Package ‘interpretCI’

October 13, 2022

Type Package

Title Estimate the Confidence Interval and Interpret Step by Step

Version 0.1.1

URL https://github.com/cardiomoon/interpretCI,
 https://cardiomoon.github.io/interpretCI/

Description Estimate confidence intervals for mean, proportion, mean difference
for unpaired and paired samples and proportion difference. Plot the confidence
intervals. Generate documents explaining the statistical result step by step.

License GPL-3

Encoding UTF-8

Imports dplyr, purrr, tidyr, rlang, ggplot2, scales, ggbeeswarm,
 patchwork, aplot, rstudioapi, rmarkdown, flextable, officer,
 english, RColorBrewer, moonBook

Suggests knitr, PairedData, glue

RoxygenNote 7.1.2

VignetteBuilder knitr

NeedsCompilation no

Author Keon-Woong Moon [aut, cre]

Maintainer Keon-Woong Moon <cardiomoon@gmail.com>

Repository CRAN

Date/Publication 2022-01-28 08:50:02 UTC

R topics documented:

acs ... 2
draw_n ... 3
draw_t ... 3
English .. 4
english2 ... 5
estimationPlot1 ... 5
acs

Demographic data of 857 patients with ACS

Description

A dataset containing demographic data and laboratory data of 857 patients with acute coronary syndrome (ACS).

Usage

acs

Format

An object of class data.frame with 857 rows and 17 columns.

Examples

interpretCI::acs
draw_n
Draw normal distribution curve

Description
Draw normal distribution curve

Usage
draw_n(mean = 0, sd = 1, z = NULL, p = 0.05, alternative = "two.sided")

Arguments
- **mean**: vector of means
- **sd**: vector of standard deviations
- **z**: vector of quantiles
- **p**: vector of probabilities
- **alternative**: a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less".

Value
A ggplot

Examples
draw_n()
draw_n(alternative="less")
draw_n(alternative="greater")
draw_n(z=-1.75)
draw_n(z=-1.75,alternative="greater")
draw_n(z=-1.75,alternative="less")

draw_t
Draw t distribution curve

Description
Draw t distribution curve

Usage
draw_t(DF = 50, t = NULL, p = 0.05, alternative = "two.sided")
Arguments

DF numeric degree of freedom
t numeric t value
p numeric p value
alternative a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less".

Value

A ggplot

Examples

draw_t(DF=30)
draw_t(DF=20,t=2.5)
draw_t(DF=49,t=1.77)
draw_t(DF=49,p=0.005)
draw_t(DF=19,t=-0.894,alternative="less")
draw_t(DF=146,t=0.67,alternative="greater")

Convert numeric to string with uppercase first letter

Description

Convert numeric to string with uppercase first letter

Usage

English(x, digits = 2)

Arguments

x A numeric
digits integer indicating the number of decimal places

Value

A string

Examples

English(40)
English(13.1)
english2

Convert numeric to string

Description
Convert numeric to string

Usage
english2(x, digits = 2)

Arguments

- **x**
 A numeric

- **digits**
 integer indicating the number of decimal places

Value
A character string

Examples

english2(45)
english2(12.34)

estimationPlot1

Draw estimation plot1

Description
Draw estimation plot1

Usage
estimationPlot1(x, palette = NULL)

Arguments

- **x**
 An object of class meanCI

- **palette**
 The name of color palette from RColorBrewer package or NULL

Value
A ggplot
Examples

```r
x = meanCI(iris, Species, Sepal.Length)
estimationPlot1(x)
```

<table>
<thead>
<tr>
<th>interpret</th>
<th>Interpret an object of meanCI</th>
</tr>
</thead>
</table>

Description

Interpret an object of meanCI. Render appropriate rmarkdown file to html file and show RStudio viewer or browser.

Usage

```r
interpret(x, viewer = "rstudio")
```

Arguments

- `x`: An object of class "meanCI"
- `viewer`: Character One of c("rstudio", "browser")

