Package ‘ipcwswitch’

February 17, 2021

Title Inverse Probability of Censoring Weights to Deal with Treatment Switch in Randomized Clinical Trials

Version 1.0.4

Maintainer Nathalie Graffeo <nathalie.graffeo@univ-amu.fr>

Description Contains functions for formatting clinical trials data and implementing inverse probability of censoring weights to handle treatment switches when estimating causal treatment effect in randomized clinical trials.

Depends R (>= 2.10), survival (>= 2.42)

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

Imports stats

NeedsCompilation no

Author Nathalie Graffeo [aut, cre], Aurelien Latouche [aut], Sylvie Chevret [aut]

Repository CRAN

Date/Publication 2021-02-17 08:30:02 UTC

R topics documented:

cens.ipw ... 2
ipcw .. 4
replicRows .. 5
SHldat .. 7
timesTokeep .. 10
toydata .. 11
wideToLongTDC ... 12

Index 15
cens.ipw

Censoring patient initiating the other arm treatment and building a treatment censoring indicator cens

Description

Censoring patient initiating the other arm treatment and building a treatment censoring indicator cens

Usage

cens.ipw(
 data,
 id,
 tstart,
 tstop,
 event,
 censTime,
 arm,
 realtrt = FALSE,
 trt.start = NULL,
 trt.stop = NULL
)

Arguments

- **data**: a dataframe containing the following variables
- **id**: the patient's id
- **tstart**: the date of the beginning of the follow-up (in numeric format)
- **tstop**: the date of the end of the follow-up (in numeric format)
- **event**: the indicator of failure (a death is denoted by 1 at the end of the follow-up)
- **censTime**: the chosen time to censor the patients (in numeric format)
- **arm**: the randomized treatment (2-levels factor)
- **realtrt**: the randomized treatment (2-levels factor)
- **trt.start**: the time of initiation of the randomized treatment (NULL by default)
- **trt.stop**: the time of termination of the randomized treatment (NULL by default)

Value

A dataframe in the long format, with the data being censored according to the input date, censTime. A treatment censoring indicator, cens, is thus added to the previous dataset to indicate such a switch. Note that this function provides the option to include in the data the treatment really taken with the corresponding dates. Then, the treatment really taken is a 3-levels factor, i.e., the two from the randomized arms and a third indicating the no-treatment case (None).
cens.ipw

References

See Also

SHIdat, timesTokeep, wideToLongTDC

Examples

To obtain the times parameter, we can apply the timesTokeep function on the same # dataframe in the wide format
kept.t <- timesTokeep(toydata, id = "id",
tstart = "randt", tstop = "lastdt",
mes.cov = list(c("ps1", "ps2", "ps3")),
time.cov = list(c("randt", "dt2", "dt3")))

Now, we can build the long format
toy.long <- wideToLongTDC(data = toydata, id = "id",
tstart = "randt", tstop = "lastdt", event = "status",
bas.cov = c("age", "arm", "swtrtdt"),
mes.cov = list(TDconf = c("ps1", "ps2", "ps3")),
time.cov = list(c("randt", "dt2", "dt3")),
times = kept.t[[1]])

Put dates in numeric format with tstart at 0
toy.long$tstart <- as.numeric(toy.long$tstart)
toy.long$tstop <- as.numeric(toy.long$tstop)
toy.long$swtrtdt <- as.numeric(toy.long$swtrtdt)
tabi <- split(toy.long, toy.long$id)
L.tabi <- length(tabi)
tablist <- lapply(1:L.tabi, function(i){
 refstart <- tabi[[i]]$tstart[1]
 tabi[[i]]$tstart <- tabi[[i]]$tstart - refstart
 tabi[[i]]$tstop <- tabi[[i]]$tstop - refstart
 tabi[[i]]$swtrtdt <- tabi[[i]]$swtrtdt - refstart
 return(tabi[[i]])
})
toy.long <- do.call(rbind, tablist)

