Package ‘ipADMIXTURE’

October 13, 2022

Title Iterative Pruning Population Admixture Inference Framework
Version 0.1.0
Description A data clustering package based on admixture ratios (Q matrix) of population structure. The framework is based on iterative Pruning procedure that performs data clustering by splitting a given population into subclusters until meeting the condition of stopping criteria the same as ipPCA, iNJclust, and IPCAPS frameworks. The package also provides a function to retrieve phylogeny tree that construct a neighbor-joining tree based on a similar matrix between clusters. By given multiple Q matrices with varying a number of ancestors (K), the framework define a similar value between clusters i,j as a minimum number K* that makes majority of members of two clusters are in the different clusters. This K* reflexes a minimum number of ancestors we need to splitting cluster i,j into different clusters if we assign K* clusters based on maximum admixture ratio of individuals. The publication of this package is at Chainarong Amornbunchornvej, Pongsakorn Wangkumhang, and Sisades Tongsima (2020) <doi:10.1101/2020.03.21.001206>.

Depends R (>= 3.5.0)
Imports stats,treemap,ape
URL https://github.com/DarkEyes/ipADMIXTURE
BugReports https://github.com/DarkEyes/ipADMIXTURE/issues
Language en-US
License GPL-3
Encoding UTF-8
LazyData true
Suggests knitr, rmarkdown
VignetteBuilder knitr
RoxygenNote 7.0.2
NeedsCompilation no
Author Chainarong Amornbunchornvej [aut, cre]
(Maintainer Chainarong Amornbunchornvej <grandca@gmail.com>)
Repository CRAN
Date/Publication 2020-03-26 11:00:09 UTC
biclustFunc

\textbf{Description}

biclustFunc is a binary clustering function using hierarchical clustering.

\textbf{Usage}

\begin{verbatim}
biclustFunc(Qmat, admixRatioThs = 0.5, method = "average")
\end{verbatim}

\textbf{Arguments}

\begin{itemize}
 \item \texttt{Qmat} is a Q matrix that contains admixture ratios of all individuals where the \texttt{Qmat[i,j]} represents the admixture ratio of ancestor j for individual i.
 \item \texttt{admixRatioThs} is a threshold to determine that if a cluster has \texttt{maxDiffAdmixRatio} lower than threshold, then the cluster is a homogeneous cluster.
 \item \texttt{method} is a method parameter of \texttt{hclust} object for hierarchical clustering analysis. The default is "average".
\end{itemize}

\textbf{Value}

This function returns binary clustering results.

\begin{itemize}
 \item \texttt{heteroFlag} is a flag that represents a status whether a given cluster is heterogeneous (having sub-clusters). It is TRUE if \texttt{maxDiffAdmixRatio} >= \texttt{admixRatioThs}.
 \item \texttt{clusterInx} is a vector of clustering assignment where \texttt{indexClsVec[i]} is a cluster number of individual i.
 \item \texttt{meanDiffAdmixRatio} is a vector of magnitude-difference of admixture ratios. It is calculated by splitting a given cluster into two sub-clusters. Then, we take the absolute on the difference between mean admixture ratios of sub-clusters.
\end{itemize}
getPhyloTree

Qmat1 is a Q matrix of sub-cluster #1 after splitting a given cluster into two sub-clusters that contains admixture ratios of all individuals where the Qmat[i, j] represents the admixture ratio of ancestor j for individual i.

Qmat2 is a Q matrix of sub-cluster #2 after splitting a given cluster into two sub-clusters that contains admixture ratios of all individuals where the Qmat[i, j] represents the admixture ratio of ancestor j for individual i.

maxDiffAdmixRatio is a maximum of magnitude-difference of admixture ratios for a given cluster before splitting into two sub-clusters.