Value

No return value, called for side effect

Examples

```r
x = meanCI(mtcars$mpg)
x = meanCI(mtcars, mpg, mu = 23)
x = meanCI(n = 150, m = 115, s = 10, alpha = 0.01)
x = meanCI(n = 50, m = 295, s = 20, mu = 300)
x = meanCI(n = 20, m = 100, s = 10, mu = 110, alpha = 0.01, alternative = "less")
x = meanCI(n = 20, m = 100, s = 10, mu = 110, alpha = 0.01, alternative = "less")
x = meanCI(n = 15, n2 = 20, m1 = 1000, s1 = 3, m2 = 15, s2 = 2, alpha = 0.01)
x = meanCI(n1 = 15, n2 = 20, m1 = 1000, s1 = 100, m2 = 950, s2 = 90, alpha = 0.1)
x = meanCI(n1 = 30, n2 = 25, m1 = 78, s1 = 10, m2 = 85, s2 = 15, mu = 0, alpha = 0.10)
x = meanCI(n1 = 100, n2 = 100, m1 = 200, s1 = 40, m2 = 190, s2 = 20, mu = 7, alpha = 0.05, alternative = "greater")
x = c(95, 89, 76, 92, 91, 53, 67, 75, 80, 83, 85, 85, 87, 85, 85, 85, 85, 85, 85, 87)
y = c(90, 85, 73, 90, 90, 53, 68, 90, 89, 89, 95, 83, 83, 83, 82, 65, 79, 83, 60, 47, 77, 83)
x = meanCI(x = x, y = y, paired = TRUE, alpha = 0.1, mu = 0)
x = propCI(n = 1600, p = 0.4, alpha = 0.01)
x = propCI(n = 100, p = 0.73, P = 0.8, alpha = 0.01)
x = propCI(n = 100, p = 0.73, P = 0.8, alpha = 0.05, alternative = "greater")
x = propCI(n1 = 100, n2 = 200, p1 = 0.38, p2 = 0.51, alpha = 0.01)
x = propCI(n1 = 150, n2 = 100, p1 = 0.71, p2 = 0.63, P = 0, alternative = "greater")
```

Not run:

```r
interpret(x)
interpret(x, "browser")
```

End(Not run)
is.mynumeric

Decide whether a vector can be treated as a numeric variable

Description

Decide whether a vector can be treated as a numeric variable.

Usage

`is.mynumeric(x, maxy.lev = 5)`

Arguments

- `x`: A vector
- `maxy.lev`: An integer indicating the maximum number of unique values of a numeric variable be treated as a categorical variable.

Value

logical

Examples

```r
x = 1:5
is.mynumeric(x)
x = 1:13
is.mynumeric(x)
```

isProvided

Whether the arg is provided in function call

Description

Whether the arg is provided in function call.

Usage

`isProvided(x, seek = "mu")`

Arguments

- `x`: An object of class "meanCI" or function call or character string
- `seek`: character. Default="mu"

Value

logical
meanCI

Calculate confidence intervals of mean or difference between means

Description

Calculate confidence intervals of mean or difference between means

Usage

meanCI(x, ...)

Arguments

x An object of class data.frame or vector
...
Further arguments

Value

An object of class "meanCI" which is a list containing at least the following components:

data A tibble containing raw data or a list of numeric vector
result A data.frame consist of summary statistics
call the matched call
attr(*,"measure") character. One of c("mean","unpaired","paired")

Examples

meanCI(mtcars$mpg)
meanCI(n=150,m=115,s=10,alpha=0.01)
meanCI(n=50,m=295,s=20,mu=300)
meanCI(n=20,m=100,s=10,mu=110,alpha=0.01,alternative="less")
meanCI(mtcars,am,mpg)
meanCI(n1=15,n2=20,m1=1000,m2=950,s1=90,s2=90,alpha=0.1)
meanCI(n1=500,n2=1000,m1=20,s1=3,m2=15,s2=2,alpha=0.01)
meanCI(n1=30,n2=25,m1=78,s1=10,m2=85,s2=15,alpha=0.10)
meanCI(n1=100,n2=100,m1=200,s1=40,m2=190,s2=20,mu=7,alpha=0.05,alternative="greater")
x=c(3.04,2.92,2.86,1.71,3.60,3.49,3.30,2.28,3.11,2.88,2.82,2.13,2.11,3.03,3.27,2.60,3.13)
y=c(2.56,3.47,2.65,2.77,3.26,3.00,2.70,3.20,3.39,3.00,3.19,2.58,2.98)
meanCI(x=x,y=y)
x=c(95,89,76,92,91,53,67,88,75,85,90,85,87,85,85,68,81,84,71,46,75,80)
y=c(90,85,73,90,90,53,68,90,78,89,95,83,83,83,82,65,79,83,60,47,77,83)
meanCI(x=x,y=y,paired=TRUE,alpha=0.1)
meanCI(10:30,1:15)
meanCI(acs,sex,age)
meanCI(iris$Sepal.Width,iris$Sepal.Length)
meanCI(iris$Sepal.Width,iris$Sepal.Length,paired=TRUE)
meanCI.data.frame