Patients are censored when initiating the other arm treatment, that is, at time swtrtdt
toy.long2 <- cens.ipw(toy.long, id = "id", tstart = "tstart", tstop = "tstop",
 event = "event", arm = "arm",
 realtrt = FALSE, censTime ="swtrtdt")

Before censoring:
toy.long
After censoring:
toy.long2
ipcw Computing the stabilized IPCweights

Description

Computing the stabilized IPCweights

Usage

ipcw(
 data,
 id,
 tstart,
 tstop,
 cens,
 arm,
 bas.cov,
 conf,
 trunc = NULL,
 type = "kaplan-meier"
)

Arguments

data a dataframe containing the following variables
id the patient’s id
\text{tstart} the date of the beginning of the follow-up (in numeric format, with the first being equal at 0)
\text{tstop} the date of the end of the follow-up (in numeric format)
cens the indicator of treatment censoring (denoted by 1 at the end of the follow-up)
arm the randomized treatment (2-levels factor)
bas.cov a vector the baseline covariates
conf a vector of time-dependent confounders
trunc an optional fraction for the weights. For instance, when trunc = 0.01, the left tail is truncated to the 1st percentile and the right tail is truncated to the 99th percentile
\text{type} a character string specifying the type of survival curve. The default is type="kaplan-meier"

Value

the initial dataframe data with stabilized IPCweights as additional arguments. By default, the untruncated stabilized weights are given. If the trunc option is not NULL then the truncated stabilized weights are also given.
replicRows

References

See Also
SHIdat

Examples
Not run
ipcw(toy.rep, tstart = tstart, tstop = tstop, cens = cens,
arm="arm",
bas.cov = c("age"),
conf = c("TDconf"), trunc = 0.05)
see ?SHIdat for a complete example

replicRows(data, tstart, tstop, event, cens, times1, times2, arm)

Description
Function to replicate the rows so that each patients’ follow-up is split according to all event times (times parameter) up to each patient’s end time

Usage
replicRows(data, tstart, tstop, event, cens, times1, times2, arm)

Arguments
data a dataframe containing the following variables
tstart the date of the beginning of the follow-up (in numeric format, with the first being equal at 0)
tstop the date of the end of the follow-up (in numeric format)
event the indicator of failure (a death is denoted by 1 at the end of the follow-up)
cens the indicator of treatment censoring (denoted by 1 at the end of the follow-up)
times1 a vector of times (in numeric format) indicating the times according to which the rows have to be split for patients in the first arm
times2 a vector of times (in numeric format) indicating the times according to which the rows have to be split for patients in the second arm
arm the randomized treatment (2-levels factor)
replicRows

Value

a formatted dataframe with the rows replicated according to the provided times parameter

