
Package ‘itsadug’
August 31, 2017

Version 2.3

Date 2017-08-16

Title Interpreting Time Series and Autocorrelated Data Using GAMMs

Author Jacolien van Rij [aut, cre],
Martijn Wieling [aut],
R. Harald Baayen [aut],
Hedderik van Rijn [ctb]

Maintainer Jacolien van Rij <vanrij.jacolien@gmail.com>

Description GAMM (Generalized Additive Mixed Modeling; Lin & Zhang, 1999)
as implemented in the R package 'mgcv' (Wood, S.N., 2006; 2011) is a nonlinear
regression analysis which is particularly useful for time course data such as
EEG, pupil dilation, gaze data (eye tracking), and articulography recordings,
but also for behavioral data such as reaction times and response data. As time
course measures are sensitive to autocorrelation problems, GAMMs implements
methods to reduce the autocorrelation problems. This package includes functions
for the evaluation of GAMM models (e.g., model comparisons, determining regions
of significance, inspection of autocorrelational structure in residuals)
and interpreting of GAMMs (e.g., visualization of complex interactions, and
contrasts).

License GPL (>= 2)

LazyData true

Depends R (>= 2.14.0), mgcv (>= 1.8), plotfunctions (>= 1.3)

VignetteBuilder knitr

Suggests knitr, xtable, sp, data.table

RoxygenNote 6.0.1

NeedsCompilation no

Repository CRAN

Date/Publication 2017-08-31 14:42:32 UTC

1

2 R topics documented:

R topics documented:
acf_n_plots . 3
acf_plot . 5
acf_resid . 7
check_resid . 8
compareML . 10
convertNonAlphanumeric . 12
derive_timeseries . 13
diagnostics . 14
diff_terms . 16
eeg . 17
fadeRug . 18
find_difference . 19
fvisgam . 21
gamtabs . 24
get_coefs . 25
get_difference . 26
get_fitted . 28
get_modelterm . 29
get_pca_predictions . 31
get_predictions . 33
get_random . 35
info . 36
infoMessages . 37
inspect_random . 38
itsadug . 40
missing_est . 42
plot_data . 43
plot_diff . 45
plot_diff2 . 47
plot_modelfit . 50
plot_parametric . 52
plot_pca_surface . 54
plot_smooth . 56
plot_topo . 60
print_summary . 62
pvisgam . 63
report_stats . 65
resid_gam . 66
rug_model . 68
simdat . 70
start_event . 70
start_value_rho . 72
summary_data . 73
timeBins . 74
wald_gam . 75

Index 78

acf_n_plots 3

acf_n_plots Generate N ACF plots of individual or aggregated time series.

Description

Generate N ACF plots of individual or aggregated time series.

Usage

acf_n_plots(x, n = 5, split_by = NULL, cond = NULL, max_lag = NULL,
fun = mean, plot = TRUE, random = F, mfrow = NULL, add = FALSE,
print.summary = getOption("itsadug_print"), ...)

Arguments

x A vector with time series data, typically residuals of a regression model.

n The number of plots to generate.

split_by List of vectors (each with equal length as x) that group the values of x into trials
or timeseries events. Generally other columns from the same data frame.

cond Named list with a selection of the time series events specified in split_by.
Default is NULL, indicating that all time series are being processed, rather than
a selection.

max_lag Maximum lag at which to calculate the acf. Default is the maximum for the
longest time series.

fun The function used when aggregating over time series (depending on the value of
split_by).

plot Logical: whether or not to produce plot. Default is TRUE.

random Logical: determine randomly which n (aggregated) time series are plotted, or
use the quantile function to find a range of different time series to plot. Default
is FALSE (not random).

mfrow A vector of the form c(nr, nc). The figures will be drawn in an nr-by-nc array on
the device by rows.

add Logical: whether to add the plots to an exiting plot window or not. Default is
FALSE.

print.summary Logical: whether or not to print summary. Default set to the print info messages
option (see infoMessages).

... Other arguments for plotting, see par.

Value

n ACF plots providing information about the autocorrelation in x.

Author(s)

Jacolien van Rij, R. Harald Baayen

4 acf_n_plots

See Also

Use acf for the original ACF function, and acf_plot for an ACF that takes into account time series
in the data.

Other functions for model criticism: acf_plot, acf_resid, derive_timeseries, resid_gam,
start_event, start_value_rho

Examples

data(simdat)

Separate ACF for each time series:
acf_n_plots(simdat$Y, split_by=list(simdat$Subject, simdat$Trial))

Average ACF per participant:
acf_n_plots(simdat$Y, split_by=list(simdat$Subject))

Not run:
Data treated as single time series. Plot is added to current window.
Note: 1 time series results in 1 plot.
acf_n_plots(simdat$Y, add=TRUE)
Plot 4 ACF plots doesn't work without splitting data:
acf_n_plots(simdat$Y, add=TRUE, n=4)

Plot ACFs of 4 randomly selected time series:
acf_n_plots(simdat$Y, random=TRUE, n=4, add=TRUE,

split_by=list(simdat$Subject, simdat$Trial))

End(Not run)

#---
When using model residuals
#---

Not run:
add missing values to simdat:
simdat[sample(nrow(simdat), 15),]$Y <- NA
simple linear model:
m1 <- lm(Y ~ Time, data=simdat)

This will generate an error:
acf_n_plots(resid(m1), split_by=list(simdat$Subject, simdat$Trial))

This should work:
el.na <- missing_est(m1)
acf_n_plots(resid(m1),

split_by=list(simdat[-el.na,]$Subject, simdat[-el.na,]$Trial))

This should also work:
simdat$res <- NA
simdat[!is.na(simdat$Y),]$res <- resid(m1)

acf_plot 5

acf_n_plots(simdat$res, split_by=list(simdat$Subject, simdat$Trial))

End(Not run)

see the vignette for examples:
vignette("acf", package="itsadug")

acf_plot Generate an ACF plot of an aggregated time series.