Calculate confidence intervals of mean or difference between means in a data.frame

Description

Calculate confidence intervals of mean or difference between means in a data.frame

Usage

```r
## S3 method for class 'data.frame'
meanCI(x, ...)

meanCI_sub(data = data, x, y, group, paired = FALSE, idx = NULL, ...)
```

Arguments

- `x` Name of a categorical or numeric column. If !missing(y), name of continuous variable
- `...` Further arguments to be passed to meanCI
- `data` A data.frame
- `y` Name of a numeric column
- `group` Name of categorical column
- `paired` logical
- `idx` A vector containing factors or strings in the x columns. These must be quoted (ie. surrounded by quotation marks). The first element will be the control group, so all differences will be computed for every other group and this first group.

Value

An object of class "meanCI" which is a list containing at least the following components:

- `data` A tibble containing raw data or a list of numeric vector
- `result` A data.frame consists of summary statistics
- `call` the matched call
- `attr(*,"measure")` character. One of c("mean","unpaired","paired")

Methods (by generic)

- meanCI: S3 method for data.frame
Examples

```r
meanCI(acs, age)
meanCI(acs, sex, age)
meanCI(acs, Dx, age)
acs %>% select(age) %>% meanCI()
acs %>% select(sex, age) %>% meanCI()
meanCI(iris, Species, Sepal.Length)
meanCI(iris, Sepal.Width, Sepal.Length, paired = TRUE)
meanCI(iris, Sepal.Length, Sepal.Width)
iris %>% select(starts_with("Petal")) %>% meanCI(paired = TRUE)
iris %>% meanCI(paired = TRUE)
meanCI(acs, sex, age, Dx, mu = 10)
acs %>% select(sex, TC, TG, HDLC) %>% meanCI(group = sex)
acs %>% select(sex, TC, TG, HDLC) %>% meanCI(sex)
iris %>% select(Species, starts_with("Sepal")) %>% meanCI(Species)
iris %>% select(Species, starts_with("Sepal")) %>% meanCI(group = Species)
```

meanCI.default

Calculate confidence intervals of mean or difference between means

Description

Calculate confidence intervals of mean or difference between means

Usage

```r
## Default S3 method:
meanCI(x, ...)

meanCI2(
  x,
  y,
  n,
  m,
  s,
  n1,
  n2,
  m1,
  m2,
  s1,
  s2,
  mu = 0,
  paired = FALSE,
  var.equal = FALSE,
  alpha = 0.05,
  digits = 2,
  alternative = "two.sided"
)
```
meanCI2df

Arguments

x A vector
... Further arguments to be passed to meanCI2
y A vector
n, n1, n2 integer sample(s) size
m, m1, m2 Numeric mean value of sample(s)
s, s1, s2 Numeric standard deviation of sample(s)
mu numeric hypothesized true value of mean or mean difference
paired logical If true, difference between paired sample calculated
var.equal logical If true, pooled standard deviation is used
alpha Numeric Confidence level
digits integer indicating the number of decimal places
alternative A character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less".

Value
An object of class "meanCI" which is a list containing at least the following components:

data A tibble containing raw data or a list of numeric vector
result A data.frame containing of summary statistics
call the matched call
attr(*,"measure") character. One of c("mean","unpaired","paired")

Methods (by generic)
- meanCI: Default S3 method

meanCI2df Prepare data to plot from an object of class meanCI

Description
Prepare data to plot from an object of class meanCI

Usage
meanCI2df(x)

Arguments
x An object of class meanCI
Value
A data.frame

Examples
x = meanCI(acs, sex, age)
meanCI2df(x)

meanCI2df1
Extract data from an object of class meanCI

Description
Extract data from an object of class meanCI

Usage
meanCI2df1(x)

Arguments
x
An object of class meanCI

Value
A data.frame summarizing mean and confidence interval

Examples
x = meanCI(acs, sex, age)
meanCI2df1(x)

meanCIplot1
Draw meanCI plot for data with single vector

Description
Draw meanCI plot for data with single vector

Usage
meanCIplot1(x)

Arguments
x
An object of class "meanCI" with attr(x,"measure")=="mean"
pairPlot

Value

A ggplot

Examples

x=meanCI(mtcars, mpg)
meanCIplot1(x)

pairPlot

Draw a pair plot with an object of class meanCI

Description

Draw a pair plot with an object of class meanCI

Usage

pairPlot(x, palette = NULL)

Arguments

x An object of class "meanCI" with attr(x,"measure")="paired"
palette The name of color palette from RColorBrewer package or NULL