References

See Also
cens.ipw, SHIdat, timesTokeep, wideToLongTDC

Examples

To obtain the times parameter, we can apply the timesTokeep function on the same # dataframe in the wide format
kept.t <- timesTokeep(toydata, id = "id",
tstart = "randt", tstop = "lastdt",
mes.cov = list(c("ps1", "ps2", "ps3")),
time.cov = list(c("randt", "dt2", "dt3")))
Now, we can build the long format
toy.long <- wideToLongTDC(data = toydata, id = "id",
tstart = "randt", tstop = "lastdt", event = "status",
bas.cov = c("age", "arm", "swtrtdt"),
mes.cov = list(TDconf = c("ps1", "ps2", "ps3")),
time.cov = list(c("randt", "dt2", "dt3")),
times = kept.t[[1]])
Put dates in numeric format with tstart at 0
toy.long$tstart <- as.numeric(toy.long$tstart)
toy.long$tstop <- as.numeric(toy.long$tstop)
toy.long$swtrtdt <- as.numeric(toy.long$swtrtdt)
tabi <- split(toy.long, toy.long$id)
L.tabi <- length(tabi)
tablist <- lapply(1:L.tabi, function(i){
 refstart <- tabi[[i]]$tstart[1]
 tabi[[i]]$tstart <- tabi[[i]]$tstart - refstart
 tabi[[i]]$tstop <- tabi[[i]]$tstop - refstart
 tabi[[i]]$swtrtdt <- tabi[[i]]$swtrtdt - refstart
 return(tabi[[i]])
})
toy.long <- do.call(rbind, tablist)
Patients are censored when initiating the other arm treatment, that is, at time swtrtdt
toy.long2 <- cens.ipw(toy.long, id = "id", tstart = "tstart", tstop = "tstop",
event = "event", arm = "arm",
realtrt = FALSE, censTime = "swtrtdt")
We collect all event times (death for both arms and treatment censoring according to the trt arm)
rep.times1 <- unique(c(toy.long2$tstop[toy.long2$cens==1 & toy.long2$arm == "A"],
toy.long2$tstop[toy.long2$event==1]))
rep.times2 <- unique(c(toy.long2$tstop[toy.long2$cens==1 & toy.long2$arm == "B"],
toy.long2$tstop[toy.long2$event==1]))
to put times in same order as arms levels
Now, we can replicate the rows

```r
levels(toy.long2[, "arm"])
toy.rep <- replicRows(toy.long2, tstart = "tstart", tstop = "tstop",
                        event = "event", cens = "cens",
                        times1 = rep.times1, times2 = rep.times2,
                        arm = "arm")
toy.rep
```

SHIdat

A real example dataset from the randomized clinical trial **SHIVA**

Description

Dataset **SHIdat** contains an anonymized excerpt of data from the SHIVA01 trial. This was the first randomized clinical trial that aimed at comparing molecularly targeted therapy based on tumour profiling (MTA) versus conventional therapy (CT) for advanced cancer. A switch to the other arm was scheduled to be proposed at disease progression for patients in both treatment groups.

Usage

```r
data("SHIdat")
```

Format

A data frame with 197 observations on the following 306 variables.

- **id**: a numeric vector corresponding to the patient’s identifier
- **bras.f**: a vector containing the patient’s randomized arm
- **agerand**: a numeric vector containing patient’s age (in years) at randomization
- **sex.f**: a vector containing the patient’s gender
- **tt_Lnum**: a numeric vector containing the number of previous lines of treatment
- **rmh_alea.c**: a numeric vector containing the Royal Marsden Hospital score segregated into two categories
- **pathway.f**: a vector the molecular pathway altered (pathway.f: the hormone receptors pathway, the PI3K/ AKT/mTOR pathway, and the RAF/MEK pathway)
- **mypsv2,psv3,psv1.v1,psv1.v2,psv1.v3,psv1.v4,psv1.v5,psv1.v6,psv1.v7,psv1.v8,psv1.v9,psv1.v10,psv1.v11,psv1.v12,psv1.v13,psv1.v14,psv1.v15,psv1.v16,psv1.v17,psv1.v18,psv1.v19,psv1.v20,psv1.v21**: numeric vectors containing the ECOG performance status measured at the randomization visit, the visit before the potential switch and the planned visits (maximum number of planned visits: 21)
- **mytran.v1,tran.v2,tran.v3,tran.v4,tran.v5,tran.v6,tran.v7,tran.v8,tran.v9,tran.v10,tran.v11,tran.v12,tran.v13,tran.v14,tran.v15,tran.v16,tran.v17,tran.v18,tran.v19,tran.v20,tran.v21**: numeric vectors containing the use of platelet transfusions at each of the potential 21 planned visits
myttc.v2,ttc.v3,ttc1.v1,ttc1.v2,ttc1.v3,ttc1.v4,ttc1.v5,ttc1.v6,ttc1.v7,ttc1.v8,ttc1.v9,ttc1.v10,ttc1.v11
numeric vectors containing the presence of concomitant treatments at the randomization visit,
the visit before the potential switch and the planned visits (maximum number of planned vis-
its: 21)
tox.t1,tox.t2,tox.t3,tox.t4,tox.t5,tox.t6,tox.t7,tox.t8,tox.t9,tox.t10,tox.t11,tox.t12,tox.t13,tox.t14,tox.t15
toxic adverse event linked with the treatment at datetox.ti. 0 if the patient ended an adverse event linked with the treatment at datetox.ti, and NA otherwise

