Package ‘itemanalysis’

June 14, 2022

Version 1.1
Date 2022-06-13
Title Classical Test Theory Item Analysis
Author Cengiz Zopluoglu
Maintainer Cengiz Zopluoglu <cen.zop@gmail.com>
Depends ggplot2, polycor, car
Description Runs classical item analysis for multiple-choice test items and polytomous items (e.g., rating scales). The statistics reported in this package can be found in any measurement textbook such as Crocker and Algina (2006, ISBN:9780495395911).
License GPL (>= 2)
URL https://cengiz.me/
NeedsCompilation no
Repository CRAN
Date/Publication 2022-06-14 00:10:02 UTC

R topics documented:

 dichotomous ... 2
 itemanalysis .. 2
 itemanalysis1 ... 3
 itemanalysis2 ... 4
 timms2011_usa ... 6

Index 8
itemanalysis

dichotomous
Raw data from a multiple-choice test

Description

The data is taken from the following website http://www.jmetrik.com/example-data.php. This file includes nominal responses of 6,000 examinees to 56 binary items.

Usage

```
data(dichotomous)
```

Format

A data frame with 60000 examinees and 56 items

itemanalysis
itemanalysis: Classical Test Theory Item Analysis

Description

This package

Details

```
Package: ITEMAN
Type: Package
Version: 1.0
Date: 2015-09-29
License: GPL-2
LazyLoad: yes
```

The package can be used to run classical item analysis for multiple-choice test items and polytomously scored items (e.g., rating scale items).

Author(s)

Maintainer: Cengiz Zopluoglu <c.zopluoglu@miami.edu>

See Also

[itemanalysis1](#) for running classical item analysis for multiple-choice test items

[itemanalysis2](#) for running classical item analysis for polytomously scored items
itemanalysis1 Classical Test Theory Item Analysis for Multiple-Choice Test Items

Description

Classical Test Theory Item Analysis for Multiple-Choice Test Items

Usage

itemanalysis1(data, key, options, ngroup = ncol(data) + 1, correction = TRUE, span.par=.3, verbose = T)

Arguments

data a data frame with \(N \) rows and \(m \) columns, with \(N \) denoting the number of subjects and \(m \) denoting the number of items.
key a vector of answer key with a length of \(m \)
options a vector of response options for the test such as c("A","B","C","D")
ngroup number of score groups to be used for plotting the item trace lines
correction TRUE or FALSE. If it is TRUE, then an adjustment is made for point-biserial correlation.
span.par a smoothing parameter to pass to ggplots when creating empirical ICCs
verbose TRUE or FALSE. If it is TRUE, text output is printed.

Details

To be added later.

Value

plots a list object storing the item trace line plots for each item
item.stat a matrix of basic item statistics
dist.sel a matrix of distractor selection proportion statistics
dist.disc a matrix of corrected point-biserial statistics for distractors
dist.disc a matrix of corrected biserial statistics for distractors

Author(s)

Cengiz Zopluoglu

See Also

itemanalysis2 for classical item analysis of polytomously scored items
Examples

```r
## Not run:
data(dichotomous)
head(dichotomous)
str(dichotomous)

# Key response vector

# Use itemanalysis1 function to run the item analysis

# In order to reduce running time for the example below,
# I specify "data=dichotomous[,1:10]", so it only analyze the
# first 10 items.
# You should specify "data=dichotomous" to analyze based on 56 items.

item.analysis <- itemanalysis1(data=dichotomous[,1:10],
   key=key,
   options=c("A", "B", "C", "D"),
   ngroup=10,
   correction=FALSE)

item.analysis$item.stat
item.analysis$dist.sel
item.analysis$dist.disc

item.analysis$plots[[1]] # Item Trace Line for the first item
item.analysis$plots[[2]] # Item Trace Line for the second item
item.analysis$plots[[3]] # Item Trace Line for the third item
item.analysis$plots[[4]] # Item Trace Line for the fourth item
item.analysis$plots[[5]] # Item Trace Line for the fifth item
item.analysis$plots[[6]] # Item Trace Line for the sixth item
item.analysis$plots[[7]] # Item Trace Line for the seventh item
item.analysis$plots[[8]] # Item Trace Line for the eighth item
item.analysis$plots[[9]] # Item Trace Line for the ninth item
item.analysis$plots[[10]] # Item Trace Line for the tenth item

## End(Not run)
```
Description

Classical Test Theory Item Analysis for Polytomous Items

Usage

itemanalysis2(data, options, ngroup = ncol(data) + 1, correction = TRUE,
span.par=.3,verbose=T)

Arguments

data a data frame with N rows and m columns, with N denoting the number of subjects and m denoting the number of items.
options a vector of numerical code of the response categories available for the items such as c(0,1,2,3). The minimum score is assumed to be 0.
ngroup number of score groups to be use for plotting the item trace lines
correction TRUE or FALSE. If it is TRUE, then an adjustment is made for point-biserial correlation.
span.par a smoothing parameter to pass to ggplots when creating empirical ICCs
verbose TRUE or FALSE. If it is TRUE, text output is printed.

Details

to be added later

Value

plots a list object storing the item trace line plots for each item
item.stat a matrix of basic item statistics
dist.sel a matrix of distractor selection proportion statistics
dist.disc a matrix of corrected point-biserial statistics for distractors
dist.disc a matrix of corrected biserial statistics for distractors

Author(s)

Cengiz Zopluoglu

See Also

itemanalysis1 for classical item analysis of multiple-choice test items
Examples

```r
## Not run:
data(timss2011_usa)

timss2011_usa$Q14B <- recode(var = timss2011_usa$Q14B,
                           recodes = "c(0)=3;c(1)=2;c(2)=1;c(3)=0")

timss2011_usa$Q14C <- recode(var = timss2011_usa$Q14C,
                           recodes = "c(0)=3;c(1)=2;c(2)=1;c(3)=0")

item.analysis <- itemanalysis2(data=timss2011_usa,
                                options=c(0,1,2,3),
                                ngroup=18,
                                correction=FALSE)

item.analysis$item.stat

item.analysis$dist.sel

item.analysis$dist.disc

item.analysis$plots[[1]]  # Item Trace Line for the first item
item.analysis$plots[[2]]  # Item Trace Line for the second item
item.analysis$plots[[3]]  # Item Trace Line for the third item
item.analysis$plots[[4]]  # Item Trace Line for the fourth item
item.analysis$plots[[5]]  # Item Trace Line for the fifth item
item.analysis$plots[[6]]  # Item Trace Line for the sixth item

## End(Not run)
```

timms2011_usa

TIMMS 2011 USA Data - Attitude Towards Math

Description

The data is a subset of TIMSS 2011 USA data and includes responses for six statements to measure attitudes towards math. These rating scale items have response codes from 0 to 3 with 0 indicating "I strongly disagree", 1 indicating "I disagree", 2 indicating "I agree", and 3 indicating "I strongly agree" for a given statement. Note that items 14B and 14C has to be reverse coded before analysis to make them consistent with other four items.

Usage

data(timss2011_usa)
Format

A data frame with 10079 observations and 6 items.

Q14A I enjoy learning mathematics
Q14B I wish have not to study Math
Q14C Mathematics is boring
Q14D I learn interesting things in mathematics class
Q14E I like mathematics
Q14F I think it’s important to do well in mathematics
Index

* package
 itemanalysis, 2

dichotomous, 2

itemanalysis, 2
itemanalysis1, 2, 3, 5
itemanalysis2, 2, 3, 4

timss2011_usa, 6
timss2011_usa(timms2011_usa), 6