Description

Generate an ACF plot of an aggregated time series.

Usage

acf_plot(x, split_by = NULL, max_lag = NULL, plot = TRUE, fun = mean,
cond = NULL, return_all = FALSE, ...)

Arguments

x A vector with time series data, typically residuals of a regression model. (See
examples for how to avoid errors due to missing values.)

split_by List of vectors (each with equal length as x) that group the values of x into trials
or timeseries events. Generally other columns from the same data frame.

max_lag Maximum lag at which to calculate the acf. Default is the maximum for the
longest time series.

plot Logical: whether or not to plot the ACF. Default is TRUE.

fun The function used when aggregating over time series (depending on the value of
split_by).

cond Named list with a selection of the time series events specified in split_by.
Default is NULL, indicating that all time series are being processed, rather than
a selection.

return_all Returning acfs for all time series.

... Other arguments for plotting, see par.

Value

An aggregated ACF plot and / or optionally a list with the aggregated ACF values.

Author(s)

Jacolien van Rij

6 acf_plot

See Also

Use acf for the original ACF function, and acf_n_plots for inspection of individual time series.

Other functions for model criticism: acf_n_plots, acf_resid, derive_timeseries, resid_gam,
start_event, start_value_rho

Examples

data(simdat)

Default acf function:
acf(simdat$Y)
Same plot with acf_plot:
acf_plot(simdat$Y)
Average of ACFs per time series:
acf_plot(simdat$Y, split_by=list(simdat$Subject, simdat$Trial))
Median of ACFs per time series:
acf_plot(simdat$Y, split_by=list(simdat$Subject, simdat$Trial), fun=median)

extract value of Lag1:
lag1 <- acf_plot(simdat$Y,

split_by=list(Subject=simdat$Subject, Trial=simdat$Trial),
plot=FALSE)['1']

#---
When using model residuals
#---

add missing values to simdat:
simdat[sample(nrow(simdat), 15),]$Y <- NA
simple linear model:
m1 <- lm(Y ~ Time, data=simdat)

Not run:
This will generate an error:
acf_plot(resid(m1), split_by=list(simdat$Subject, simdat$Trial))

End(Not run)
This should work:
el.na <- missing_est(m1)
acf_plot(resid(m1),

split_by=list(simdat[-el.na,]$Subject, simdat[-el.na,]$Trial))

This should also work:
simdat$res <- NA
simdat[!is.na(simdat$Y),]$res <- resid(m1)
acf_plot(simdat$res, split_by=list(simdat$Subject, simdat$Trial))

see the vignette for examples:
vignette("acf", package="itsadug")

acf_resid 7

acf_resid Generate an ACF plot of model residuals. Works for lm, lmer, gam,
bam,

Description

Wrapper around acf_plot and acf_n_plots for regression models.

Usage

acf_resid(model, split_pred = NULL, n = 1, plot = TRUE,
check.rho = NULL, main = NULL, ...)

Arguments

model A regression model generated by lm, glm, lmer, glmer, gam, or bam. (See ex-
amples for how to avoid errors due to missing values.)

split_pred Vector with names of model predictors that determine the time series in the data,
or should be used to split the ACF plot by. Alternatively, split_pred can be a
named list as being used by acf_plot and acf_n_plots. Yet another option is
to provide the text string "AR.start", for a model that includes an AR1 model.
The events are derived from the AR.start column if that is provided.

n The number of plots to generate. If n=1 (default) then acf_plot is being called.
If n>1 then acf_n_plots is being called.

plot Logical: whether or not to produce plot. Default is TRUE.

check.rho Numeric value: Generally leave at NULL. This value does not change anything,
but it is used to check whether the model’s AR1 coefficient matches the expected
value of rho.

main Text string, title of plot.

... Other arguments as input for acf_plot or acf_n_plots.

Value

An aggregated ACF plot and / or optionally a list with the aggregated ACF values.

Author(s)

Jacolien van Rij

See Also

Use acf for the original ACF function, and acf_plot, or acf_n_plots.

Other functions for model criticism: acf_n_plots, acf_plot, derive_timeseries, resid_gam,
start_event, start_value_rho

8 check_resid

Examples

data(simdat)

add missing values to simdat:
simdat[sample(nrow(simdat), 15),]$Y <- NA

Not run:
Run GAMM model:
m1 <- bam(Y ~ te(Time, Trial)+s(Subject, bs='re'), data=simdat)

Using a list to split the data:
acf_resid(m1, split_pred=list(simdat$Subject, simdat$Trial))
...or using model predictors:
acf_resid(m1, split_pred=c("Subject", "Trial"))

Calling acf_n_plots:
acf_resid(m1, split_pred=c("Subject", "Trial"), n=4)
add some arguments:
acf_resid(m1, split_pred=c("Subject", "Trial"), n=4, max_lag=10)

This does not work...
m2 <- lm(Y ~ Time, data=simdat)
acf_resid(m2, split_pred=c("Subject", "Trial"))
... but this is ok:
acf_resid(m2, split_pred=list(simdat$Subject, simdat$Trial))

Using AR.start column:
simdat <- start_event(simdat, event=c("Subject", "Trial"))
r1 <- start_value_rho(m1)
m3 <- bam(Y ~ te(Time, Trial)+s(Subject, bs='re'), data=simdat,

rho=r1, AR.start=simdat$start.event)
acf_resid(m3, split_pred="AR.start")
this is the same:
acf_resid(m3, split_pred=c("Subject", "Trial"))
Note: use model comparison to find better value for rho

End(Not run)
see the vignette for examples:
vignette("acf", package="itsadug")

check_resid Inspect residuals of regression models.

