of an injd object

Description

An injd object (S3), called injd, to showcase what this object is like and also to save computation time in some help files provided by the package. The result of applying `prepare_all()` to `raw_df_exposures (prepare_exp(raw_df_exposures, ...))` and `raw_df_injuries (prepare_inj(raw_df_injuries, ...)).`

Usage

injd

Format

The main data frame in injd gathers information of 28 players and has 108 rows and 19 columns:

player Player identifier (factor)
t0 Follow-up period of the corresponding player, i.e. player’s first observed date, same value for each player (Date)
tf Follow-up period of the corresponding player, i.e. player’s last observed date, same value for each player (Date)
date_injured Date of injury of the corresponding observation (if any). Otherwise NA (Date)
date_recovered Date of recovery of the corresponding observation (if any). Otherwise NA (Date)
tstart Beginning date of the corresponding interval in which the observation has been at risk of injury (Date)
tstop Ending date of the corresponding interval in which the observation has been at risk of injury (Date)
tstart_minPlay Beginning time. Minutes played in matches until the start of this interval in which the observation has been at risk of injury (numeric)
tstop_minPlay Ending time. Minutes played in matches until the finish of this interval in which the observation has been at risk of injury (numeric)
status injury (event) indicator (numeric)
enum an integer indicating the recurrence number, i.e. the k-th injury (event), at which the observation is at risk
days_lost Number of days lost due to injury (numeric)
player_id Identification number of the football player (factor)
season Season to which this player’s entry corresponds (factor)
games_lost Number of matches lost due to injury (numeric)
injury Injury specification as it appears in https://www.transfermarkt.com, if any; otherwise NA (character)
injury_acl Whether it is Anterior Cruciate Ligament (ACL) injury or not (NO_ACL); if the interval corresponds to an injury, NA otherwise (factor)

injury_type A five level categorical variable indicating the type of injury, whether Bone, Concussion, Ligament, Muscle or Unknown; if any, NA otherwise (factor)

injury_severity A four level categorical variable indicating the severity of the injury (if any), whether Minor (<7 days lost), Moderate ([7, 28) days lost), Severe ([28, 84) days lost) or Very_severe (>=84 days lost); NA otherwise (factor)

Details
It consists of a data frame plus 4 other attributes: a character specifying the unit of exposure (unit_exposure); and 3 (auxiliary) data frames: follow_up, data_exposures and data_injuries.

injprev Calculate injury prevalence

Description
Calculate the prevalence of injured players and the proportion of non-injured (available) players in the cohort, on a monthly or season basis. Further information on the type of injury may be specified so that the injury-specific prevalences are reported according to this variable.

Usage
injprev(injd, by = c("monthly", "season"), var_type_injury = NULL)

Arguments
injd Prepared data. An injd object.
by Character. One of "monthly" or "season", specifying the periodicity according to which to calculate the proportions of available and injured players/athletes.
var_type_injury Character specifying the name of the column on the basis of which to classify the injuries and calculate proportions of the injured players. Defaults to NULL.

Value
A data frame containing one row for each combination of season, month (optionally) and injury type (if var_type_injury not specified, then this variable has two categories: Available and Injured). Plus, three more columns, specifying the proportion of players (prop) satisfying the corresponding row’s combination of values, i.e. prevalence, how many players were injured at that moment with the type of injury of the corresponding row (n), over how many players were at that time in the cohort (n_player). See Note section.
Note

If `var_type_injury` is specified (and not `NULL`), it may happen that a player in one month suffers two different types of injuries. For example, a muscle and a ligament injury. In this case, these two injuries contribute to the proportions of muscle and ligament injuries for that month, resulting in an overall proportion that exceeds 100%. Besides, the players in Available category are those that did not suffer any injury in that moment (season-month), that is, they were healthy all the time that the period lasted.

