Package ‘iopsych’

August 29, 2016

Type Package
Title Methods for Industrial/Organizational Psychology
Version 0.90.1
Date 2016-03-16
Author Allen Goebl <goeblPPU@umnNedu>, Jeff Jones <joneQPXW@umnNed>, and Adam Beatty <abeatty@humrroNorg>
Maintainer Allen Goebl <goebl1005@umn.edu>
Depends R (>= 3.0)
Imports mvtnorm (>= 1.0), mco (>= 1.0), stats (>= 1.0)
Description Collection of functions for IO Psychologists.
License BSD_3_clause + file LICENSE
RoxygenNote 5.0.1
NeedsCompilation no
Repository CRAN
Date/Publication 2016-04-04 13:38:31

R topics documented:

 aiEst ... 2
 aiPux .. 3
 aiPuxComposite .. 4
 asvab ... 6
 cor2d ... 6
 d2cor ... 7
 dComposite ... 7
 dls2007 .. 8
 fuse ... 9
 fuseMat ... 10
 fuseVec ... 11
 lMvrrc ... 12
 paretoXX .. 13
aiEst Estimate adverse impact given d and sr

Description
Estimate adverse impact given d and sr

Usage
aiEst(d, sr, pct_minority)

Arguments
- d Subgroup difference.
- sr The percentage of the applicant population who are selected.
- pct_minority The percentage of the applicant population who are part of a given minority group.

Value
(1) The adverse impact ratio, (2) The overall selection ration, (3) The selection ratio for the majority group, (4) The selection ratio for the minority group, and (5) the predictor cutoff value that corresponds to the given overall selection ratio

Author(s)
Jeff Jones and Allen Goebl
aiPux

References

Examples
aiEst(d = 0.15, sr = 0.25, pct_minority = 0.30)
aiEst(d = 0.40, sr = 0.10, pct_minority = 0.15)

```
aiPux  Estimate ai and average criterion scores for majority and minority groups.
```

Description
Estimate ai and average criterion scores for majority and minority groups.

Usage
aiPux(mr, dx, dy = 1, sr, pct_minority)

Arguments
- **mr**: The correlation between the predictor and criterion composites.
- **dx**: A vector of d values for the predictors. These d values are expected to have been computed in the direction of Majority - Minority.
- **dy**: A vector of d values for the criteria. These d values are expected to have been computed in the direction of Majority - Minority.
- **sr**: The percentage of the applicant population who are selected.
- **pct_minority**: The percentage of the applicant population who are part of a given minority group.

Value
- **AI**: Adverse Impact
- **Overall_sr**: The overall selection ratio set by the user
- **Majority_sr**: Majority Selection Rate
- **Minority_sr**: Minority Selection Rate
- **Majority_Standardized**: Predicted composite criterion score relative to the majority population
- **Global_Standardized**: Predicted composite criterion score relative to the overall population
Author(s)

Jeff Jones and Allen Goebl

References

Examples

\[
\text{aiPuxComposite}(r_{\text{mat}}, y_{\text{col}}, x_{\text{col}}, dX, dY, wt_{x}, wt_{y}, \text{sr}, \text{pct}_{\text{minority}})
\]

Description

Estimate ai and average criterion scores for majority and minority groups.

Usage

\[
\text{aiPuxComposite}(r_{\text{mat}}, y_{\text{col}}, x_{\text{col}}, dX, dY, wt_{x}, wt_{y}, \text{sr}, \text{pct}_{\text{minority}})
\]

Arguments

- **r_mat**: Super correlation matrix between the predictors and criteria. This argument assumes that the predictors come first in the matrix.
- **y_col**: A vector of columns representing criterion variables.
- **x_col**: A vector of columns representing predictor variables.
- **dX**: A vector of d values for the predictors. These d values are expected to have been computed in the direction of Majority - Minority.
- **dY**: A vector of d values for the criteria. These d values are expected to have been computed in the direction of Majority - Minority.
- **wt_x**: Weights for the predictors to form the overall composite predictor.
- **wt_y**: Weights for the criteria to form the overall composite criterion.
- **sr**: The percentage of the applicant population who are selected.
- **pct_minority**: The percentage of the applicant population who are part of a given minority group.
aiPuxComposite