Description

Inspect residuals of regression models.

Usage

check_resid(model, AR_start = NULL, split_pred = NULL, ask = TRUE,
select = 1:4)

check_resid 9

Arguments

model A regression model, resulting from the functions gam or bam, or lm, glm, lmer,
or glmer.

AR_start Defaults to NULL. Only use this when the model was run in an old versions
of package mgcv and the function cannot retrieve the used AR.start values from
the model. When an error is shown with newer versions of mgcv, please check
the column provided as values of AR.start. when using old versions of package
mgcv. Function will give error when it cannot find AR.start.

split_pred A names list indicating time series in the data.

ask Logical: whether or not to show the plots one by one. Defaults to TRUE. When
set to FALSE, make sure to have specified sufficient rows and columns to show
the X plots. Alternatively, use select to plot only specific plots.

select Vector or numeric value indicating which plots to return (see Notes). Defaults
to 1:4 (all).

Note

• Plot 1: distribution of residuals with QQ norm plot.

• Plot 2: distribution of residuals with density plot.

• Plot 3: ACF plot of residuals. In case an AR1 model is included, the gray lines indicate
standard residuals, and the thick black lines indicate AR1 corrected residuals.

• Plot 4 (optional): In case the split_pred predictors are specified an ACF plot averaged over
the time series is produced. dashed lines indicate the maximum and minimum time series
(w.r.t. lag 2), the solid lines the 25 mean of all time series.

See the examples on how to specify a selection of these plots.

Author(s)

Jacolien van Rij

See Also

Other Model evaluation: diagnostics, plot_modelfit

Examples

data(simdat)

Not run:
Add start event column:
simdat <- start_event(simdat, event=c("Subject", "Trial"))
head(simdat)

bam model with AR1 model (toy example, not serious model):
m1 <- bam(Y ~ Group + te(Time, Trial, by=Group),

data=simdat, rho=.5, AR.start=simdat$start.event)

10 compareML

Warning, no time series specified:
check_resid(m1)

Time series specified, results in a "standard" ACF plot,
treating all residuals as single time seriesand,
and an ACF plot with the average ACF over time series:
check_resid(m1, split_pred=list(Subject=simdat$Subject, Trial=simdat$Trial))
Note: residuals do not look very good.
Alternative (results in the same, see help(acf_resid)):
check_resid(m1, split_pred="AR.start")

Define larger plot window (choose which line you need):
dev.new(width=8, height=8) # on windows or mac
quartz(,8,8) # on mac
x11(width=8, height=8) # on linux or mac

par(mfrow=c(2,2), cex=1.1)
check_resid(m1, split_pred="AR.start", ask=FALSE)

End(Not run)

compareML Function for comparing two GAMM models.

Description

Function for comparing two GAMM models.

Usage

compareML(model1, model2, signif.stars = TRUE, suggest.report = FALSE,
print.output = TRUE)

Arguments

model1 First model.

model2 Second model.

signif.stars Logical (default = TRUE). Whether or not to display stars indicating the level
of significance on 95% confidence level.

suggest.report Logical (default = FALSE). Whether or not to present a suggestion on how one
could report the information. If print.output is set to FALSE, suggest.report
will set to FALSE too. Please inspect yourself whether the label between square
bracket fits your own standards. Note: the X2 should be replaced by a proper
Chi-Square symbol χ2.

print.output Logical: whether or not to print the output. By default set to true, even if the
the messages are not allowed by a global package option using the function
infoMessages.

compareML 11

Details

As an Chi-Square test is performed on two times the difference in minimized smoothing parameter
selection score (GCV, fREML, REML, ML), and the difference in degrees of freedom specified in
the model. The degrees of freedom of the model terms are the sum of 1) the number of estimated
smoothing parameters for the model, 2) number of parametric (non-smooth) model terms including
the intercept, and 3) the sum of the penalty null space dimensions of each smooth object.

This method is preferred over other functions such as AIC for models that include an AR1 model
or random effects (especially nonlinear random smooths using bs="fs"). CompareML also reports
the AIC difference, but that value should be treated with care.

Note that the Chi-Square test will result in a very low p-value when the difference in degrees of
freedom approaches zero. Use common sense to determine if the difference between the two models
is meaningful. A warning is presented when the difference in score is smaller than 5.

The order of the two models is not important. Model comparison is only implemented for the
methods GCV, fREML, REML, and ML.

Value

Optionally returns the Chi-Square test table.

Notes

For suppressing the output and all warnings, set infoMessages to FALSE (infoMessages("off")
), set the argument print.output to FALSE, and use the function suppressWarnings to suppress
warning messages.