Value

A ggplot

Examples

x=meanCI(iris, paired=TRUE)
pairPlot(x)
x=meanCI(iris, Petal.Width, Petal.Length, paired=TRUE)
pairPlot(x)
pairPlot1
Draw a pair plot

Description
Draw a pair plot

Usage
```r
pairPlot1(data, ref = NULL, palette = NULL)
```

Arguments
- `data`: a data.frame
- `ref`: Numeric or NULL
- `palette`: The name of color palette from RColorBrewer package or NULL

Value
A ggplot

Examples
```r
x = meanCI(mtcars, paired = TRUE)
pairPlot1(x$data)
pairPlot1(x$data, ref = c(1,4,6))
pairPlot1(x$data, ref = c(1,3))
```

palette2colors
Extract hexadecimal colors from a color palette

Description
Extract hexadecimal colors from a color palette

Usage
```r
palette2colors(name, reverse = FALSE)
```

Arguments
- `name`: The name of color palette from RColorBrewer package
- `reverse`: Whether or not reverse the order of colors
Value

hexadecimal colors

Examples

palette2colors("Reds")

plot.meanCI S3 method for an object of class "meanCI"

Description

S3 method for an object of class "meanCI"

Usage

S3 method for class 'meanCI'
plot(x, ref = "control", side = NULL, palette = NULL, ...)

Arguments

x an object of class "meanCI"
ref string One of c("test","control").
side logical or NULL If true draw side by side plot
palette The name of color palette from RColorBrewer package or NULL
... Further arguments to be passed

Value

A ggplot or an object of class "plotCI" containing at least the following components:

p1 A ggplot
p2 A ggplot
side logical

Examples

meanCI(mtcars,mpg) %>% plot()
meanCI(mtcars,am,mpg) %>% plot()
meanCI(iris,Sepal.Width) %>% plot()
meanCI(iris,Sepal.Width,Sepal.Length) %>% plot()
meanCI(iris,Sepal.Width,Sepal.Length,paired=TRUE) %>% plot(palette="Dark2")
meanCI(iris,Sepal.Width,Sepal.Length) %>% plot()
meanCI(iris,Species,Sepal.Width) %>% plot(side=TRUE)
meanCI(iris,Species,Sepal.Width,mu=0.5,alternative="less") %>% plot(ref="test")
meanCI(acs,age) %>% plot()
meanCI(acs, sex, age) %>% plot()
meanCI(acs, smoking, age) %>% plot(palette="Set1")
meanCI(acs, Dx, age) %>% plot()
meanCI(acs, Dx, age, sex, mu=0) %>% plot(palette="Dark2")
x=c(95, 89, 76, 92, 91, 53, 67, 88, 75, 90, 85, 87, 85, 85, 68, 81, 84, 71, 46, 75, 80)
y=c(90, 85, 73, 90, 90, 53, 68, 90, 78, 89, 95, 83, 83, 83, 82, 65, 79, 83, 60, 47, 77, 83)
meanCI(x=x, y=y, paired=TRUE, alpha=0.1) %>% plot()
meanCI(10:30, 1:15) %>% plot()
iris %>% meanCI() %>% plot(side=TRUE)
meanCI(n=150, m=115, s=10, alpha=0.01) %>% plot()
data(anscombe2, package="PairedData")
meanCI(anscombe2, idx=list(c("X1", "Y1"), c("X4", "Y4"), c("X3", "Y3"), c("X2", "Y2")),
paired=TRUE, mu=0) %>% plot()
x=meanCI(anscombe2, idx=list(c("X1", "X2", "X3", "X4"), c("X1", "Y2", "Y3", "Y4")), paired=TRUE, mu=0)
plot(x)
longdf=tidyr::pivot_longer(anscombe2, cols=X1:Y4)
x=meanCI(longdf, name, value, idx=list(c("X1", "X2", "X3", "X4"), c("Y1", "Y2", "Y3", "Y4")), paired=TRUE, mu=0)
plot(x)
acs %>% select(sex, TC, TG, HDLC) %>% meanCI(group=sex) %>% plot()
acs %>% select(sex, TC, TG, HDLC) %>% meanCI(sex) %>% plot()

print.meanCI

S3 method "print" for class "meanCI"

Description

S3 method "print" for class "meanCI"

