Package ‘ipADMIXTURE’

March 26, 2020

Title Iterative Pruning Population Admixture Inference Framework

Version 0.1.0

Description A data clustering package based on admixture ratios (Q matrix) of population structure. The framework is based on iterative Pruning procedure that performs data clustering by splitting a given population into subclusters until meeting the condition of stopping criteria the same as ipPCA, iNJclust, and IPCAPS frameworks. The package also provides a function to retrieve phylogeny tree that construct a neighbor-joining tree based on a similar matrix between clusters. By given multiple Q matrices with varying a number of ancestors (K), the framework define a similar value between clusters i,j as a minimum number K* that makes majority of members of two clusters are in the different clusters. This K* reflects a minimum number of ancestors we need to splitting cluster i,j into different clusters if we assign K* clusters based on maximum admixture ratio of individuals. The publication of this package is at Chainarong Amornbunchornvej, Pongsakorn Wangkumhang, and Sissades Tongsima (2020) <doi:10.1101/2020.03.21.001206>.

Depends R (>= 3.5.0)

Imports stats,treemap,ape

URL https://github.com/DarkEyes/ipADMIXTURE

BugReports https://github.com/DarkEyes/ipADMIXTURE/issues

Language en-US

License GPL-3

Encoding UTF-8

LazyData true

Suggests knitr, rmarkdown

VignetteBuilder knitr

RoxygenNote 7.0.2

NeedsCompilation no

Author Chainarong Amornbunchornvej [aut, cre]

Maintainer Chainarong Amornbunchornvej <grandca@gmail.com>

Repository CRAN

Date/Publication 2020-03-26 11:00:09 UTC
biclustFunc

R topics documented:

biclustFunc .. 2
getPhyloTree .. 3
human27pop_labels .. 4
human27pop_Qmat ... 4
ipADMIIXTURE ... 5
plotAdmixClusters .. 6
plotClusterLeaves ... 7
printClustersFromLabels 7
UD1labels ... 8
UD1_Qmat ... 8

Index

biclustFunc biclustFunc function

Description

biclustFunc is a binary clustering function using hierarchical clustering.

Usage

biclustFunc(Qmat, admixRatioThs = 0.5, method = "average")

Arguments

- **Qmat**
 - is a Q matrix that contains admixture ratios of all individuals where the Qmat[i,j] represents the admixture ratio of ancestor j for individual i.

- **admixRatioThs**
 - is a threshold to determine that if a cluster has maxDiffAdmixRatio lower than threshold, then the cluster is a homogeneous cluster.

- **method**
 - is a method parameter of hclust object for hierarchical clustering analysis. The default is "average".

Value

This function returns binary clustering results.

- **heteroFlag**
 - is a flag that represents a status whether a given cluster is heterogeneous (having sub-clusters). It is TRUE if maxDiffAdmixRatio >= admixRatioThs.

- **clusterInx**
 - is a vector of clustering assignment where indexClsVec[i] is a cluster number of individual i.

- **meanDiffAdmixRatio**
 - is a vector of magnitude-difference of admixture ratios. It is calculated by splitting a given cluster into two sub-clusters. Then, we take the absolute on the difference between mean admixture ratios of sub-clusters.
getPhyloTree

Qmat1 is a Q matrix of sub-cluster #1 after splitting a given cluster into two sub-clusters that contains admixture ratios of all individuals where the Qmat[i,j] represents the admixture ratio of ancestor j for individual i.

Qmat2 is a Q matrix of sub-cluster #2 after splitting a given cluster into two sub-clusters that contains admixture ratios of all individuals where the Qmat[i,j] represents the admixture ratio of ancestor j for individual i.

maxDiffAdmixRatio is a maximum of magnitude-difference of admixture ratios for a given cluster before splitting into two sub-clusters.

Examples

Running biclustFunc on Q matrix of 27 human population dataset where K = 12
obj<-biclustFunc(Qmat=ipADMIXTURE::human27pop_Qmat[[11]], admixRatioThs =0.15)

getPhyloTree

Description

getPhyloTree is function that reports a phylogenetic tree of clusters based on admixture analysis. The phylogeny tree that construct a neighbor-joining tree based on a similar matrix between clusters. By given multiple Q matrices with varying a number of ancestors (K), the framework define a similar value between clusters i,j as a minimum number K that makes majority of members of two clusters are in the different clusters. This K reflexes a minimum number of ancestors we need to splitting cluster i,j into different clusters if we assign K clusters based on maximum admixture ratio of individuals.

Usage

getPhyloTree(QmatList, indexClsVec)

Arguments

QmatList is list of Q matrix where QmatList[[k]] is a Q matrix with k+1 ancestors.
indexClsVec is a vector of clustering assignment where indexClsVec[i] is a cluster number of individual i.

Value

This function returns an object of nj tree as well as a matrix minDiffAncestorClsMat that is used as a similarity matrix.

tree is an object of nj tree calculated by ape::nj() function on a dissimilarity version of minDiffAncestorClsMat.
human27pop_Qmat

minDiffAncestorClsMat
is a minimum-ancestor-number matrix where minDiffAncestorClsMat[i, j]
is a minimum number of ancestors that make i and j to be different clusters while
minDiffAncestorClsMat[i, j]-1 makes majority of members from i and j be-
long to the same cluster.