Author(s)

Jacolien van Rij. With many thanks to Simon N. Wood for his feedback.

See Also

For models without AR1 model or random effects AIC can be used.

Other Testing for significance: plot_diff2, plot_diff, report_stats, wald_gam

Examples

data(simdat)

Not run:
infoMessages("on")
some arbitrary models:
m1 <- bam(Y~Group + s(Time, by=Group), method="fREML", data=simdat)
m2 <- bam(Y~Group + s(Time), method="fREML", data=simdat)

compareML(m1, m2)

exclude significance stars:
compareML(m1, m2, signif.stars=FALSE)

12 convertNonAlphanumeric

m3 <- bam(Y~Group + s(Time, by=Group, k=25), method="fREML",
data=simdat)

compareML(m1, m3)

do not print output, but save table for later use:
cml <- compareML(m1, m2, print.output=FALSE)$table
cml

Use suppressWarnings to also suppress warnings:
suppressWarnings(cml <- compareML(m1, m2, print.output=FALSE)$table)

End(Not run)

convertNonAlphanumeric

Prepare string for regular expressions (backslash for all non-letter and
non-digit characters)

Description

Prepare string for regular expressions (backslash for all non-letter and non-digit characters)

Usage

convertNonAlphanumeric(text)

Arguments

text A text string (smooth term label) that needs to be converted to a regular expres-
sion.

Value

A regular expression string.

Author(s)

Jacolien van Rij

See Also

Other Utility functions: diff_terms, find_difference, missing_est, print_summary, summary_data,
timeBins

derive_timeseries 13

Examples

data(simdat)
Model for illustrating coefficients:
m0 <- bam(Y ~ s(Time) + s(Subject, bs='re')
+ s(Time, Subject, bs='re'), data=simdat)

get all coefficients:
coef(m0)
to get only the Subject intercepts:
coef(m0)[grepl(convertNonAlphanumeric("s(Subject)"), names(coef(m0)))]
to get only the Subject slopes:
coef(m0)[grepl(convertNonAlphanumeric("s(Time,Subject)"), names(coef(m0)))]

derive_timeseries Derive the time series used in the AR1 model.

Description

Derive the time series used in the AR1 model.

Usage

derive_timeseries(model, AR.start = NULL)

Arguments

model GAMM model that includes an AR1 model.

AR.start Vector with AR.start information, necessary for the AR1 model. Optional, de-
faults to NULL.

Value

A vector with time series indication based on the AR1 model.

Author(s)

Jacolien van Rij

See Also

Other functions for model criticism: acf_n_plots, acf_plot, acf_resid, resid_gam, start_event,
start_value_rho

14 diagnostics

Examples

data(simdat)

add missing values to simdat:
simdat[sample(nrow(simdat), 15),]$Y <- NA
simdat <- start_event(simdat, event=c("Subject", "Trial"))

Not run:
Run GAMM model:
m1 <- bam(Y ~ te(Time, Trial)+s(Subject, bs='re'), data=simdat,

rho=.5, AR.start=simdat$start.event)
simdat$Event <- NA
simdat[!is.na(simdat$Y),]$Event <- derive_timeseries(m1)
acf_resid(m1, split_pred=list(Event=simdat$Event))

And this works too:
simdat$Event <- derive_timeseries(simdat$start.event)
acf_resid(m1, split_pred=list(Event=simdat$Event))

Note that acf_resid automatically makes use of derive_timeseries:
acf_resid(m1, split_pred="AR.start")

End(Not run)

diagnostics Visualization of the model fit for time series data.

Description

Diagnostic plots for evaluating the model fit.

Usage

diagnostics(model, plot = "all", ask = TRUE,
print.summary = getOption("itsadug_print"))

Arguments

model A lm or gam object, produced by gam or bam, lm, glm.

plot A text string or numeric vector indicating which diagnostic plots to show. De-
fault is ’all’. See Section ’Details’ for the different options.

ask Logical: whether the user is prompted before starting a new page of output.
Defaults to TRUE.

print.summary Logical: whether or not to print summary. Default set to the print info messages
option (see infoMessages).

diagnostics 15

Details

When plot='all', the following plots are generated:

1. Residuals by fitted values. Used for inspection of general trends in the residuals.

2. Residuals ordered by predictor. Useful for checking how the trends of individual predictors
are captured by the model.

3. Distribution of residuals. QQ plot that compares the distribution of the residuals with the
normal distribution.

4. ACF of residuals. Inspection of autocorrelation in the residuals. See also acf_resid.

5. Trends in the random smooths. Be careful with the interpretation of the ’fixed’ effects and
interactions when the random smooths show trends. See examples below.

6. Printing distributions of numeric predictors.

Author(s)

Jacolien van Rij

See Also

Other Model evaluation: check_resid, plot_modelfit

Examples

data(simdat)
Not run:
no random smooths:
m1 <- bam(Y ~ Group + s(Time, by=Group) + s(Trial) + s(Subject, bs='re'), data=simdat)
diagnostics(m1)

only plot residuals by predictor:
diagnostics(m1, plot=2)

without prompts:
par(mfrow=c(2,2))
diagnostics(m1, plot=1:4, ask=FALSE)

only plot random smooths:
diagnostics(m1, plot=5)
Note: the plot does not change,
because there are no random smooths to plot.

with random smooths
m2 <- bam(Y ~ Group + s(Time, by=Group) + s(Time, Subject, bs='fs', m=1), data=simdat)
diagnostics(m2)