Examples

Running biclustFunc on Q matrix of 27 human population dataset where K = 12
obj<-biclustFunc(Qmat=ipADMIXTURE::human27pop_Qmat[[11]], admixRatioThs =0.15)

getPhyloTree

Description

getPhyloTree is function that reports a phylogenetic tree of clusters based on admixture analysis. The phylogeny tree that construct a neighbor-joining tree based on a similar matrix between clusters. By given multiple Q matrices with varying a number of ancestors (K), the framework define a similar value between clusters i, j as a minimum number \(K\) that makes majority of members of two clusters are in the different clusters. This \(K\) reflexes a minimum number of ancestors we need to splitting cluster i, j into different clusters if we assign \(K\) clusters based on maximum admixture ratio of individuals.

Usage

getPhyloTree(QmatList, indexClsVec)

Arguments

QmatList is list of Q matrix where QmatList[[k]] is a Q matrix with k+1 ancestors.

indexClsVec is a vector of clustering assignment where indexClsVec[i] is a cluster number of individual i.

Value

This function returns an object of nj tree as well as a matrix minDiffAncestorClsMat that is used as a similarity matrix.

tree is an object of nj tree calculated by ape::nj() function on a dissimilarity version of minDiffAncestorClsMat.
minDiffAncestorClsMat

is a minimum-ancestor-number matrix where \(\text{minDiffAncestorClsMat}[i,j] \)
is a minimum number of ancestors that make \(i \) and \(j \) to be different clusters while
\(\text{minDiffAncestorClsMat}[i,j]-1 \) makes majority of members from \(i \) and \(j \)belong to the same cluster.

Examples

Running ipADMIXTURE on Q matrices (K=2-12) of 27 human population dataset.
h27pop_obj<-ipADMIXTURE(Qmat=ipADMIXTURE::human27pop_Qmat[[11]], admixRatioThs =0.15)
out<-ipADMIXTURE::getPhyloTree(ipADMIXTURE::human27pop_Qmat,h27pop_obj$indexClsVec)
plot(out$tree)

human27pop_labels
Labels of 27 human populations

Description

Labels of 27 human populations

Usage

human27pop_labels

Format

Labels of 27 human populations. :

human27pop_labels It is a vector of labels of 544 individuals. There are 27 populations. ...

human27pop_Qmat
A list of Q matrices of 27 human populations

Description

A dataset containing admixture ratios of 544 individuals from 27 human populations where the
number of ancestors ranges from 2 to 12. This dataset was the result of running ADMIXTURE
optimization algorithms. Statistics and computing, 21(2), 261-273. on the 27-human-population
revealed by SNP microarrays. Genome research, 19(5), 815-825.

Usage

human27pop_Qmat
ipADMIXTURE

Format
A list of Q matrices of 544 individuals from 27 human populations. There are 2-12 ancestors in the list.

human27pop_Qmat It is list of Q matrices that contains admixture ratios of 544 individuals from the 27 population human dataset. human27pop_Qmat[[k]][i,j] is the admixture ratio of jth ancestor for ith individual in the (k+1)-ancestor Q matrix. ...

ipADMIXTURE Iterative Pruning Population Admixture Inference Framework (ipADMIXTURE)

Description
A data clustering package based on admixture ratios (Q matrix) of population structure.

The framework is based on iterative Pruning procedure that performs data clustering by splitting a given population into subclusters until meeting the condition of stopping criteria the same as ipPCA, iNJclust, and IPCAPS frameworks. The package also provides a function to retrieve phylogeny tree that construct a neighbor-joining tree based on a similar matrix between clusters. By given multiple Q matrices with varying a number of ancestors (K), the framework define a similar value between clusters i,j as a minimum number K that makes majority of members of two clusters are in the different clusters. This K reflexes a minimum number of ancestors we need to splitting cluster i,j into different clusters if we assign K clusters based on maximum admixture ratio of individuals.

Usage
ipADMIXTURE(Qmat, admixRatioThs, method = "average")

Arguments
Qmat is a Q matrix that contains admixture ratios of all individuals where the Qmat[i,j] represents the admixture ratio of ancestor j for individual i.
admixRatioThs is a threshold to determine that if a cluster has maxDiffAdmixRatio lower than threshold, then the cluster is a homogeneous cluster.
method is a method parameter of hclust object for hierarchical clustering analysis. The default is "average".

