Package ‘invertiforms’

February 9, 2022

Title Invertible Transforms for Matrices
Version 0.1.0
Description Provides composable invertible transforms for (sparse) matrices.
License MIT + file LICENSE
URL https://rohelab.github.io/invertiforms/,
https://github.com/RoheLab/invertiforms
BugReports https://github.com/RoheLab/invertiforms/issues
Depends Matrix, methods
Imports sparseLRMatrix (>= 0.1.0), glue
Suggests covr, testthat, igraph, igraphdata
Encoding UTF-8
RoxygenNote 7.1.2
Collate 's4-generics.R' 'DoubleCenter.R' 'NormalizedLaplacian.R'
'PerturbedLaplacian.R' 'RegularizedLaplacian.R'
'invertiforms-package.R' 'utils.R'
NeedsCompilation no
Author Alex Hayes [aut, cre, cph] (<https://orcid.org/0000-0002-4985-5160>)
Maintainer Alex Hayes <alexpghayes@gmail.com>
Repository CRAN
Date/Publication 2022-02-09 19:20:08 UTC

R topics documented:

<table>
<thead>
<tr>
<th>Package</th>
<th>Title</th>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>invertiforms</td>
<td>Invertible Transforms for Matrices</td>
<td>0.1.0</td>
<td>Provides composable invertible transforms for (sparse) matrices.</td>
</tr>
</tbody>
</table>

License: MIT + file LICENSE
DoubleCenter

Construct and use DoubleCenter transformations

Description

A convenience function to create DoubleCenter S4 objects, which are useful for simultaneously row and column centering a matrix.

Usage

DoubleCenter(A)

S4 method for signature 'DoubleCenter,sparseMatrix'
transform(iform, A)

S4 method for signature 'DoubleCenter,sparseLRMatrix'
inverse_transform(iform, A)

S4 method for signature 'DoubleCenter,vsp_fa'
inverse_transform(iform, A)

Arguments

A
A matrix to transform.

iform
An Invertiform object describing the transformation.

Value

- DoubleCenter() creates a DoubleCenter object.
- transform() returns the transformed matrix, typically as a sparseLRMatrix::sparseLRMatrix.
- inverse_transform() returns the inverse transformed matrix, typically as a sparseLRMatrix::sparseLRMatrix in most cases. When possible reduces the sparseLRMatrix::sparseLRMatrix to a Matrix::sparseMatrix().
Examples

```r
library(igraph)
library(igraphdata)
data("karate", package = "igraphdata")
A <- get.adjacency(karate)
iform <- DoubleCenter(A)
A_tilde <- transform(iform, A)
A_recovered <- inverse_transform(iform, A_tilde)
all.equal(A, A_recovered)
```

DoubleCenter-class
Row and column centering transformation

Description

Row and column centering transformation

Slots

- `row_means` numeric.
- `col_means` numeric.
- `overall_mean` numeric.

inverse_transform
Apply the inverse of an invertible transformation

Description

Apply the inverse of an invertible transformation

Usage

```r
inverse_transform(iform, A)
```

Arguments

- `iform` An `Invertiform` object describing the transformation.
- `A` A matrix to inverse transform.
Value

The inverse transformed matrix.

Invertiform-class

An abstract S4 class representing an invertible transformation

Description

An abstract S4 class representing an invertible transformation

NormalizedLaplacian

Construct and use the Normalized Laplacian

Description

A convenience function to create NormalizedLaplacian S4 objects, which are useful for finding the normalized Laplacian of the adjacency matrix of a graph.

Usage

NormalizedLaplacian(A)

S4 method for signature 'NormalizedLaplacian,sparseMatrix'
transform(iform, A)

S4 method for signature 'NormalizedLaplacian,sparseMatrix'
inverse_transform(iform, A)

Arguments

A
A matrix to transform.
iform
An Invertiform object describing the transformation.

Details

We define the normalized Laplacian $L(A)$ of an $n \times n$ graph adjacency matrix A as

$$L(A)_{ij} = \frac{A_{ij}}{\sqrt{d_{i}^{out}} \sqrt{d_{j}^{in}}}$$

where

$$d_{i}^{out} = \sum_{j=1}^{n} ||A_{ij}||$$
and

\[d_{jn}^{in} = \sum_{i=1}^{n} \|A_{ij}\|. \]

When \(A_{ij} \) denotes the presence of an edge from node \(i \) to node \(j \), which is fairly standard notation, \(d_{jn}^{out} \) denotes the (absolute) out-degree of node \(i \) and \(d_{jn}^{in} \) denotes the (absolute) in-degree of node \(j \).