INSPECTION OF RANDOM SMOOTHS

In this underspecified model (too much smoothing for the interaction)

16 diff_terms

part of the effect of Time is captured by the random smooths:
m3 <- bam(Y ~ te(Time, Trial, k=c(3,3)) + s(Time, Subject, bs='fs', m=1), data=simdat)

The plot shows a clear trend in the average of the random smooths,
and the amplitude of the mean (!) curve is almost as large as the
amplitude of the 'fixed' effect of Time:
diagnostics(m3, plot=5, ask=FALSE)

Compare with the following models:
m4 <- bam(Y ~ te(Time, Trial, k=c(10,5)) + s(Time, Subject, bs='fs', m=1), data=simdat)
diagnostics(m4, plot=5, ask=FALSE)

m5 <- bam(Y ~ s(Time) + s(Trial) + ti(Time, Trial)
+ s(Time, Subject, bs='fs', m=1), data=simdat)

diagnostics(m5, plot=5, ask=FALSE)

End(Not run)

diff_terms Compare the formulas of two models and return the difference(s).

Description

Compare the formulas of two models and return the difference(s).

Usage

diff_terms(model1, model2)

Arguments

model1 A fitted regression model (using lm, glm, gam, or bam).

model2 A fitted regression model (using lm, glm, gam, or bam).

Value

A list with model terms that are not shared by both models.

Author(s)

Jacolien van Rij

See Also

Other Utility functions: convertNonAlphanumeric, find_difference, missing_est, print_summary,
summary_data, timeBins

eeg 17

Examples

data(simdat)

Fit simple GAM model:
gam1 <- bam(Y ~ s(Time), data=simdat)
gam2 <- bam(Y ~ Group+s(Time), data=simdat)
diff_terms(gam1, gam2)

eeg Raw EEG data, single trial, 50Hz.

Description

A dataset containing a single EEG trial.

Usage

eeg

Format

A data frame with 1504 rows and 5 variables:

Electrode Electrode that recorded the EEG.

Time Time, time measure from onset of the stimulus.

Ampl EEG amplitude, recorded by 32 electrodes.

X Approximation of electrode position, relative to Cz. Left is negative.

Y Approximation of electrode position, relative to Cz. Back is negative.

Author(s)

Jacolien van Rij

18 fadeRug

fadeRug Fade out the areas in a surface without data.

Description

Add a transparency Rug to a contour plot or image.

Usage

fadeRug(x, y, n.grid = 30, too.far = 0.03, col = "white", alpha = 1,
use.data.range = TRUE)

Arguments

x Observations on x-axis.
y Observations on y-axis.
n.grid Resolution of Rug. Defaults to 30, which means that the x- and y-axis are di-

vided in 30 bins. A two-value vector ould be used to specify different bins for
x- and y-axis.

too.far plot grid nodes that are too far from the points defined by the variables given
in view can be excluded from the plot. too.far determines what is too far. The
grid is scaled into the unit square along with the view variables and then grid
nodes more than too.far from the predictor variables are excluded. Based on
exclude.too.far of Simon N. Wood.

col Color representing missing data. Defaults to "white".
alpha Transparency, number between 0 (completely transparent) and 1 (non-transparent).

Defaults to 1.
use.data.range Logical value, indicating whether x and y are the data that the plot is based on.

Defaults to TRUE.

Value

Plots a shaded image over the contour plot or image.

Warning

On Linux x11 devices may not support transparency. In that case, a solution might be to write the
plots immediately to a file using functions such as pdf, or png.

Author(s)

Jacolien van Rij, based on Simon N. Wood’s exclude.too.far

See Also

rug, contour, image

Other Functions for plotting: rug_model

find_difference 19

Examples

data(simdat)

Introduce extreme values:
set.seed(123)
newdat <- simdat[sample(which(simdat$Time < 1500),

size=round(.5*length(which(simdat$Time < 1500)))),]
newdat <- rbind(newdat,

simdat[sample(which(simdat$Time > 1500),
size=5),])

Some simple GAM with tensor:
m1 <- bam(Y ~ te(Time, Trial), data=newdat)
plot summed effects:
fvisgam(m1, view=c("Time", "Trial"), zlim=c(-15,15))
fadeRug(newdat$Time, newdat$Trial)
check with data points:
points(newdat$Time, newdat$Trial, pch=16, col=alpha(1))

compare with default rug:
fvisgam(m1, view=c("Time", "Trial"), zlim=c(-15,15))
rug(newdat$Time)
rug(newdat$Trial, side=2)
fadeRug(newdat$Time, newdat$Trial)
and compare with too.far:
fvisgam(m1, view=c("Time", "Trial"), zlim=c(-15,15),

too.far=.03)
vis.gam(m1, view=c("Time", "Trial"), zlim=c(-15,15),

too.far=.03, plot.type="contour", color="topo")

in case fade rug overlaps with color legend:
fvisgam(m1, view=c("Time", "Trial"), zlim=c(-15,15),

add.color.legend=FALSE)
fadeRug(newdat$Time, newdat$Trial, alpha=.75)
gradientLegend(c(-15,15), pos=.875)

change x- and y-grid, and color:
fvisgam(m1, view=c("Time", "Trial"), zlim=c(-15,15))
points(newdat$Time, newdat$Trial)
fadeRug(newdat$Time, newdat$Trial, n.grid=c(100,10), col='gray')

find_difference Return the regions in which the smooth is significantly different from
zero.

