intcensROC
Fast Spline Based Sieve AUC Estimator for Interval Censored Data

Jiaxing Lin Yuan Wu Xiaofei Wang Kouros Owzar

2018-05-01
1 Introduction

2 intcensROC

3 Example
 - Simple Example
 - A Comprehensive Example

4 Session Information
This document provides an comprehensive example for using the `intcensROC` package to estimate the receiver operating characteristic (ROC) curve and time-dependent area under the curve (AUC) for interval censored survival data, that is not applicable for existing methods.

The estimator applies a generalized gradient projection method on Spline based likelihood function to obtain the joint distribution function between survival time and biomarker and compute the ROC curve and time-dependent AUC with the estimated joint distribution function. Features of this package include:

1. The algorithm is implemented in C++, and ported to R by Rcpp, to facilitate fast computation.
2. The estimator uses a constrained minimization method and is designed for the interval survival data.
Function Signature and Return of \texttt{intcensROC}

Function to compute ROC curve

\[\text{res} \leftarrow \text{intcensROC}(U, V, \text{Marker}, \Delta, \text{PredictTime}, \text{gridNumber} = 500) \]

Function arguments:

- **U**: An array contains left times of the censored intervals for the sample.
- **V**: An array contains right times of the censored intervals for the sample.
- **Marker**: An array contains marker levels for the samples.
- **Delta**: An array of indicator for the censoring type, use 1, 2, 3 for left, interval and right censoring types, correspondingly.
- **PredictTime**: A scalar for predict time for the ROC.
- **gridNumber**: A integer for the number of grid of the ROC curve, the default value is 500.

Function return:
A dataframe contains two columns

- **tp**: A array for true positive rate.
- **fp**: A array for false positive rate.
Function Signature and Return of `intcensAUC`

Function to compute AUC

```
auc <- intcensAUC(ROCdata)
```

Function argument:

- **ROCdata**: A dataframe from the function `intcensROC`.

Function return:

- **auc**: A scalar for AUC.
A Simple Start Off Example

A start off example to use function `intcensROC` and `intcensAUC`

```r
library(intcensROC)
## example interval censored data
U <- runif(100, min = 0.1, max = 5)
V <- runif(100, min = 0.1, max = 5) + U
Marker <- runif(100, min = 5, max = 10)
Delta <- sample.int(3, size = 100, replace = TRUE)
pTime <- 4
## compute the ROC curve
res <- intcensROC(U, V, Marker, Delta, pTime, gridNumber = 500)
head(res)

## fp tp
## 1 2.938704e-07 6.709990e-07
## 2 6.429442e-07 1.401916e-06
## 3 1.102661e-06 2.253220e-06
## 4 1.728461e-06 3.285375e-06
## 5 2.575783e-06 4.558851e-06
## 6 3.700067e-06 6.134114e-06

## compute the AUC
auc <- intcensAUC(res)
print(auc)

## [1] 0.5378973
```
Here, we present a comprehensive example as a tutorial on how to use intcensROC package.

- We assume the survival time T follows an exponential distribution with hazard rate $\lambda = \frac{\log(2)}{24}$.
- The marker M is assumed to follow a beta distribution with parameter $\alpha = 2.35$ and $\beta = 1.87$.
- The joint distribution of (T, M) is assumed to be generated by Clayton Coupla with parameter $\alpha > 1$

$$F_{T,M}(t, m) = Pr(T < t, M < m) = \{F_T(t)^{\alpha-1} + F_M(m)^{\alpha-1} - 1\}^{\frac{1}{\alpha-1}}$$

Here $F_T(.)$ and $F_M(.)$ denote the distribution functions of T and M respectively. The dependence between T and M is denote by Kendall $\tau = \frac{\alpha-1}{\alpha+1}$.

- The random assessment interval $[U, V]$ are sampled from uniform distribution, V’s are sampled within $[L_0, L_c]$, and U is generated from uniform distribution on $[0, V - L_0]$. Here L_c is determined by the censoring rate $\rho = 0.3$ and $L_0 = 0.1$ is the minimum time difference between U and V.

library(copula)
f <- function(x, L0, rate, censor){
 1/((x-L0)*rate)*exp(-L0*rate)-1/((x-L0)*rate)*exp(-x*rate)-censor
}dataSim <- function(kendall_tau = 0.3, n = 100, rho = 0.3, lambda = log(2)/6) {
 b_alpha <- 2.35
 b_beta <- 1.87
 scale <- 10
 kendall_tau <- iTau(claytonCopula(), kendall_tau)
 Int_cop <- claytonCopula(param = kendall_tau, dim = 2)
 Int_mvdc <- mvdc(Int_cop, c("exp","beta"), paramMargins =
 list(list(rate = lambda),
 list(shape1=b_alpha,shape2=b_beta)))
 Int_obs_data <- rMvdc(n, Int_mvdc)
 colnames(Int_obs_data) <- c("event_time", "marker")
Data Simulation-Continued

```r
Int_obs_data[, "marker"] <- Int_obs_data[, "marker"] * scale
L0 <- 0.1; size <- n; U <- rep(0, size)
L <- uniroot(f, lower = 10^(-6), upper = 500, tol = 0.000001,
             L0 = L0, rate = lambda, censor = rho)
V <- runif(size, L0, L$root)
for (i in 1:size)
  U[i] <- runif(1, 0, (V[i] - L0))
delta_1 <- Int_obs_data[, "event_time"] < U
delta_2 <- Int_obs_data[, "event_time"] >= U &
           Int_obs_data[, "event_time"] <= V
delta_3 <- Int_obs_data[, "event_time"] > V
data <- data.frame(U = U, V = V, delta =
                   delta_1 + 2 * delta_2 + 3 * delta_3,
                   marker = Int_obs_data[, "marker"])
```
```r
dataSim(kendall_t = 0.7, n = 300, rho = 0.3, lambda = log(2)/24)
roc <- intcensROC(U=mydata[,"U"], V=mydata[,"V"], Marker=mydata[,"marker"],
                  Delta=mydata[,"delta"], PredictTime=12)
print(intcensAUC(roc))
## [1] 0.9700358
plot(roc$fp, roc$tp, type = "l", lwd = 1.2, col="blue", main = "Example ROC",
     xlab = "False Positive Rate", ylab = "True Positive Rate")
```

Example ROC
Session Information

- R version 3.4.4 (2018-03-15), x86_64-pc-linux-gnu
- Running under: Debian GNU/Linux 9 (stretch)
- Matrix products: default
- BLAS: /usr/lib/openblas-base/libblas.so.3
- LAPACK: /usr/lib/libopenblas-r0.2.19.so
- Base packages: base, datasets, grDevices, graphics, methods, stats, utils
- Other packages: copula 0.999-18, intcensROC 0.1.1, knitr 1.20
- Loaded via a namespace (and not attached): ADGofTest 0.3, Matrix 1.2-12, Rcpp 0.12.16, compiler 3.4.4, evaluate 0.10.1, grid 3.4.4, gsl 1.9-10.3, highr 0.6, lattice 0.20-35, magrittr 1.5, mvtnorm 1.0-7, numDeriv 2016.8-1, pcaPP 1.9-73, pracma 2.0.7, pspline 1.0-18, quadprog 1.5-5, stabledist 0.7-1, stats4 3.4.4, stringi 1.1.7, stringr 1.3.0, tools 3.4.4