Value

- AIAdverse Impact
- Overall_sr The overall selection ratio set by the user
- Majority_sr Majority Selection Rate
- Minority_sr Minority Selection Rate
- Majority_StandardizedPredicted composite criterion score relative to the majority population
- Global_StandardizedPredicted composite criterion score relative to the overall population

Author(s)

Jeff Jones and Allen Goebl

References

Examples

```r
R <- matrix(c(1.000, 0.170, 0.000, 0.100, 0.290, 0.160,
             0.170, 1.000, 0.120, 0.160, 0.300, 0.260,
             0.000, 0.120, 1.000, 0.470, 0.120, 0.200,
             0.100, 0.160, 0.470, 1.000, 0.240, 0.250,
             0.290, 0.300, 0.120, 0.240, 1.000, 0.170,
             0.160, 0.260, 0.200, 0.250, 0.170, 1.000), 6, 6)
wt_x <- c(.244, .270, .039, .206)
w t_y <- c(6, 2)
sr <- 0.25
pct_minority <- .20

dX <- c(1, 0.09, 0.09, 0.20)
dY <- c(0.450, 0.0)
aiPuxComposite(R, 5:6, 1:4, dX, dY, wt_x, wt_y, sr, pct_minority)

# compare the output from predictAI with the output in the CAIQS manual on page 7 where SR = .250
```
asvab

Description

This dataset was published in Wee, S., Newman, D. A., & Joseph, D. L. (2014) and describes the results of a military validation study. The first four rows contain the intercorrelations of the four predictor variables. The fifth row contains the black-white score differences (d). Rows 6-12 contain the correlations between the four predictor variables and the six job performance variables.

Usage

asvab

Format

A data frame with 12 rows and 4 columns.

References

cor2d

Description

Convert from r to d

Usage

cor2d(r)

Arguments

r A r-value or a vector of r values.

Value

A d value or a vector of d values.

Author(s)

Allen Goebl and Jeff Jones
d2cor

Examples

```
cor2d(.3)
cor2d(((1:9)/10))
```

d2cor
Convert from d to r

Description

Convert from d to r

Usage

```
d2cor(d)
```

Arguments

- **d**
 A d-value or a vector of d values.

Value

A r value or a vector of r values.

Author(s)

Allen Goebl and Jeff Jones

Examples

```
d2cor(.3)
d2cor(((1:9)))
```

dComposite
Estimates the d of a composite.

Description

Estimates the d of a composite.

Usage

```
dComposite(rxx, d_vec, wt_vec = rep(1, length(d_vec)))
```
Arguments

- \texttt{rxx} A matrix of predictor intercorrelations.
- \texttt{d_vec} A vector containing d’s for each predictor.
- \texttt{wt_vec} A vector containing the weights of each item in \texttt{rxx}.

Value

A vector of correlation coefficients.

Note

This is essentially the same function as \texttt{solveWt()}.

Author(s)

Jeff Jones and Allen Goebel

References

Examples

\begin{verbatim}
Rxx <- matrix(.3, 3, 3); diag(Rxx) <- 1
ds <- c(.2, .4, .3)
dComposite(rxx = Rxx, d_vec = ds)

Rxx <- matrix(c(1.0, 0.3, 0.2,
 0.3, 1.0, 0.1,
 0.2, 0.1, 1.0), 3, 3)
ds <- c(.1, .3, .7)
ws <- c(1, .5)
dComposite(rxx = Rxx, d_vec = ds, wt_vec = ws)
\end{verbatim}

Description

This hypothetical dataset was published in Decorte, W., Lievens, F., Sackett, P. R. (2007). The first column contains black-white subgroup difference scores. Columns 2-7 contain a hypothetical predictor, job performance correlation matrix.