Description

Return the regions in which the smooth is significantly different from zero.

Usage

find_difference(mean, se, xVals = NULL, f = 1, as.vector = FALSE)

20 find_difference

Arguments

mean A vector with smooth predictions.

se A vector with the standard error on the smooth predictions.

xVals Optional vector with x values for the smooth. When xVals is provided, the
regions are returned in terms of x- values, otherwise as indices.

f A number to multiply the se with, to convert the se into confidence intervals.
Use 1.96 for 95% CI and 2.58 for 99%CI.

as.vector Logical: whether or not to return the data points as vector, or not. Default is
FALSE, and a list with start and end points will be returned.

Value

The function returns a list with start points of each region (start) and end points of each region
(end). The logical xVals indicates whether the returned values are on the x-scale (TRUE) or indices
(FALSE).

Author(s)

Jacolien van Rij

See Also

Other Utility functions: convertNonAlphanumeric, diff_terms, missing_est, print_summary,
summary_data, timeBins

Examples

data(simdat)

Use aggregate to calculate mean and standard deviation per timestamp:
avg <- aggregate(simdat$Y, by=list(Time=simdat$Time),

function(x){c(mean=mean(x), sd=sd(x))})
head(avg)
Note that column x has two values in each row:
head(avg$x)
head(avg$x[,1])

Plot line and standard deviation:
emptyPlot(range(avg$Time), c(-20,20), h0=0)
plot_error(avg$Time, avg$x[,'mean'], avg$x[,'sd'],

shade=TRUE, lty=3, lwd=3)

Show difference with 0:
x <- find_difference(avg$x[,'mean'], avg$x[,'sd'], xVals=avg$Time)
Add arrows:
abline(v=c(x$start, x$end), lty=3, col='red')
arrows(x0=x$start, x1=x$end, y0=-5, y1=-5, code=3, length=.1, col='red')

fvisgam 21

fvisgam Visualization of nonlinear interactions, summed effects.

Description

Produces perspective or contour plot views of gam model predictions of the additive effects inter-
actions. The code is based on the script for vis.gam, but allows to cancel random effects.

Usage

fvisgam(x, view = NULL, cond = list(), n.grid = 30, too.far = 0,
col = NA, color = "topo", contour.col = NULL, add.color.legend = TRUE,
se = -1, sim.ci = FALSE, plot.type = "contour", xlim = NULL,
ylim = NULL, zlim = NULL, nCol = 50, rm.ranef = NULL,
print.summary = getOption("itsadug_print"), transform = NULL,
transform.view = NULL, hide.label = FALSE, dec = NULL,
show.diff = FALSE, col.diff = 1, alpha.diff = 0.5, ...)

Arguments

x A gam object, produced by gam or bam.

view A two-value vector containing the names of the two main effect terms to be
displayed on the x and y dimensions of the plot. Note that variables coerced to
factors in the model formula won’t work as view variables.

cond A named list of the values to use for the other predictor terms (not in view).
Used for choosing between smooths that share the same view predictors.

n.grid The number of grid nodes in each direction used for calculating the plotted sur-
face.

too.far Plot grid nodes that are too far from the points defined by the variables given in
view can be excluded from the plot. too.far determines what is too far. The grid
is scaled into the unit square along with the view variables and then grid nodes
more than too.far from the predictor variables are excluded.

col The colors for the facets of the plot.

color The color scheme to use for plots. One of "topo", "heat", "cm", "terrain", "gray"
or "bw". Alternatively a vector with some colors can be provided for a custom
color palette (see examples).

contour.col sets the color of contours when using plot.
add.color.legend

Logical: whether or not to add a color legend. Default is TRUE. If FALSE
(omitted), one could use the function gradientLegend to add a legend manually
at any position.

se If less than or equal to zero then only the predicted surface is plotted, but if
greater than zero, then 3 surfaces are plotted, one at the predicted values minus
se standard errors, one at the predicted values and one at the predicted values
plus se standard errors.

22 fvisgam

sim.ci Logical: Using simultaneous confidence intervals or not (default set to FALSE).
The implementation of simultaneous CIs follows Gavin Simpson’s blog of De-
cember 15, 2016: http://www.fromthebottomoftheheap.net/2016/12/15/
simultaneous-interval-revisited/. This interval is calculated from simu-
lations based. Please specify a seed (e.g., set.seed(123)) for reproducable re-
sults. Note: in contrast with Gavin Simpson’s code, here the Bayesian posterior
covariance matrix of the parameters is uncertainty corrected (unconditional=TRUE)
to reflect the uncertainty on the estimation of smoothness parameters.

plot.type one of "contour" or "persp" (default is "contour").

xlim A two item array giving the lower and upper limits for the x- axis scale. NULL
to choose automatically.

ylim A two item array giving the lower and upper limits for the y- axis scale. NULL
to choose automatically.

zlim A two item array giving the lower and upper limits for the z- axis scale. NULL
to choose automatically.

nCol The number of colors to use in color schemes.

rm.ranef Logical: whether or not to remove random effects. Default is TRUE.

print.summary Logical: whether or not to print a summary. Default set to the print info mes-
sages option (see infoMessages).

transform Function for transforming the fitted values. Default is NULL.

transform.view List with two functions for transforming the values on the x- and y-axis respec-
tively. If one of the axes need to be transformed, set the other to NULL (no
transformation). See examples below.

hide.label Logical: whether or not to hide the label (i.e., "fitted values"). Default is FALSE.

dec Numeric: number of decimals for rounding the color legend. When NULL,
no rounding (default). If -1, automatically determined. Note: if value = -1,
rounding will be applied also when zlim is provided.

show.diff Logical: whether or not to indicate the regions that are significantly different
from zero. Note that these regions are just an indication and dependent on the
value of n.grid. Defaults to FALSE.

col.diff Color to shade the nonsignificant areas.

alpha.diff Level of transparency to mark the nonsignificant areas.