Note that this documentation renders most clearly at https://rohelab.github.io/invertiforms/.

Value

- `NormalizedLaplacian()` creates a `NormalizedLaplacian` object.
- `transform()` returns the transformed matrix, typically as a `Matrix`.
- `inverse_transform()` returns the inverse transformed matrix, typically as a `Matrix`.

Examples

```r
library(igraph)
library(igraphdata)
data("karate", package = "igraphdata")
A <- get.adjacency(karate)
iform <- NormalizedLaplacian(A)
L <- transform(iform, A)
A_recovered <- inverse_transform(iform, L)
all.equal(A, A_recovered)
```

Description

Normalized graph Laplacian transformation

Slots

- `rsA` numeric.
- `csA` numeric.
PerturbedLaplacian

Construct and use the Perturbed Laplacian

Description

Construct and use the Perturbed Laplacian

Usage

```r
PerturbedLaplacian(A, tau = NULL)
```

```r
## S4 method for signature 'PerturbedLaplacian,sparseMatrix'
transform(iform, A)
```

```r
## S4 method for signature 'PerturbedLaplacian,sparseLRMatrix'
inverse_transform(iform, A)
```

Arguments

- `A` A matrix to transform.
- `tau` Additive regularizer for row and column sums of `abs(A)`. Typically this corresponds to inflating the (absolute) out-degree and the (absolute) in-degree of each node by `tau`. Defaults to `NULL`, in which case we set `tau` to the mean value of `abs(A)`.
- `iform` An Invertiform object describing the transformation.

Details

We define the *perturbed Laplacian* $L^\tau(A)$ of an $n \times n$ graph adjacency matrix A as

$$
L^\tau(A)_{ij} = \frac{A_{ij} + \frac{\tau}{n}}{\sqrt{d_{i}^{\text{out}}} + \frac{\tau}{\sqrt{d_{j}^{\text{in}}} + \tau}}
$$

where

$$
d_{i}^{\text{out}} = \sum_{j=1}^{n} \|A_{ij}\|
$$

and

$$
d_{j}^{\text{in}} = \sum_{i=1}^{n} \|A_{ij}\|.
$$

When A_{ij} denotes the present of an edge *from* node i to node j, which is fairly standard notation, d_{i}^{out} denotes the (absolute) out-degree of node i and d_{j}^{in} denotes the (absolute) in-degree of node j.

Note that this documentation renders more clearly at https://rohelab.github.io/invertiforms/.
Value

- `PerturbedLaplacian()` creates a `PerturbedLaplacian` object.
- `transform()` returns the transformed matrix, typically as a `Matrix`.
- `inverse_transform()` returns the inverse transformed matrix, typically as a `Matrix`.

Examples

```r
library(igraph)
library(igraphdata)

data("karate", package = "igraphdata")
A <- get.adjacency(karate)
iform <- PerturbedLaplacian(A)
L <- transform(iform, A)
L

## Not run:
A_recovered <- inverse_transform(iform, L)
all.equal(A, A_recovered)

## End(Not run)
```

PerturbedLaplacian-class

`Perturbed graph Laplacian transformation`

Description

Perturbed graph Laplacian transformation

Slots

tau numeric.
rsA numeric.
csA numeric.
tau_choice character.
RegularizedLaplacian

Construct and use the Regularized Laplacian

Description

Construct and use the Regularized Laplacian

Usage

RegularizedLaplacian(A, tau_row = NULL, tau_col = NULL)

S4 method for signature 'RegularizedLaplacian,Matrix'
transform(iform, A)

S4 method for signature 'RegularizedLaplacian,matrix'
transform(iform, A)

S4 method for signature 'RegularizedLaplacian,sparseLRMatrix'
transform(iform, A)

S4 method for signature 'RegularizedLaplacian,Matrix'
inverse_transform(iform, A)

S4 method for signature 'RegularizedLaplacian,matrix'
inverse_transform(iform, A)