Value
This function returns clustering results in a form of an object of ipADMIXTURE class. The object contains the following items.

indexClsVec is a vector of clustering assignment where indexClsVec[i] is a cluster number of individual i.
homoClusters is a list of cluster objects where each object contains member indices, cluster’s maxDiffAdmixRatio, ID, etc.
maxDiffAdmixRatioVec is a vector of maxDiffAdmixRatios for all clusters.

Qmat is a Q matrix that contains admixture ratios of all individuals where the Qmat[i, j] represents the admixture ratio of ancestor j for individual i.

admixRatioThs is a threshold to determine that if a cluster has maxDiffAdmixRatio lower than threshold, then the cluster is a homogeneous cluster.

Author(s)

Chainarong Amornbunchornvej, <chai@ieee.org>

Examples

Running ipADMIXTURE on Q matrix of 27 human population dataset where K = 12
h27pop_obj<-ipADMIXTURE(Qmat=ipADMIXTURE::human27pop_Qmat[[11]], admixRatioThs =0.15)

plotAdmixClusters(h27pop_obj)

Description

plotAdmixClusters is function that plots admixture ratios where the x axis represents individuals with cluster labels and y axis represents admixture ratios.

Usage

plotAdmixClusters(obj)

Arguments

obj is an object of ipADMIXTURE class.

Examples

h27pop_obj<-ipADMIXTURE(Qmat=ipADMIXTURE::human27pop_Qmat[[11]], admixRatioThs =0.15)
ipADMIXTURE::plotAdmixClusters(h27pop_obj)
plotClusterLeaves

Description

plotClusterLeaves is function that plots clusters in a form of treemap plot. Subsquares represent clusters. Each subsquare contains cluster label (ID), number of members (N), and a maximum of magnitude-difference of admixture ratios (md). A size of each subsquare represents a ratio of member numbers compared to other clusters. A color represents an md value of cluster.

Usage

plotClusterLeaves(obj)

Arguments

obj is an object of ipADMIXTURE class.

Examples

h27pop_obj<-ipADMIXTURE(Qmat=ipADMIXTURE::human27pop_Qmat[[11]], admixRatioThs =0.15)
ipADMIXTURE::plotClusterLeaves(h27pop_obj)

printClustersFromLabels

Description

printClustersFromLabels is function that reports that clustering results in text mode.

Usage

printClustersFromLabels(obj, labels)

Arguments

obj is an object of ipADMIXTURE class.
labels is a vector of labels of all individuals.

Examples

h27pop_obj<-ipADMIXTURE(Qmat=ipADMIXTURE::human27pop_Qmat[[11]], admixRatioThs =0.15)
ipADMIXTURE::printClustersFromLabels(h27pop_obj,ipADMIXTURE::human27pop_labels)
UD1labels

Labels of 20 simulation populations

Description

Labels of 20 simulation populations

Usage

`UD1labels`

Format

Labels of 20 populations. :

- **`UD1labels`** It is a vector of labels of 1200 individuals. There are 20 populations.

UD1_Qmat

A list of Q matrices of simulation of 20 populations

Description

Usage

`UD1_Qmat`

Format

A list of Q matrices of 1200 individuals from 20 populations. There are Q matrices that have the number of ancestors ranges from from 2 to 18.

- **`UD1_Qmat`** It is list of Q matrices that contains admixture ratios of 1200 individuals from the 20-population dataset. `UD1_Qmat[[k]][i,j]` is the admixture ratio of jth ancestor for ith individual in the (k+1)-ancestor Q matrix.
Index

* datasets
 human27pop_labels, 4
 human27pop_Qmat, 4
 UD1_Qmat, 8
 UD1labels, 8

biclustFunc, 2
getPhyloTree, 3

human27pop_labels, 4
human27pop_Qmat, 4

ipADMIIXTURE, 5

plotAdmixClusters, 6
plotClusterLeaves, 7
printClustersFromLabels, 7

UD1_Qmat, 8
UD1labels, 8