Package ‘insuranceData’

February 20, 2015

Type Package
Title A Collection of Insurance Datasets Useful in Risk Classification in Non-life Insurance.
Version 1.0
Date 2014-09-04
Author Alicja Wolny--Dominiak and Michal Trzesiok
Maintainer Alicja Wolny--Dominiak <alicja.wolny-dominiak@ue.katowice.pl>
Description Insurance datasets, which are often used in claims severity and claims frequency modelling. It helps testing new regression models in those problems, such as GLM, GLMM, HGLM, non-linear mixed models etc. Most of the data sets are applied in the project ```Mixed models in ratemaking``` supported by grant NN 111461540 from Polish National Science Center.
License GPL-2
Depends R (>= 2.10)
NeedsCompilation no
Repository CRAN
Date/Publication 2014-09-04 13:46:39

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>AutoBi</td>
<td>2</td>
</tr>
<tr>
<td>AutoClaims</td>
<td>3</td>
</tr>
<tr>
<td>AutoCollision</td>
<td>4</td>
</tr>
<tr>
<td>ClaimsLong</td>
<td>5</td>
</tr>
<tr>
<td>dataCar</td>
<td>6</td>
</tr>
<tr>
<td>dataOhlsson</td>
<td>7</td>
</tr>
<tr>
<td>IndustryAuto</td>
<td>8</td>
</tr>
<tr>
<td>SingaporeAuto</td>
<td>9</td>
</tr>
<tr>
<td>Thirdparty</td>
<td>10</td>
</tr>
<tr>
<td>WorkersComp</td>
<td>11</td>
</tr>
</tbody>
</table>

Index 12
Description

Data from the Insurance Research Council (IRC), a division of the American Institute for Chartered Property Casualty Underwriters and the Insurance Institute of America. The data, collected in 2002, contains information on demographic information about the claimant, attorney involvement and the economic loss (LOSS, in thousands), among other variables. We consider here a sample of \(n = 1340 \) losses from a single state. The full 2002 study contains over 70,000 closed claims based on data from thirty-two insurers. The IRC conducted similar studies in 1977, 1987, 1992 and 1997.

Usage

data(AutoBi)

Format

A data frame with 1340 observations on the following 8 variables.

- **casenum**: Case number to identify the claim, a numeric vector
- **attorney**: Whether the claimant is represented by an attorney (=1 if yes and =2 if no), a numeric vector
- **clmsex**: Claimant’s gender (=1 if male and =2 if female), a numeric vector
- **marital**: Claimant’s marital status (=1 if married, =2 if single, =3 if widowed, and =4 if divorced/separated), a numeric vector
- **clminsur**: Whether or not the driver of the claimant’s vehicle was uninsured (=1 if yes, =2 if no, and =3 if not applicable), a numeric vector
- **seatbelt**: Whether or not the claimant was wearing a seatbelt/child restraint (=1 if yes, =2 if no, and =3 if not applicable), a numeric vector
- **clmage**: Claimant’s age, a numeric vector
- **loss**: The claimant’s total economic loss (in thousands), a numeric vector

Details

Source

References

AutoClaims

Examples

```r
data(AutoBi)
## maybe str(AutoBi) ; plot(AutoBi) ...
```

Description

Claims experience from a large midwestern (US) property and casualty insurer for private passenger automobile insurance. The dependent variable is the amount paid on a closed claim, in (US) dollars (claims that were not closed by year end are handled separately). Insurers categorize policyholders according to a risk classification system. This insurer’s risk classification system is based on automobile operator characteristics and vehicle characteristics, and these factors are summarized by the risk class categorical variable CLASS.

Usage

```r
data(AutoClaims)
```

Format

A data frame with 6773 observations on the following 5 variables.

- **STATE** Codes 01 to 17 used, with each code randomly assigned to an actual individual state, a factor with levels `STATE 01 STATE 02 STATE 03 STATE 04 STATE 06 STATE 07 STATE 10 STATE 11 STATE 12 STATE 13 STATE 14 STATE 15 STATE 17`
- **CLASS** Rating class of operator, based on age, gender, marital status, use of vehicle, a factor with levels `cQ cQQ cQa cQb cQc cR cV cW cWQ cWR cWa cWb cWc fQ fQQ fV fW fWQ`
- **GENDER** a factor with levels `F M`
- **AGE** Age of operator, a numeric vector
- **PAID** Amount paid to settle and close a claim, a numeric vector

Details

Source

References

Examples

```r
data(AutoClaims)
## maybe str(AutoClaims); plot(AutoClaims) . . .
```

AutoCollision

Automobile UK Collision Claims

Description

This data is due to Mildenhall (1999). Mildenhall (1999) considered 8,942 collision losses from private passenger United Kingdom (UK) automobile insurance policies. The data were derived from Nelder and McCullagh (1989, Section 8.4.1) but originated from Baxter et al. (1980). We consider here a sample of \(n = 32 \) of Mildenhall data for eight driver types (age groups) and four vehicle classes (vehicle use). The average severity is in pounds sterling adjusted for inflation.