Usage

dls2007
Fuse

Format

A data frame with 6 rows and 7 columns.

References

Fuse

Computes the correlation between two composites of items.

Description

Computes the correlation between two composites of items. Composites may contain overlapping items. Items weights for each composite may be specified.

Usage

fuse(r_mat, a, b, wt_a = rep(1, length(a)), wt_b = rep(1, length(b)))

Arguments

- r_mat: A correlation matrix.
- a: The items used for composite A specified as a vector of column numbers.
- b: The items used for composite B specified as a vector of column numbers.
- wt_a: A vector containing the weights of each item in composite A.
- wt_b: A vector containing the weights of each item in composite B.

Value

A correlation coefficient.

Author(s)

Allen Goebl and Jeff Jones

References

Examples

Rxx <- matrix(c(1.00, 0.25, 0.50, 0.61,
 0.25, 1.00, 0.30, 0.10,
 0.50, 0.30, 1.00, -0.30,
 0.61, 0.10, -0.30, 1.00), 4, 4)
a <- c(1, 3)
b <- c(2, 4)

Example using overlapping items and weights
Rxx <- matrix(.3, 4, 4); diag(Rxx) <- 1
a <- c(1, 2, 4)
b <- c(2, 3)
wt_a <- c(.60, .25, .15)
wt_b <- c(2, 3)
fuse(r_mat = Rxx, a = a, b = b, wt_a = wt_a, wt_b = wt_b)

fuseMat

The intercorrelation among items and composites made of these items.

Description

The key matrix is used to specify any number of weighted item composites. A correlation matrix of
these composites and the original correlation matrix is then computed and returned.

Usage

fuseMat(r_mat, key_mat, type = "full")

Arguments

r_mat A correlation matrix.
key_mat A matrix with one row for each composite and one column for each item con-
tained in r_mat. The value if each element corresponds to the weight given to
an item.
type The type of output desired.

Value

If type = cxc then a matrix of the intercorrelations between the specified composites are returned.
If type = cxr then the intercorrelations between the original item and the specified composites are
returned. If type = full then all the intercorrelations between both the original items and the specified
composites are returned.

Author(s)

Allen Goebl and Jeff Jones
Examples

Rxx <- matrix(c(1.00, 0.25, 0.50, 0.61,
 0.25, 1.00, 0.30, 0.10,
 0.50, 0.30, 1.00, -0.30,
 0.61, 0.10, -0.30, 1.00), 4, 4); Rxx

Single composite
Key <- matrix(c(1, 2, 3, -1), 1, 4); Key

fuseMat(r_mat = Rxx, key_mat = Key)

Three composites
Key <- matrix(c(1, 2, 3, -1,
 2, 1, 0, -2,
 1, 1, 0, 0), 3, 4, byrow = TRUE)

fuseMat(Rxx, Key)

fuseVec

Computes the correlation between a composite and a vector of items.

Description

Computes the correlation between a composite and a vector of items.

Usage

fuseVec(r_mat = r_mat, a = a, wt_a = wt_a, output = "vec")

Arguments

r_mat A correlation matrix.
a The items used for composite A specified as a vector of column numbers.
wt_a A vector containing the weights of each item in composite A.
output Output can be set to "mat", to return a matrix made up of the newly generated correlations appended to the original correlation matrix.

Value

A vector of correlation coefficients.

Author(s)

Allen Goebl and Jeff Jones

References

lmvrrc

Lawley multivariate range restriction correction.

Description
Lawley multivariate range restriction correction.

Usage

```
lmvrrc(rcov, vnp, as_cor = TRUE)
```

Arguments
- `rcov` The covariance matrix of the restricted sample.
- `vnp` The covariance matrix of predictors explicitly used for selection. This matrix should be based on the unrestricted population.
- `as_cor` This argument can be set to FALSE to return a covariance matrix.