... other options to pass on to persp, image or contour. In particular ticktype="detailed"
will add proper axes labeling to the plots.

Warning

When the argument show.diff is set to TRUE a shading area indicates where the confidence inter-
vals include zero. Or, in other words, the areas that are not significantly different from zero. Be care-
ful with the interpretation, however, as the precise shape of the surface is dependent on model con-
straints such as the value of choose.k and the smooth function used, and the size of the confidence
intervals are dependent on the model fit and model characteristics (see vignette('acf', package='itsadug')).
In addition, the value of n.grid determines the precision of the plot.

http://www.fromthebottomoftheheap.net/2016/12/15/simultaneous-interval-revisited/
http://www.fromthebottomoftheheap.net/2016/12/15/simultaneous-interval-revisited/

fvisgam 23

Author(s)

Jacolien van Rij and Martijn Wieling. Modification of vis.gam from package mgcv of Simon N.
Wood.

See Also

vis.gam, plot.gam

Other Functions for model inspection: gamtabs, inspect_random, plot_data, plot_parametric,
plot_smooth, plot_topo, pvisgam

Examples

data(simdat)

Not run:
Model with random effect and interactions:
m1 <- bam(Y ~ te(Time, Trial)+s(Time, Subject, bs='fs', m=1),

data=simdat, discrete=TRUE)

Plot summed effects:
vis.gam(m1, view=c("Time", "Trial"), plot.type='contour', color='topo')
Same plot:
fvisgam(m1, view=c("Time", "Trial"), rm.ranef=FALSE)
Without random effects included:
fvisgam(m1, view=c("Time", "Trial"), rm.ranef=TRUE)

Notes on the color legend:
Labels can easily fall off the plot, therefore the numbers can be
automatically rounded.
To do the rounding, set dec=-1:
fvisgam(m1, view=c("Time", "Trial"), rm.ranef=TRUE,

dec=-1)
For custom rounding, set dec to a value:
fvisgam(m1, view=c("Time", "Trial"), rm.ranef=TRUE,

dec=0)
To increase the left marging of the plot (so that the numbers fit):
oldmar <- par()$mar
par(mar=oldmar + c(0,0,0,1)) # add one line to the right
fvisgam(m1, view=c("Time", "Trial"), rm.ranef=TRUE,

dec=3)
par(mar=oldmar) # restore to default settings

changing the color palette:
fvisgam(m1, view=c("Time", "Trial"), rm.ranef=TRUE,

color="terrain")
fvisgam(m1, view=c("Time", "Trial"), rm.ranef=TRUE,

color=c("blue", "white", "red"), col=1)

Using transform
Plot log-transformed dependent predictor on measurement scale:
fvisgam(m1, view=c("Time", "Trial"), rm.ranef=TRUE, transform=exp)

24 gamtabs

Notes on transform.view:
This will generate an error, because x-values <= 0 will result in NaN:
fvisgam(m1, view=c("Time", "Trial"), rm.ranef=TRUE,

transform.view=list(log, NULL))
adjusting the x-axis helps:
fvisgam(m1, view=c("Time", "Trial"), rm.ranef=TRUE,

xlim=c(1,2000), transform.view=list(log, NULL))

End(Not run)
see the vignette for examples:
vignette("inspect", package="itsadug")

gamtabs Convert model summary into Latex/HTML table for knitr/R Markdown
reports.

Description

Convert model summary into Latex/HTML table for knitr/R Markdown reports.

Usage

gamtabs(model, caption = " ", label = "tab.gam", pnames = NA,
snames = NA, ptab = NA, stab = NA, ...)

Arguments

model A GAM(M) model build in the package mgcv using gam or bam. Alternatively, a
summary of a GAMM model could be provided.

caption A string with the caption for the table.

label A string for the label to refer to the table in the markdown document.

pnames A vector with labels to relabel the rows in the parametric part of the summary.

snames A vector with labels to relabel the rows in the smooth part of the summary.

ptab A vector with labels to relabel the column names of the parametric summary.

stab A vector with labels to relabel the column names of the smooth summary.

... Optional additional arguments which are passed to xtable (see ’help(xtable)’).

Value

A vector with color values.

Note

This function is useful for markdown documents using the package knitr to integrate R code with
Latex and Sweave. This function requires the package xtable.

get_coefs 25

Author(s)

R. Harald Baayen

See Also

summary.gam, gam, bam.

Other Functions for model inspection: fvisgam, inspect_random, plot_data, plot_parametric,
plot_smooth, plot_topo, pvisgam

Examples

data(simdat)
Not run:
Model with random effect and interactions:
m1 <- bam(Y ~ Group+te(Time, Trial, by=Group),

data=simdat)
summary(m1)
gamtabs(m1, caption='Summary of m1')

End(Not run)
See for more examples:
vignette("inspect", package="itsadug")

get_coefs Get coefficients for the parametric terms (intercepts and random
slopes).