S4 method for signature 'RegularizedLaplacian,vsp_fa'
inverse_transform(iform, A)

Arguments

A
A matrix to transform.

tau_row
Additive regularizer for row sums of abs(A). Typically this corresponds to inflating the (absolute) out-degree of each node by tau_row. Defaults to NULL, in which case we set tau_row to the mean (absolute) row sum of A.

tau_col
Additive regularizer for column sums of abs(A). Typically this corresponds to inflating the (absolute) in-degree of each node by tau_col. Defaults to NULL, in which case we set tau_col to the mean (absolute) column sum of A.

iform
An Invertiform object describing the transformation.

Details

We define the regularized Laplacian \(L^\tau(A) \) of an \(n \times n \) graph adjacency matrix \(A \) as

\[
L^\tau(A)_{ij} = \frac{A_{ij}}{\sqrt{d_i^{out} + \tau_{row}} \sqrt{d_j^{in} + \tau_{col}}}
\]
where

\[d_{i}^{out} = \sum_{j=1}^{n} \|A_{ij}\| \]

and

\[d_{j}^{in} = \sum_{i=1}^{n} \|A_{ij}\|. \]

When \(A_{ij} \) denotes the present of an edge from node \(i \) to node \(j \), which is fairly standard notation, \(d_{i}^{out} \) denotes the (absolute) out-degree of node \(i \) and \(d_{j}^{in} \) denotes the (absolute) in-degree of node \(j \). Then \(\tau_{row} \) is an additive out-degree regularizer and \(\tau_{col} \) is an additive in-degree regularizer.

Note that this documentation renders more clearly at https://rohelab.github.io/invertiforms/.

Value

- `RegularizedLaplacian()` creates a `RegularizedLaplacian` object.
- `transform()` returns the transformed matrix, typically as a `Matrix`.
- `inverse_transform()` returns the inverse transformed matrix, typically as a `Matrix`.

Examples

```r
library(igraph)
library(igraphdata)
data("karate", package = "igraphdata")
A <- get.adjacency(karate)
iform <- RegularizedLaplacian(A)
L <- transform(iform, A)
L
A_recovered <- inverse_transform(iform, L)
all.equal(A, A_recovered)
```
RegularizedLaplacian-class

Regularized graph Laplacian transformation

Description

Regularized graph Laplacian transformation

Slots

tau_row numeric.
tau_col numeric.
rsa numeric.
csa numeric.
tau_choice_row character.
tau_choice_col character.

transform

Apply an invertible transformation

Description

Apply an invertible transformation

Usage

transform(iform, A)

Arguments

iform An Invertiform object describing the transformation.
A A matrix to transform.

Value

The transformed matrix.
Index

DoubleCenter, 2, 2
DoubleCenter-class, 3
inverse_transform, 3
inverse_transform, DoubleCenter, sparseLRMatrix-method
(DoubleCenter), 2
inverse_transform, DoubleCenter, vsp_fa-method
transform, RegularizedLaplacian, sparseLRMatrix-method
(RegularizedLaplacian), 8
inverse_transform, NormalizedLaplacian, sparseMatrix-method
(NormalizedLaplacian), 4
inverse_transform, PerturbedLaplacian, sparseLRMatrix-method
(PerturbedLaplacian), 6
inverse_transform, RegularizedLaplacian, Matrix-method
(RegularizedLaplacian), 8
inverse_transform, RegularizedLaplacian, matrix-method
(RegularizedLaplacian), 8
inverse_transform, RegularizedLaplacian, vsp_fa-method
(RegularizedLaplacian), 8
Invertiform, 2–4, 6, 8, 10
Invertiform-class, 4
Matrix, 5, 7, 9
Matrix::sparseMatrix(), 2
NormalizedLaplacian, 4, 4, 5
NormalizedLaplacian-class, 5
PerturbedLaplacian, 6, 7
PerturbedLaplacian-class, 7
RegularizedLaplacian, 8, 9
RegularizedLaplacian-class, 10
sparseLRMatrix::sparseLRMatrix, 2
transform, 10
transform, DoubleCenter, sparseMatrix-method
(DoubleCenter), 2
transform, NormalizedLaplacian, sparseMatrix-method
(NormalizedLaplacian), 4