ddn a vector containing the date of latest news
ddeath a vector containing the death date
ddt.v1 a vector containing the date of initiation of the randomized treatment
datt a vector containing the date of the interruption of the randomized treatment
dexac.v2 a vector containing the date of randomization
dexac.v3 a vector containing the date of the visit before the potential switch
dexac1.v1,dexac1.v2,dexac1.v3,dexac1.v4,dexac1.v5,dexac1.v6,dexac1.v7,dexac1.v8,dexac1.v9,dexac1.v10,dexac1.v11
vectors containing the dates of the potential 21 planned visits
datetox.t1,datetox.t2,datetox.t3,datetox.t4,datetox.t5,datetox.t6,datetox.t7,datetox.t8,datetox.t9,datetox.t10
vectors containing the dates related to adverse events (as explained above)
C0 a vector containing 1 if the patient changed treatment arm (i.e., did a switch)
progDate a vector containing the date of a potential progression
progStatus a vector containing 1 if the patient did a progression (and 0 otherwise)
status a vector containing the patient’s status at the date of latest news (1 if died, 0 otherwise)

Details
Note that some variables were built from the original data for illustration purpose. We provided an excerpt containing only the covariates that are useful for our analysis. Note also that the SHIVA data were anonymized.

Acknowledgments: we thank the patients who volunteered to participate in this study for their dedication and the study-site staff who cared for them. This work is supported by grant ANR-10-EQPX-03 from the Agence Nationale de la Recherche (Investissements d’avenir) and Site de Recherche Integre contre le Cancer (SiRiC). High-throughput sequencing was done by the NGS platform of the Institut Curie, supported by grants ANR-10-EQPX-03 and ANR-10-INBS-09-08 from the Agence Nationale de la Recherche (Investissements d’avenir) and the Canceropole Ile-de-France.

References
See Also
cens.ipw, ipcw, replicRows, timesTokeep, wideToLongTDC

Examples

To obtain the times parameter, we can apply the timesTokeep function on the same
dataframe in the wide format
names of the repeated measurements
vect.ps <- c("myps.v2", "ps.v3", c(paste("ps1.v", seq(1,21), sep="")))
vect.ttc <- c("myttc.v2", "ttc.v3", c(paste("ttc1.v", seq(1,21), sep="")))
vect.tran <- c("mytran.v1", paste("tran.v", seq(2,21), sep=""))
corresponding dates
dates <- c("dexac.v2", "dexac.v3", c(paste("dexac1.v", seq(21), sep="")))
dates2 <- dates[!(dates %in% c("dexac.v2","dexac.v3"))]
times to keep
kept.t <- timesTokeep(SHIdat, id = "id",
tstart = "dexac.v2", tstop = "ddn",
mes.cov = list(vect.ps, vect.ttc, vect.tran),
time.cov = list(dates, dates, dates2))
Now, we can build the long format
SHIlong <- wideToLongTDC(SHIdat, id = "id",
tstart = "dexac.v2", tstop = "ddn",
event = "status",
bas.cov = c("agerand", "sex.f", "tt_Lnum", "rmh_alea.c", "pathway.f",
"bras.f", "debttoCO", "ddt.v1", "datt"),
mes.cov = list(f1=vect.ps, f2=vect.ttc, f3=vect.tran),
time.cov = list(dates, dates, dates2),
times = kept.t[[1]])
Put dates in numeric format with tstart at 0
tabi <- split(SHIlong, SHIlong$id)
L.tabi <- length(tabi)
tablist <- lapply(1:L.tabi, function(i){
 refstart <- tabi[[i]]$tstart[1]
 tabi[[i]]$tstart <- tabi[[i]]$tstart - refstart
 tabi[[i]]$tstop <- tabi[[i]]$tstop - refstart
 tabi[[i]]$debttoCO <- tabi[[i]]$debttoCO - refstart # to be used in next step
 tabi[[i]]$ddt.v1 <- tabi[[i]]$ddt.v1 - refstart # to be used in the final step
 tabi[[i]]$datt <- tabi[[i]]$datt - refstart # to be used in the final step
 return(tabi[[i]])
})
SHIlong <- do.call(rbind, tablist)
colnames(SHIlong)[14:16] <- c("ps", "ttc", "tran")