References

Examples

```r
df_exposures <- prepare_exp(raw_df_exposures, player = "player_name", date = "year", time_expo = "minutes_played")
df_injuries <- prepare_inj(raw_df_injuries, player = "player_name", date_injured = "from", date_recovered = "until")
injd <- prepare_all(data_exposures = df_exposures, data_injuries = df_injuries, exp_unit = "matches_minutes")

injprev(injd, by = "monthly", var_type_injury = "injury_type")
injprev(injd, by = "monthly")
injprev(injd, by = "season", var_type_injury = "injury_type")
injprev(injd, by = "season")
```

injsummary

Estimate injury summary statistics

Description

Calculate injury summary statistics such as injury incidence and injury burden (see Bahr et al. 20), including total number of injuries, number of days lost due to injury, total time of exposure etc., by means of a (widely used) Poisson method, negative binomial, zero-inflated poisson or zero-inflated negative binomial, on a player and overall basis.

Usage

```r
injsummary(
  injd,
  var_type_injury = NULL,
  method = c("poisson", "negbin", "zinfpois", "zinfnb"),
)```
Arguments

injd

injd S3 object (see prepare_all()).

var_type_injury

Character specifying the name of the column according to which compute injury summary statistics. It should refer to a (categorical) variable that describes the "type of injury". Optional, defaults to NULL.

method

Method to estimate injury incidence and injury burden. One of "poisson", "neg-bin", "zinfpois" or "zinfnb"; characters that stand for Poisson method, negative binomial method, zero-inflated Poisson and zero-inflated negative binomial.

conf_level

Confidence level (defaults to 0.95).

quiet

Logical, whether or not to silence the warning messages (defaults to FALSE).

Value

A list of two data frames comprising player-wise and overall injury summary statistics, respectively, that constitute an injds S3 object. Both of them made up of the following columns:

- ninjuries: number of injuries sustained by the player or overall in the team over the given period specified by the injd data frame.
- ndayslost: number of days lost by the player or overall in the team due to injury over the given period specified by the injd data frame.
- mean_dayslost: average of number of days lost (i.e. ndayslost) playerwise or overall in the team.
- median_dayslost: median of number of days lost (i.e. ndayslost) playerwise or overall in the team.
- iqr_dayslost: interquartile range of number of days lost (i.e. ndayslost) playerwise or overall in the team.
- totalexpo: total exposure that the player has been under risk of sustaining an injury.
- injincidence: injury incidence, number of injuries per unit of exposure.
- injburden: injury burden, number of days lost per unit of exposure.
- var_type_injury: only if it is specified as an argument to function.

Apart from this column names, they may further include these other columns depending on the user’s specifications to the function:

- percent_ninjuries: percentage (%) of number of injuries of that type relative to all types of injuries (if var_type_injury specified).
- percent_dayslost: percentage (%) of number of days lost because of injuries of that type relative to the total number of days lost because of all types of injuries (if var_type_injury specified).
• `injincidence_sd` and `injburden_sd`: estimated standard deviation, by the specified method argument, of injury incidence (`injincidence`) and injury burden (`injburden`), for the overall injury summary statistics (the 2nd element of the function output).

• `injincidence_lower` and `injburden_lower`: lower bound of, for example, 95% confidence interval (if `conf_level = 0.95`) of injury incidence (`injincidence`) and injury burden (`injburden`), for the overall injury summary statistics (the 2nd element of the function output).

• `injincidence_upper` and `injburden_upper`: the same (as above item) applies but for the upper bound.

References


Examples

df_exposures <- prepare_exp(raw_df_exposures, player = "player_name",
                            date = "year", time_expo = "minutes_played")

df_injuries <- prepare_inj(raw_df_injuries, player = "player_name",
                            date_injured = "from", date_recovered = "until")

injd <- prepare_all(data_exposures = df_exposures,
                     data_injuries = df_injuries,
                     exp_unit = "matches_minutes")

injsummary(injd)

---

### is_injd

**Check if an object is of class injd**

**Description**

Check if an object `x` is of class `injd`.

**Usage**

`is_injd(x)`

**Arguments**

`x` any R object.
**is_injds**

*Check if an object is of class injds*

**Description**

Check if an object x is of class injds.

**Usage**

```r
is_injds(x)
```

**Arguments**

- **x** any R object.

**Value**

A logical value: TRUE if x inherits from injd class, FALSE otherwise.

---

**prepare_data**

*Prepare data in a standardized format*

**Description**

These are the data preprocessing functions provided by the injurytools package, which involve:

1. setting exposure and injury data in a standardized format and
2. integrating both sources of data into an adequate data structure.

prepare_inj() and prepare_exp() set standardized names and proper classes to the (key) columns in injury and exposure data, respectively. prepare_all() integrates both, standardized injury and exposure data sets, and convert them into an injd S3 object that has an adequate structure for further statistical analyses. See the Prepare Sports Injury Data vignette for details.
**Usage**