Usage

```r
data(AutoCollision)
```

Format

A data frame with 32 observations on the following 4 variables.

- **Age** Age of driver, a factor with levels A B C D E F G H
- **Vehicle_Use** Purpose of the vehicle use: DriveShort means drive to work but less than 10 miles, DriveLong means drive to work but more than 10 miles, a factor with levels Business DriveLong DriveShort Pleasure
- **Severity** Average amount of claims (in pounds sterling), a numeric vector
- **Claim_Count** Number of claims, a numeric vector

Details

Source

References

ClaimsLong

Examples
 data(AutoCollision)
 ## maybe str(AutoCollision) ; plot(AutoCollision) ...

Description
This is a simulated data set, based on the car insurance data set used throughout the text. There are 40000 policies over 3 years, giving 120000 records.

Usage
 data(ClaimsLong)

Format
A data frame with 120000 observations on the following 6 variables.

 policyID number of policy, a numeric vector
 agecat driver's age category: 1 (youngest), 2, 3, 4, 5, 6, a numeric vector
 valuecat vehicle value, in categories 1,...,6. (Category 1 has been recoded as 9.), a numeric vector
 period 1, 2, 3, a numeric vector
 numclaims number of claims, a numeric vector
 claim a numeric vector

Details
The dataset "Longitudinal Claims"

Source
 http://www.businessandeconomics.mq.edu.au/our_departments/Applied_Finance_and_Actuarial_Studies/research/books/GLMsforInsuranceData/data_sets

References

Examples
 data(ClaimsLong)
 ## maybe str(ClaimsLong) ; plot(ClaimsLong) ...

Description
This data set is based on one-year vehicle insurance policies taken out in 2004 or 2005. There are 67856 policies, of which 4624 (6.8

Usage
data(dataCar)

Format
A data frame with 67856 observations on the following 11 variables.

veh_value vehicle value, in $10,000s
exposure 0-1
clm occurrence of claim (0 = no, 1 = yes)
numclaims number of claims
claimcst0 claim amount (0 if no claim)
veh_body vehicle body, coded as BUS CONVT COUPE HBACK HDTOP MCARA MIBUS PANVN RDSTR SEDAN STNWG TRUCK UTE
veh_age 1 (youngest), 2, 3, 4
gender a factor with levels F M
area a factor with levels A B C D E F
agecat 1 (youngest), 2, 3, 4, 5, 6
X_OBSTAT_ a factor with levels 01101 0 0 0

Details
dataset "Car"

Source
http://www.acst.mq.edu.au/GLMsforInsuranceData

References

Examples
data(dataCar)
maybe str(dataCar) ; plot(dataCar) ...
Description

The data for this case study comes from the former Swedish insurance company Wasa, and concerns partial casco insurance, for motorcycles this time. It contains aggregated data on all insurance policies and claims during 1994-1998; the reason for using this rather old data set is confidentiality; more recent data for ongoing business cannot be disclosed.

Usage

data(dataOhlsson)

Format

A data frame with 64548 observations on the following 9 variables.

- `agarald`: The owners age, between 0 and 99, a numeric vector
- `kon`: The owners age, between 0 and 99, a factor with levels K M
- `zon`: Geographic zone numbered from 1 to 7, in a standard classification of all Swedish parishes, a numeric vector
- `mcklass`: MC class, a classification by the so-called EV ratio, defined as (Engine power in kW x 100) / (Vehicle weight in kg + 75), rounded to the nearest lower integer. The 75 kg represent the average driver weight. The EV ratios are divided into seven classes, a numeric vector
- `fordald`: Vehicle age, between 0 and 99, a numeric vector
- `bonuskl`: Bonus class, taking values from 1 to 7. A new driver starts with bonus class 1; for each claim-free year the bonus class is increased by 1. After the first claim the bonus is decreased by 2; the driver can not return to class 7 with less than 6 consecutive claim free years, a numeric vector
- `duration`: the number of policy years, a numeric vector
- `antskad`: the number of claims, a numeric vector
- `skadkost`: the claim cost, a numeric vector

Details

The dataset "mccase.txt"

Source

References

Ohlsson E., Johansson B. (2010), Non-life insurance pricing with generalized linear models, Springer
Examples

```r
data(dataOlsson)
## maybe str(dataOlsson) ; plot(dataOlsson) ...
```

Description

The data represent industry aggregates for private passenger auto liability/medical coverages from year 2004, in millions of dollars. They are based on insurance company annual statements, specifically, Schedule P, Part 3B. The elements of the triangle represent cumulative net payments, including defense and cost containment expenses.