Eliminating patient not having initiated the treatment arm
SHIlong2 <- SHIlong[!is.na(SHIlong$ddt.v1),]

Patients are censored when initiating the other arm treatment, that is, at time swtrtdt
timesTokeep <- cens.ipw(SHIlong2, id = "id", tstart = "tstart", tstop = "tstop",
 event = "event", arm = "bras.f", realtrt = FALSE,
 censTime = "debtCO")

We collect all event times
(death for both arms and treatment censoring according to the trt arm)
replic.times.MTA <-
 unique(c(SHIlong2$tstop[SHIlong2$cens == 1 &
 SHIlong2$bras.f == "MTA"],
 SHIlong2$tstop[SHIlong2$bras.f == "CT")
)
replic.times.CT <-
 unique(c(SHIlong2$tstop[SHIlong2$cens == 1 &
 SHIlong2$bras.f == "CT"],
 SHIlong2$tstop[SHIlong2$bras.f == "CT")
)

to put times in same order as arms levels
levels(SHIlong2,"bras.f")

SHIrep <- replicRows(SHIlong2, tstart = "tstart", tstop = "tstop",
 event = "event", cens = "cens",
 times1 = replic.times.MTA, times2=replic.times.CT,
 arm = "bras.f")

Estimation of the stabilized weights
library(survival)
SHIres <- ipcw(SHIrep, id = "id", tstart = tstart, tstop = tstop, cens = cens,
 arm = "bras.f",
 bas.cov = c("agerand", "sex.f", "tt_Lnum", "rmh_alea.c", "pathway.f"),
 conf = c("ps", "ttc", "tran"),
 trunc = 0.05, type = 'kaplan-meier')

To have conventional therapy (CT) as reference
SHIres$bras.f <- relevel(SHIres$bras.f, ref="CT")

Using the IPCW weights in Cox likelihood...
fit.stab.w <- coxph(Surv(tstart, tstop, event) ~ bras.f + agerand + sex.f +
 tt_Lnum + rmh_alea.c + pathway.f
 + cluster(id),
 data = SHIres, weights = SHIres$weights.trunc)

fit.stab.w

timesTokeep # Function to keep all event times

Description

Function to keep all event times

Usage

timesTokeep(data, id, tstart, tstop, mes.cov, time.cov)
Arguments

data dataframe containing the following variables
id patient’s id
tstart date of the beginning of the follow-up (in Date format)
tstop date of the end of the follow-up (in Date format)
mes.cov list of vectors, each of them must contain the names (in character format) of the
repeated measurements related to one time-dependent covariate
time.cov list of vectors, each of them must contain the times (in Date format) of the date
when the abovementioned measurements were done

Value

list of two lists, one in Date format the other in numeric format. Each of them contains, for each
patient, the event time and the times of changes in time-varying covariates

References

inverse probability of censoring weighting with an application to switches in clinical trials". Com-
puters in biology and medicine, 111, 103339. doi : "10.1016/j.compbiomed.2019.103339"

See Also

SHIdat

Examples

kept.t <- timesTokeep(toydata, id = "id",
tstart = "randt", tstop = "lastdt",
mes.cov = list(c("ps1", "ps2", "ps3")),
time.cov = list(c("randt", "dt2", "dt3")))
For example, for patient id=3, to obtain the kept times in Date format:
kept.t[[1]][[3]]
To obtain the kept times in numeric format:
kept.t[[2]][[3]]
Usage

data("toydata")

Format

A data frame with 3 observations on the following 12 variables.