Value
The correlation matrix or variance covariance in the unrestricted population.

Author(s)
The original function was written by Adam Beatty and adapted by Allen Goebl.

References

Examples

```r
data(dls2007)
dat <- dls2007
rxx <- dat[1:4, 2:5]
items <- c(1,3)
wt_a <- c(2,1)

fuseVec(r_mat=rxx, a=items)
fuseVec(r_mat=rxx, a=items, wt_a=wt_a, output="mat")
```

```r
lmvrrc(rcov=vstar, vnp=vpp)
```
Computes data needed for a XX Pareto plot.

Description
Computes data needed for a XX Pareto plot.

Usage
paretoXX(r_mat, x_col, y_col, pts = 100)

Arguments
- r_mat: A correlation matrix.
- x_col: A vector of columns representing predictor variables.
- y_col: A vector of columns representing criterion variables.
- pts: The number of points used. Determines accuracy.

Value
- betas: A matrix of beta weights for each criteria weight.
- wt_one: The weight given to the first criterion.
- multiple_r: The correlation between the predictor and criterion composites.

Author(s)
Allen Goebl and Jeff Jones

Examples
Setup Data
data(dls2007)
r_mat <- dls2007[1:6, 2:7]

Run Model
XX1 <- paretoXX(r_mat=r_mat, x_col=1:4, y_col=5:6)

Plot Multiple correlations
plot(c(0,1), c(.3,.5), type="n", xlab="C1 Wt", ylab="mr")
lines(XX1$wt_one, (XX1$R2[,1])
lines(XX1$wt_one, (XX1$R2[,2])
paretoXY

Computes data needed for a XY Pareto plot.

Description

Computes data needed for a XY Pareto plot.

Usage

```r
paretoXY(r_mat, x_col, y_col, d_vec, gen = 100, pop = 100,
         pred_lower = rep(-2, length(x_col)), pred_upper = rep(2, length(x_col)))
```

Arguments

- `r_mat`: A correlation matrix.
- `x_col`: A vector of columns representing predictor variables.
- `y_col`: A vector of columns representing criterion variables.
- `d_vec`: A vector of d scores.
- `gen`: The number of iterations used by the algorithm.
- `pop`: The population or number of cases used by the algorithm.
- `pred_lower`: The minimum weight allowed for each predictor.
- `pred_upper`: The maximum weight allowed for each predictor.

Value

- `betas`: A matrix of beta weights for each criteria weight.
- `mr_d`: A matrix of multiple correlations or d values corresponding to each row of beta weights.
- `pareto_optimal`: A vector indicating whether each value is pareto optimal.

Author(s)

Allen Goebl Jeff Jones

Examples

```r
data(dls2007)
dat <- dls2007
r_mat <- dat[1:6, 2:7]
x_col <- 1:4
y_col <- 5:6
d_vec <- dat[1:4, 1]

paretoXY(r_mat=r_mat, x_col=1:4, y_col=5, d_vec=d_vec, pred_lower=c(0,0,0,0))
paretoXY(r_mat=r_mat, x_col=1:4, y_col=c(5,6))
```
Description

This example data was published in Ree, M. J., Carretta, T. R., Earles, J. A., & Albert, W. (1994). The data set contains two matrices stored as a list, which can be used to demonstrate multivariate range restriction corrections. The vstar matrix is the variance-covariance matrix of the unrestricted sample. The vpp matrix is the variance covariance matrix of the restricted sample. The vpp matrix represents the subset of variables which were explicitly used for selection, which are also found in the upper left corner of the vstar matrix.

Usage

rcea1994

Format

A list containing a 4x4 matrix and a 2x2 matrix as elements.

References

reliabate

Disattenuate a correlation matrix using an estimate of the component reliabilities

Description

Disattenuate a correlation matrix using an estimate of the component reliabilities

Usage

reliabate(r_mat, rel_vec)

Arguments

- r_mat: A correlation matrix
- rel_vec: A vector or reliabilities.