Examples

Running ipADMIXTURE on Q matrices (K=2-12) of 27 human population dataset.
h27pop_obj<-ipADMIXTURE(Qmat=ipADMIXTURE::human27pop_Qmat[[11]], admixRatioThs =0.15)
out<-ipADMIXTURE::getPhyloTree(ipADMIXTURE::human27pop_Qmat,h27pop_obj$indexClsVec)
plot(out$tree)

human27pop_labels

Labels of 27 human populations

Description

Labels of 27 human populations

Usage

human27pop_labels

Format

Labels of 27 human populations. :

human27pop_labels It is a vector of labels of 544 individuals. There are 27 populations. ...

human27pop_Qmat

A list of Q matrices of 27 human populations

Description

A dataset containing admixture ratios of 544 individuals from 27 human populations where the
number of ancestors ranges from 2 to 12. This dataset was the result of running ADMIXTURE
optimization algorithms. Statistics and computing, 21(2), 261-273. on the 27-human-population
revealed by SNP microarrays. Genome research, 19(5), 815-825.

Usage

human27pop_Qmat
Format

A list of Q matrices of 544 individuals from 27 human populations. There are 2-12 ancestors in the list.

human27pop_Qmat It is list of Q matrices that contains admixture ratios of 544 individuals from the 27 population human dataset. human27pop_Qmat[[k]][i,j] is the admixture ratio of jth ancestor for ith individual in the (k+1)-ancestor Q matrix. ...

Description

A data clustering package based on admixture ratios (Q matrix) of population structure.

The framework is based on iterative Pruning procedure that performs data clustering by splitting a given population into subclusters until meeting the condition of stopping criteria the same as ipPCA, iNJclust, and IPCAPS frameworks. The package also provides a function to retrieve phylogeny tree that construct a neighbor-joining tree based on a similar matrix between clusters. By given multiple Q matrices with varying a number of ancestors (K), the framework define a similar value between clusters i,j as a minimum number K that makes majority of members of two clusters are in the different clusters. This K reflects a minimum number of ancestors we need to splitting cluster i,j into different clusters if we assign K clusters based on maximum admixture ratio of individuals.

Usage

ipADMIXTURE(Qmat, admixRatioThs, method = "average")

Arguments

Qmat is a Q matrix that contains admixture ratios of all individuals where the Qmat[i,j] represents the admixture ratio of ancestor j for individual i.

admixRatioThs is a threshold to determine that if a cluster has maxDiffAdmixRatio lower than threshold, then the cluster is a homogeneous cluster.

method is a method parameter of hclust object for hierarchical clustering analysis. The default is "average".

Value

This function returns clustering results in a form of an object of ipADMIXTURE class. The object contains the following items.

indexClsVec is a vector of clustering assignment where indexClsVec[i] is a cluster number of individual i.

homoClusters is a list of cluster objects where each object contains member indices, cluster’s maxDiffAdmixRatio, ID, etc.
maxDiffAdmixRatioVec

is a vector of maxDiffAdmixRatios for all clusters.

Qmat

is a Q matrix that contains admixture ratios of all individuals where the Qmat[i,j]

represents the admixture ratio of ancestor j for individual i.

admixRatioThs

is a threshold to determine that if a cluster has maxDiffAdmixRatio lower than

threshold, then the cluster is a homogeneous cluster.

Author(s)

Chainarong Amornbunchornvej, <chai@ieee.org>

Examples

Running ipADMIXTURE on Q matrix of 27 human population dataset where K = 12
h27pop_obj<-ipADMIXTURE(Qmat=ipADMIXTURE::human27pop_Qmat[[11]], admixRatioThs =0.15)

plotAdmixClusters(h27pop_obj)
plotClusterLeaves

Description

plotClusterLeaves is function that plots clusters in a form of treemap plot. Subsquares represent clusters. Each subsquare contains cluster label (ID), number of members (N), and a maximum of magnitude-difference of admixture ratios (md). A size of each subsquare represents a ratio of member numbers compared to other clusters. A color represents an md value of cluster.

Usage

plotClusterLeaves(obj)

Arguments

obj is an object of ipADMIXTURE class.

Examples

h27pop_obj<-ipADMIXTURE(Qmat=ipADMIXTURE::human27pop_Qmat[[11]], admixRatioThs =0.15)
ipADMIXTURE::plotClusterLeaves(h27pop_obj)

printClustersFromLabels

Description

printClustersFromLabels is function that reports that clustering results in text mode.

Usage

printClustersFromLabels(obj, labels)

Arguments

obj is an object of ipADMIXTURE class.
labels is a vector of labels of all individuals.

Examples

h27pop_obj<-ipADMIXTURE(Qmat=ipADMIXTURE::human27pop_Qmat[[11]], admixRatioThs =0.15)
ipADMIXTURE::printClustersFromLabels(h27pop_obj,ipADMIXTURE::human27pop_labels)
UD1labels
Labels of 20 simulation populations

Description
Labels of 20 simulation populations

Usage
UD1labels

Format
Labels of 20 populations. :

UD1labels It is a vector of labels of 1200 individuals. There are 20 populations. ...

UD1_Qmat
A list of Q matrices of simulation of 20 populations

Description

Usage
UD1_Qmat

Format
A list of Q matrices of 1200 individuals from 20 populations. There are Q matrices that have the number of ancestors ranges from from 2 to 18.

UD1_Qmat It is list of Q matrices that contains admixture ratios of 1200 individuals from the 20-population dataset. UD1_Qmat[[k]][i,j] is the admixture ratio of jth ancestor for ith individual in the (k+1)-ancestor Q matrix. ...
Index

*Topic datasets
 human27pop_labels, 4
 human27pop_Qmat, 4
 UD1_Qmat, 8
 UD1labels, 8

biclustFunc, 2

getPhyloTree, 3

human27pop_labels, 4
human27pop_Qmat, 4

ipADMIXTURE, 5

plotAdmixClusters, 6
plotClusterLeaves, 7
printClustersFromLabels, 7

UD1_Qmat, 8
UD1labels, 8