```r
call = prepare_inj(
 df_injuries0,
 player = "player",
 date_injured = "date_injured",
 date_recovered = "date_recovered"
)
call = prepare_exp(
 df_exposures0,
 player = "player",
 date = "date",
 time_expo = "time_expo"
)
call = prepare_all(
 data_exposures,
 data_injuries,
 exp_unit = c("minutes", "hours", "days", "matches_num", "matches_minutes",
 "activity_days", "seasons")
)
```

**Arguments**

- `df_injuries0`: A data frame containing injury information, with columns referring to the player name/id, date of injury and date of recovery (as minimal data).
- `player`: Character referring to the column name where player information is stored.
- `date_injured`: Character referring to the column name where the information about the date of injury is stored.
- `date_recovered`: Character referring to the column name where the information about the date of recovery is stored.
- `df_exposures0`: A data frame containing exposure information, with columns referring to the player name/id, date of exposure and the total time of exposure of the corresponding data entry (as minimal data).
- `date`: Character referring to the column name where the exposure date information is stored. Besides, the column must be of class `Date` or `integer/numeric`. If it is `integer/numeric`, it should refer to the year in which the season started (e.g. `date = 2015` to refer to the 2015/2016 season).
- `time_expo`: Character referring to the column name where the information about the time of exposure in that corresponding date is stored.
- `data_exposures`: Exposure data frame with standardized column names, in the same fashion that `prepare_exp()` returns.
- `data_injuries`: Injury data frame with standardized column names, in the same fashion that `prepare_inj()` returns.
- `exp_unit`: Character defining the unit of exposure time ("minutes" the default).
Value

prepare_inj() returns a data frame in which the **key columns** in injury data are standardized and have a proper format.

prepare_exp() returns a data frame in which the **key columns** in exposure data are standardized and have a proper format.

prepare_all() returns the *injd* S3 object that contains all the necessary information and a proper data structure to perform further statistical analyses (e.g. calculate injury summary statistics, visualize injury data).

- If **exp_unit** is "minutes" (the default), the columns *tstart_min* and *tstop_min* are created which specify the time to event (injury) values, the starting and stopping time of the interval, respectively. That is the training time in minutes, that the player has been at risk, until an injury (or censorship) has occurred. For other choices, *tstart_\text{x}* and *tstop_\text{x}* are also created according to the **exp_unit** indicated (\text{x}, one of: min, h, match, minPlay, d, acd or s). These columns will be useful for survival analysis routines. See Note section.

- It also creates *days_lost* column based on the difference between *date_recovered* and *date_injured* in days. And if it does exist (in the raw data) it overrides.

Note

Depending on the unit of exposure, *tstart_\text{x}* and *tstop_\text{x}* columns might have same values (e.g. if **exp_unit** = "matches_num" and the player has not played any match between the corresponding period of time). Please be aware of this before performing any survival analysis related task.

Examples

```r
df_injuries <- prepare_inj(df_injuries0 = raw_df_injuries,
 player = "player_name",
 date_injured = "from",
 date_recovered = "until")

df_exposures <- prepare_exp(df_exposures0 = raw_df_exposures,
 player = "player_name",
 date = "year",
 time_expo = "minutes_played")

injd <- prepare_all(data_exposures = df_exposures,
 data_injuries = df_injuries,
 exp_unit = "matches_minutes")