Value

A reliabated (disattenuated) correlation matrix.
Author(s)

Allen Goebl and Jeff Jones

Examples

```r
r_mat <- matrix(c(1.00, 0.25, 0.30,
                  0.25, 1.00, 0.50,
                  0.30, 0.50, 1.00), 3, 3)
rel <- c(0.70, 0.64, 0.81)
relWt(r_mat = r_mat, rel_vec = rel)
```

Description

Function to implement Johnson’s (2000) relative weight computation.

Usage

```r
relWt(r_mat, y_col, x_col)
```

Arguments

- `r_mat` A correlation matrix.
- `y_col` A vector of columns representing criterion variables.
- `x_col` A vector of columns representing predictor variables.

Value

A list containing the objects eps, beta_star, and lambda_star. The object eps contains the vector of relative weights of the predictors whose sum is equivalent to the model R^2 (see Johnson, 2000, ps 8 - 9). The object beta_star contains the regression weights from regressing the criterion on Z, the 'best fitting orthogonal approximation' of the predictor variables (see Johnson, 2000, p. 5). The object lambda_star contains the regression coefficients from regressing Z on the predictor variables (see Jonhson, 2000, p. 8).

Author(s)

Jeff Jones and Allen Goebl

References

Examples

```r
Rs <- matrix(c(1.0, 0.2, 0.3, 0.4, -0.4,
  0.2, 1.0, 0.5, 0.1, 0.1,
  0.3, 0.5, 1.0, 0.2, -0.3,
  0.4, 0.1, 0.2, 1.0, 0.4,
  -0.4, 0.1, -0.3, 0.4, 1.0), 5, 5)
ys <- 5
xs <- 1:4
relWt(Rs, ys, xs)

rmatReg<-Regression
```

Description

Regression

Usage

```r
rmatReg(r_mat, y_col, x_col)
```

Arguments

- `r_mat` A correlation matrix.
- `y_col` The column representing the criterion variable.
- `x_col` A vector of columns representing predictor variables.

Value

Regression beta weights and R2.

Author(s)

Allen Goebl and Jeff Jones

Examples

```r
Rs <- matrix(c(1.0, 0.2, 0.3, 0.4, -0.4,
  0.2, 1.0, 0.5, 0.1, 0.1,
  0.3, 0.5, 1.0, 0.2, -0.3,
  0.4, 0.1, 0.2, 1.0, 0.4,
  -0.4, 0.1, -0.3, 0.4, 1.0), 5, 5)
ys <- 5
xs <- 1:4
rmatReg(Rs, ys, xs)
```
rmatRegPE
Partially evaluated regression

Description

Returns a function for calculating beta weights and R2 which has been partially evaluated with respect to rxx.

Usage

```r
rmatRegPE(rxx)
```

Arguments

- `rxx`
 A matrix of predictor intercorrelations.

Value

Partially evaluated regression function.

Author(s)

Allen Goebl and Jeff Jones

Examples

```r
Rxx <- matrix(c(1.00, 0.25, 0.40,
                 0.25, 1.00, 0.30,
                 0.40, 0.30, 1.00), 3, 3)

rmatRegPE(Rxx)
```

solveWt
Find r given arbitrary predictor weights

Description

Find r given arbitrary predictor weights

Usage

```r
solveWt(r_mat, y_col, x_col, wt)
```
Arguments

- `r_mat` A correlation matrix.
- `y_col` A vector of columns representing criterion variables.
- `x_col` A vector of columns representing predictor variables.
- `wt` A vector of predictor weights or a list of multiple vectors.

Value

The correlation between the weighted predictor composite and criterion.

Note

This uses a simpler, faster version of the same formula used for `fuse()`.