Usage

```r
data(IndustryAuto)
```

Format

A data frame with 55 observations on the following 3 variables.

- **Incurral.Year** The year in which a claim has been incurred, a numeric vector
- **Development.Year** The number of years from incurrence to the time when the payment is made, a numeric vector
- **Claim** Cumulative net payments, including defense and cost containment expenses, a numeric vector

Details

Source

References

Examples

```r
data(IndustryAuto)
## maybe str(IndustryAuto) ; plot(IndustryAuto) ...
```
Description

The data is from the General Insurance Association of Singapore, an organization consisting of general (property and casualty) insurers in Singapore (see the organization’s website: www.gia.org.sg). From this database, several characteristics are available to explain automobile accident frequency. These characteristics include vehicle variables, such as type and age, as well as person level variables, such as age, gender and prior driving experience.

Usage

data(SingaporeAuto)

Format

A data frame with 7483 observations on the following 15 variables.

- **SexInsured**: a factor with levels F M U
- **Female**: a numeric vector
- **VehicleType**: a factor with levels A G M P Q S T W Z
- **PC**: a numeric vector
- **Clm_Count**: a numeric vector
- **Exp_weights**: a numeric vector
- **LNWEIGHT**: a numeric vector
- **NCD**: a numeric vector
- **AgeCat**: a numeric vector
- **AutoAge0**: a numeric vector
- **AutoAge1**: a numeric vector
- **AutoAge2**: a numeric vector
- **AutoAge**: a numeric vector
- **VAgeCat**: a numeric vector
- **VAgecat1**: a numeric vector

Details

Source

References

Examples

data(SingaporeAuto)
maybe str(SingaporeAuto) ; plot(SingaporeAuto) ...

Thirdparty

Third party insurance

Description

Third party insurance is a compulsory insurance for vehicle owners in Australia. It insures vehicle owners against injury caused to other drivers, passengers or pedestrians, as a result of an accident. This data set records the number of third party claims in a twelve–month period between 1984-1986 in each of 176 geographical areas (local government areas) in New South Wales, Australia.

Usage

data(Thirdparty)

Format

A data frame with 176 observations on the following variable.

lga.sd.claims.accidents.ki.population.pop_density a numeric vector

Details

The dataset "Third Party Claims"

Source

http://www.businessandeconomics.mq.edu.au/our_departments/Applied_Finance_and_Actuarial_Studies/research/books/GLMsforInsuranceData/data_sets

References

Examples

data(Thirdparty)
maybe str(Thirdparty) ; plot(Thirdparty) ...
Description

Standard example in worker's compensation insurance, examining losses due to permanent, partial disability claims. The data are from Klugman (1992), who considers Bayesian model representations, and are originally from the National Council on Compensation Insurance. We consider n=121 occupation, or risk, classes, over T=7 years. To protect the data source, further information on the occupation classes and years is not available. Source: Frees, E. W., Young, V. and Y. Luo (2001). Case studies using panel data models. North American Actuarial Journal, 4, No. 4, 24-42.

Usage

data(WorkersComp)

Format

A data frame with 847 observations on the following 4 variables.

- CL a numeric vector
- YR a numeric vector
- PR a numeric vector
- LOSS a numeric vector

Details

http://instruction.bus.wisc.edu/jfrees/jfreesbooks/Regression
DataDescriptions.pdf

Source

http://instruction.bus.wisc.edu/jfrees/jfreesbooks/Regression

References

Examples

data(WorkersComp)
maybe str(WorkersComp) ; plot(WorkersComp) ...
Index

*Topic datasets
 AutoBi, 2
 AutoClaims, 3
 AutoCollision, 4
 ClaimsLong, 5
 dataCar, 6
 dataOhlsson, 7
 IndustryAuto, 8
 SingaporeAuto, 9
 Thirdparty, 10
 WorkersComp, 11

AutoBi, 2
AutoClaims, 3
AutoCollision, 4

ClaimsLong, 5

dataCar, 6
dataOhlsson, 7

IndustryAuto, 8
SingaporeAuto, 9
Thirdparty, 10
WorkersComp, 11