- id: a numeric vector corresponding to the patient's identifier
- randt: a vector containing the date of the randomization visit
- lastdt: a vector containing the date of latest news
- status: a numeric vector. The value equals to 1 if the patient dies at lastdt (and 0 otherwise)
- age: a numeric vector containing patient's age (in years) at randomization
- ps1: a numeric vector containing the values (0 or 1) of a repeated measurement happening on date randt. Note that some of them could be missing
- ps2: a numeric vector containing the values (0 or 1) of a repeated measurement happening on date dt2. Note that some of them could be missing
- ps3: a numeric vector containing the values (0 or 1) of a repeated measurement happening on date dt3. Note that some of them could be missing
- dt2: a vector containing the dates of measurement of ps2. Note that some of them could be missing
- dt3: a vector containing the date of measurement ps3. Note that some of them could be missing
- arm: a vector containing the patient's randomized arm
- swt r t dt: a vector containing the date when the patient initiates the other arm treatment (NA if does not happen)

References

Examples

data(toydata)
toydata

wideToLongTDC

Function from wide to long format

Description

Function from wide to long format
Usage

```r
wideToLongTDC(  
  data,  
  id,  
  tstart,  
  tstop,  
  event,  
  bas.cov,  
  mes.cov,  
  time.cov,  
  times  
)
```

Arguments

- **data**: a dataframe containing the variables id, tstart, tstop, mes.cov and time.cov
- **id**: the patient’s id
- **tstart**: date of the beginning of the follow-up (in Date format)
- **tstop**: date of the end of the follow-up (in Date format)
- **event**: the indicator of failure (a death is denoted by 1 at the end of the follow-up)
- **bas.cov**: a vector containing the names (in character format) of the baseline covariates
- **mes.cov**: a list of vectors, each of them must contain the names (in character format) of the repeated measurements related to one time-dependent covariate
- **time.cov**: a list of vectors, each of them must contain the times (in Date format) of the date when the abovementioned measurements were done
- **times**: a list of vectors. Each of them must contain, for each patient, the event time and the times of changes in time-varying covariates

Value

the long format version of the initial dataframe data. The repeated values included in each vector of the list mes.cov are aggregated in a variable named as the name of the corresponding list member.

References

See Also

[SHIdat, timesTokeep]
Examples

To obtain the times parameter, we can apply the timesTokeep function on the same
dataframe in the wide format
kept.t <- timesTokeep(toydata, id = "id",
tstart = "randt", tstop = "lastdt",
mes.cov = list(c("ps1", "ps2", "ps3")),
time.cov = list(c("randt", "dt2", "dt3")))
Now, we can build the long format
toy.long <- wideToLongTDC(data = toydata, id = "id",
tstart = "randt", tstop = "lastdt", event = "status",
bas.cov = c("age", "arm", "swtrtdt"),
mes.cov = list(TDconf = c("ps1", "ps2", "ps3")),
time.cov = list(c("randt", "dt2", "dt3")),
times = kept.t[[1]])
toy.long
Index

* datasets
 SHIdat, 7
 toydata, 11

cens.ipw, 2, 6, 9

ipcw, 4, 9

replicRows, 5, 9

SHIdat, 3, 5, 6, 7, 11, 13

timesTokeep, 3, 6, 9, 10, 13

toydata, 11

wideToLongTDC, 3, 6, 9, 12