Author(s)

Allen Goebel and Jeff Jones

Examples

```r
library(iopsych)
# Get Data
data(dls2007)
r_mat <- dls2007[1:6, 2:7]

# Get weights
unit_wt <- c(1,1,1,1)
other_wt <- c(1,2,1,.5)
wt_list <- list(unit_wt, other_wt)

# Solve
solveWtR2(r_mat=r_mat, y_col=6, x_col=1:4, wt=unit_wt)
solveWtR2(r_mat=r_mat, y_col=6, x_col=1:4, wt=other_wt)
solveWtR2(r_mat=r_mat, y_col=6, x_col=1:4, wt=wt_list)
```

solveWtR2
Find R2 given arbitrary predictor weights

Description

Find R2 given arbitrary predictor weights

Usage

```r
solveWtR2(r_mat, y_col, x_col, wt)
```
Arguments

- `r_mat` A correlation matrix.
- `y_col` A vector of columns representing criterion variables.
- `x_col` A vector of columns representing predictor variables.
- `wt` A vector of predictor weights or a list of multiple vectors.

Value

Regression R2.

Note

This just calls `solveWt()` and squares the output.

Author(s)

Allen Goebl and Jeff Jones

Examples

```r
library(iopsych)
# Get Data
data(dls2007)
r_mat <- dls2007[1:6, 2:7]

# Get weights
unit_wt <- c(1, 1, 1)
other_wt <- c(1, 2, 1, 5)
wt_list <- list(unit_wt, other_wt)

# Solve
solveWtR2(r_mat=r_mat, y_col=6, x_col=1:4, wt=unit_wt)
solveWtR2(r_mat=r_mat, y_col=6, x_col=1:4, wt=other_wt)
solveWtR2(r_mat=r_mat, y_col=6, x_col=1:4, wt=wt_list)
```

trModel
Taylor-Russel Ratio

Description

Computes the Taylor Russell ratio

Usage

```
trModel(rxy, sr, br)
```
Arguments

- r_{xy}: The correlation between the predictor composite and the criterion.
- s_r: The selection ratio.
- b_r: The base rate of the criterion. The cutoff point indicating success or failure.

Value

The success ratio.

Author(s)

Allen Goebl and Jeff Jones

References

Examples

```r
trModel(rxy=.5, sr=.5, br=.6)
```

utilityB
Boudreau Utility Model.

Description

This utility model extends the BCG model with additional financial variables.

Usage

```r
utilityB(n = 1, sdy, rxy = NULL, uxs = NULL, sr = NULL, pux = NULL,  
cost = 0, period = 1, v = 0, tax = 0, i = 0)
```

Arguments

- n: The size of the applicant pool
- sdy: The standard deviation of performance in monetary units.
- r_{xy}: The correlation between the predictor composite and the criterion.
- uxs: The average predictor score of those selected. If the uxs is unknown, the sr argument can used instead.
- sr: A selection ratio or a vector of selection ratios.
- pux: The expected average criterion score of selected applicants.
- $cost$: The cost per applicant of a selection system.
period The anticipated tenure of selected employees.
v The proportion of new costs to new revenue (i.e. sc/sv).
tax The marginal tax rate.
i Discount rate.

Value
Estimated gain in utility.

Note
This functions can except either (1) pux, (2) uxs and rxy, or (3) sr and rxy.

Author(s)
Allen Goebl and Jeff Jones

References

Examples
utilityBcg(sdy=10000, rxy=.50, sr=.30, period=4, v=.5, tax=1, i=.02)

utilityBcg Brogden-Cronbach-Gleser Utility Model.

Description
Estimates the utility of an employee selection system.

Usage
utilityBcg(n = 1, sdy, rxy = NULL, uxs = NULL, sr = NULL, pux = NULL, cost = 0, period = 1)

Arguments
n The size of the applicant pool
sdy The standard deviation of performance in monetary units.
rxy The correlation between the predictor composite and the criterion.
uxs The average predictor score of those selected. If the uxs is unknown, the sr argument can used instead.
sr A selection ratio or a vector of selection ratios.
utility\textit{Rbn}

\begin{itemize}
 \item \texttt{pux}: The expected average criterion score of selected applicants.
 \item \texttt{cost}: The cost per applicant of a selection system.
 \item \texttt{period}: The anticipated tenure of selected employees.
\end{itemize}

\textbf{Value}

Estimated gain in utility.