head(injd)
class(injd)
str(injd, 1)
```
**raw_df_exposures**

**Minimal example of exposure data**

**Description**

An example of a player exposure data set that contains minimum required exposure information as well as other player- and match-related variables. It includes Liverpool Football Club male’s first team players’ exposure data, exposure measured as (number or minutes of) matches played, over two consecutive seasons, 2017-2018 and 2018-2019. Each row refers to player-season. These data have been scrapped from [https://www.transfermarkt.com/](https://www.transfermarkt.com/) website using self-defined R code with `rvest` and `xml2` packages.

**Usage**

`raw_df_exposures`

**Format**

A data frame with 42 rows corresponding to 28 football players and 16 variables:

- **player_name**: Name of the football player (factor)
- **player_id**: Identification number of the football player (factor)
- **season**: Season to which this player’s entry corresponds (factor)
- **year**: Year in which each season started (numeric)
- **matches_played**: Matches played by the player in each season (numeric)
- **minutes_played**: Minutes played by the player in each season (numeric)
- **liga**: Name of the ligue where the player played in each season (factor)
- **club_name**: Name of the club to which the player belongs in each season (factor)
- **club_id**: Identification number of the club to which the player belongs in each season (factor)
- **age**: Age of the player in each season (numeric)
- **place**: Place of birth of each player (character)
- **position**: Position of the player on the pitch (factor)
- **foot**: Dominant leg of the player. One of both, left or right (factor)
- **goals**: Number of goals scored by the player in that season (numeric)
- **assists**: Number of assists provided by the player in that season (numerical)
- **reds**: Number of the red cards given to the player in that season (numeric)

**Note**

This data frame is provided for illustrative purposes. We warn that they might not be accurate, there might be a mismatch and non-completeness with what actually occurred. As such, its use cannot be recommended for epidemiological research (see also Hoenig et al., 2022).
Source

https://www.transfermarkt.com/

References


---

raw_df_injuries  Minimal example of injury data

---

Description

An example of an injury data set containing minimum required injury information as well as other further injury-related variables. It includes Liverpool Football Club male’s first team players’ injury data. Each row refers to player-injury. These data have been scrapped from https://www.transfermarkt.com/ website using self-defined R code with rvest and xml2 packages.

Usage

raw_df_injuries

Format

A data frame with 82 rows corresponding to 23 players and 11 variables:

- **player_name**  Name of the football player (factor)
- **player_id**  Identification number of the football player (factor)
- **season**  Season to which this player’s entry corresponds (factor)
- **from**  Date of the injury of each data entry (Date)
- **until**  Date of the recovery of each data entry (Date)
- **days_lost**  Number of days lost due to injury (numeric)
- **games_lost**  Number of matches lost due to injury (numeric)
- **injury**  Injury specification as it appears in https://www.transfermarkt.com/ (character)
- **injury_acl**  Whether it is Anterior Cruciate Ligament (ACL) injury or not (NO_ACL)
- **injury_type**  A five level categorical variable indicating the type of injury, whether Bone, Concussion, Ligament, Muscle or Unknown; if any, NA otherwise (factor)
- **injury_severity**  A four level categorical variable indicating the severity of the injury (if any), whether Minor (<7 days lost), Moderate ([7, 28) days lost), Severe ([28, 84) days lost) or Very_severe (>=84 days lost); NA otherwise (factor)
Note
This data frame is provided for illustrative purposes. We warn that they might not be accurate, there might be a mismatch and non-completeness with what actually occurred. As such, its use cannot be recommended for epidemiological research (see also Hoenig et al., 2022).

Source
https://www.transfermarkt.com/

References

season2year

Description
Get the year given the season.

Usage
season2year(season)

Arguments
season Character/factor specifying the season. It should follow the pattern "xxxx/yyyy", e.g. "2005/2006".

Value
Given the season, it returns the year (in numeric) in which the season started.

Examples
season <- "2022/2023"
season2year(season)
Index

* datasets
  injd, 9
  raw_df_exposures, 17
  raw_df_injuries, 18

base::seq.Date(), 5

cut_injd, 2

Date, 2, 3, 15
date2season, 3

gg_injbarplot, 4
gg_injphoto, 5
gg_injprev_polar, 6
gg_injriskmatrix, 7
ggplot2::geom_errorbar(), 8
ggplot2::geom_errorbarh(), 8
ggplot2::ggtitle(), 8
ggplot2::xlab(), 8
ggplot2::ylab(), 8

injd, 9
injprev, 10
injsummary, 11
injsummary(), 4, 7
integer, 3, 15
is_injd, 13
is_injds, 14

numeric, 2, 3, 15

prepare_all (prepare_data), 14
prepare_all(), 12
prepare_data, 14
prepare_exp (prepare_data), 14
prepare_inj (prepare_data), 14

raw_df_exposures, 17
raw_df_injuries, 18

season2year, 19