Usage

```r
## S3 method for class 'meanCI'
print(x, ...)
```

Arguments

- `x` An object of class "meanCI"
- `...` Further arguments

Value

No return value, called for side effect
Description

S3 method for class plotCI

Usage

```r
## S3 method for class 'plotCI'
print(x, ...)
```

Arguments

- `x` An object of class plotCI
- `...` Further arguments

Value

No return value, called for side effect

propCI

Calculate confidence intervals of proportion or difference between proportions

Description

Calculate confidence intervals of proportion or difference between proportions

Usage

```r
propCI(
  x,
  y,
  n,
  p,
  n1,
  n2,
  p1,
  p2,
  P = 0,
  alpha = 0.05,
  digits = 2,
  alternative = "two.sided"
)
```
Arguments

- **x**: A vector
- **y**: A vector
- **n, n1, n2**: Integer sample size
- **p, p1, p2, P**: Numeric proportion
- **alpha**: Numeric confidence level
- **digits**: Integer indicating the number of decimal places
- **alternative**: A character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less".

Value

A list containing at least the following components:

- **data**: A tibble containing raw data or a list of numeric vector
- **result**: A data.frame consists of summary statistics
- **call**: The matched call
- **attr(*,"measure")**: Character. One of c("prop","propdiff")

```r
# @examples propCI(acs$sex) propCI(acs$sex,acs$DM) propCI(n=1600,p=0.4,alpha=0.01) propCI(n=100,p=0.73,P=0.8,alpha=0.01)
propCI(n1=400,n2=300,p1=0.4,p2=0.3,alpha=0.1) propCI(n1=100,n2=200,p1=0.38,p2=0.51,alpha=0.01)
propCI(n1=100,n2=200,p1=0.38,p2=0.51,alpha=0.01,alternative="less")
```

Description

Calculate confidence intervals of proportion or difference between proportions in a data.frame

Usage

```r
propCI_sub(data, x, y = NULL)
```

Arguments

- **data**: A data.frame
- **x**: Character Name of a categorical column
- **y**: Character Optional. Name of another categorical column
Value

A list containing at least the following components:

data A tibble containing raw data or a list of numeric vector

result A data.frame consists of summary statistics

call the matched call

attr(*,"measure") character. One of c("prop","propdiff")

Examples

```r
propCI_sub(acs,"sex")
propCI_sub(acs,"sex","HBP")
```

rstudio_viewer

Show html file in RStudio viewer or browser

Description

Show html file in RStudio viewer or browser

Usage

```r
rstudio_viewer(file_name, file_path = NULL, viewer = "rstudio")
```

Arguments

- **file_name** character file name
- **file_path** character file path
- **viewer** Character One of c("rstudio","browser")

Value

No return value, called for side effect
show_t_table

Show t-value table

Usage

```r
show_t_table(DF = 20, p = 0.05, alternative = "two.sided")
```

Arguments

- **DF**
 Numeric degree of freedom
- **p**
 Numeric probability
- **alternative**
 Character One of c("two.sided", "greater", "less")

Value

An object of class "flextable"

Examples

```r
show_t_table()
```

show_z_table

Show z-value table

Usage

```r
show_z_table(p = 0.05, alternative = "two.sided")
```

Arguments

- **p**
 Numeric probability
- **alternative**
 Character One of c("two.sided", "greater", "less")

Value

An object of class "flextable"
Examples

```r
textBox()
textBox(p=0.01)
```

Description

Draw textbox

Usage

```r
textBox(
  string,
  color = "black",
  lcolor = "red",
  bg = "cornsilk",
  lwd = 1,
  width = 10,
  bold = FALSE,
  italic = FALSE,
  fontsize = 11,
  space = 1.5,
  fontname
)
```

Arguments

- **string**: string
- **color**: font color
- **lcolor**: line color
- **bg**: background color
- **lwd**: numeric line width
- **width**: numeric box width
- **bold**, **italic**: logical
- **fontsize**: numeric font size
- **space**: space between lines
- **fontname**: name of font

Value

A flextable
Examples

string="Good Morning!"
textBox(string, italic=TRUE)
Index

* datasets
 - acs, 2

acs, 2

draw_n, 3
draw_t, 3

English, 4
english2, 5
estimationPlot1, 5

interpret, 6
is.mynumeric, 7
isProvided, 7

meanCI, 8
meanCI.data.frame, 9
meanCI.default, 10
meanCI2 (meanCI.default), 10
meanCI2df, 11
meanCI2df1, 12
meanCI_sub (meanCI.data.frame), 9
meanCIplot1, 12

pairPlot, 13
pairPlot1, 14
palette2colors, 14
plot.meanCI, 15
print.meanCI, 16
print.plotCI, 17
propCI, 17
propCI_sub, 18

rstudio_viewer, 19

show_t_table, 20
show_z_table, 20

textBox, 21