\textbf{Note}

This function can except either (1) \texttt{pux}, (2) \texttt{uxs} and \texttt{rxy}, or (3) \texttt{sr} and \texttt{rxy}.

\textbf{Author(s)}

Allen Goebl and Jeff Jones

\textbf{References}

\textbf{Examples}

utility\texttt{Bcg}(sdy=10000, \texttt{rxy}=.50, \texttt{sr}=.30)

\begin{verbatim}
utilityRbn(n = 1, sdr, a, rxy, uxs = NULL, sr = NULL, pux = NULL, cost = 0, period = 1)
\end{verbatim}

\textbf{Description}

This utility model uses SD of job performance ratings rather than the SD of job performance in monetary units.

\textbf{Usage}

utility\texttt{Rbn}(n = 1, sdr, a, rxy, uxs = NULL, sr = NULL, pux = NULL, cost = 0, period = 1)

\textbf{Arguments}

\begin{itemize}
 \item \texttt{n}: The size of the applicant pool.
 \item \texttt{sdr}: The standard deviation of ratings of job performance.
 \item \texttt{a}: The average total compensation.
 \item \texttt{rxy}: The correlation between the predictor composite and the criterion.
 \item \texttt{uxs}: The average predictor score of those selected. If the \texttt{uxs} is unknown, the \texttt{sr} argument can used instead.
 \item \texttt{sr}: A selection ratio or a vector of selection ratios.
\end{itemize}
utilityShp

pux The expected average criterion score of selected applicants.
cost The cost per applicant of a selection system.
period The anticipated tenure of selected employees.

Value
Estimated gain in utility.

Note
This function can except either (1) pux, (2) uxs and rxy, or (3) sr and rxy.

Author(s)
Allen Goebl and Jeff Jones

References

Examples
utilityRbn(sdr=10000, a=90000, rxy=.50, sr=.30)

utilityShp Schmidt-Hunter-Pearlman Utility Model.

Description
This model calculates the utility of an intervention accepting d rather than rxy as an argument.

Usage
utilityShp(n = 1, sdy, d, cost = 0, period = 1)

Arguments
n The number of employees involved in the intervention.
sdy The standard deviation of performance in monetary units.
d The difference in job performance between the group receiving a treatment and the group not receiving a treatment, expressed in standard deviation units.
cost The cost of the intervention per participant.
period The anticipate duration of the training effect.
Value

Estimated gain in utility.

Author(s)

Allen Goebl and Jeff Jones

References

Examples

utilityShp(sdy=10000, d=.50, period=4)

ux

The average score of selected applicants on a predictor composite.

Description

When scores on the predictor composite are assumed to be normally distributed, the average score of selected applicants can be computed for an arbitrary selection ratio using the ordinate of the normal curve.

Usage

ux(sr)

Arguments

sr

A selection ratio or a vector of selection ratios.

Value

ux: The average score of those selected on a predictor composite.

Author(s)

Allen Goebl and Jeff Jones

References

Examples

ux(.6)
Index

*Topic **datasets**
 asvab, 6
 dls2007, 8
 rcea1994, 15

aiEst, 2
aiPux, 3
aiPuxComposite, 4
asvab, 6

cor2d, 6

d2cor, 7
dComposite, 7
dls2007, 8

fuse, 9
fuseMat, 10
fuseVec, 11

lMvrrc, 12

paretoXX, 13
paretoXY, 14

rcea1994, 15
reliabate, 15
relWt, 16
rmatReg, 17
rmatRegPE, 18

solveWt, 18
solveWtR2, 19

trModel, 20

utilityB, 21
utilityBcg, 22
utilityRbn, 23
utilityShp, 24
ux, 25