Description

Wrapper around the function coef, and loosely based on summary.gam. This function provides
a much faster alternative for summary(model)$p.table. The function summary.gam) may take
considerably more time for large models, because it additionally needs to calculate estimates for
the smooth term table.

Usage

get_coefs(model, se = TRUE)

Arguments

model A gam object, produced by gam or bam.

se Logical: whether or not to return the standard errors.

Value

The coefficients of the parametric terms.

26 get_difference

Author(s)

Jacolien van Rij

See Also

Other Model predictions: get_difference, get_fitted, get_modelterm, get_predictions,
get_random

Examples

data(simdat)

Condition as factor, to have a random intercept
for illustration purposes:
simdat$Condition <- as.factor(simdat$Condition)

Model with random effect and interactions:
m1 <- bam(Y ~ Group * Condition + s(Time),

data=simdat)

extract all parametric coefficients:
get_coefs(m1)
calculate t-values:
test <- get_coefs(m1)
test <- cbind(test, test[,1] / test[,2])
colnames(test)[3] <- 't-value'
test

get_coefs returns the same numbers as shown in the parametric summary:
summary(m1)
get_coefs is based on the function coef. This function returns
values of all coefficients, and does not provide SE:
coef(m1)

get_difference Get model predictions for differences between conditions.

Description

Get model predictions for differences between conditions.

Usage

get_difference(model, comp, cond = NULL, rm.ranef = NULL, se = TRUE,
sim.ci = FALSE, f = 1.96, return.n.posterior = 0,
print.summary = getOption("itsadug_print"))

get_difference 27

Arguments

model A gam object, produced by gam or bam.

comp A named list with the two levels to compare.

cond A named list of the values to use for the other predictor terms. Variables omitted
from this list will have the closest observed value to the median for continuous
variables, or the reference level for factors.

rm.ranef Logical: whether or not to remove random effects. Default is FALSE. Alterna-
tively a vector of numbers with the mdoelterm number of the random effect(s)
to remove. (See notes.)

se Logical: whether or not to return the confidence interval or standard error around
the estimates.

sim.ci Logical: Using simultaneous confidence intervals or not (default set to FALSE).
The implementation of simultaneous CIs follows Gavin Simpson’s blog of De-
cember 15, 2016: http://www.fromthebottomoftheheap.net/2016/12/15/
simultaneous-interval-revisited/. This interval is calculated from sim-
ulations based. Please specify a seed (e.g., set.seed(123)) for reproducable
results. In addition, make sure to specify at least 200 points for each smooth
for the simulations when using simultaneous CI. Note: in contrast with Gavin
Simpson’s code, here the Bayesian posterior covariance matrix of the param-
eters is uncertainty corrected (unconditional=TRUE) to reflect the uncertainty
on the estimation of smoothness parameters.

f A number to scale the standard error. Defaults to 1.96, resulting in 95% confi-
dence intervals. For 99% confidence intervals use a value of 2.58.

return.n.posterior

Numeric: N samples from the posterior distribution of the fitted model are re-
turned. Default value is 0 (no samples returned). Only workes when sim.ci=TRUE.

print.summary Logical: whether or not to print a summary of the values selected for each pre-
dictor. Default set to the print info messages option (see infoMessages).

Value

Returns a data frame with the estimates of the difference and optionally the confidence intervals
around that estimate.

Notes

Other, not specified effects and random effects are generally canceled out, when calculating the
difference. When the predictors that specify the conditions to compare are involved in other inter-
actions or included as random slopes, it may be useful to specify the values of other predictors with
cond or remove the random effects with rm.ranef.

Author(s)

Jacolien van Rij, Martijn Wieling

http://www.fromthebottomoftheheap.net/2016/12/15/simultaneous-interval-revisited/
http://www.fromthebottomoftheheap.net/2016/12/15/simultaneous-interval-revisited/

28 get_fitted

See Also

Other Model predictions: get_coefs, get_fitted, get_modelterm, get_predictions, get_random

Examples

data(simdat)

first fit a simple model:
m1 <- bam(Y ~ Group+te(Time, Trial, by=Group), data=simdat)

get difference estimates:
diff <- get_difference(m1, comp=list(Group=c('Adults', 'Children')),

cond=list(Time=seq(0,500,length=100)))
head(diff)

get_fitted Get model all fitted values.

Description

Get model all fitted values.

Usage

get_fitted(model, se = 1.96, rm.ranef = NULL, as.data.frame = FALSE,
print.summary = getOption("itsadug_print"))

Arguments

model A gam object, produced by gam or bam.

se A number to scale the standard error. Defaults to 1.96, resulting in 95% confi-
dence intervals. For 99% confidence intervals use a value of 2.58.

rm.ranef Logical: whether or not to remove random effects. Default is FALSE. Alter-
natively a string (or vector of strings) with the name of the random effect(s) to
remove.

as.data.frame Logical: return values as data frame or as vector. Default is FALSE (returning a
vector).

print.summary Logical: whether or not to print a summary of the values selected for each pre-
dictor. Default set to the print info messages option (see infoMessages).

Value

A data frame with estimates and optionally errors.

Author(s)

Jacolien van Rij

get_modelterm 29

See Also

Other Model predictions: get_coefs, get_difference, get_modelterm, get_predictions, get_random

Examples

data(simdat)
Not run:
m1 <- bam(Y ~ Group + s(Time, by=Group)+ s(Subject, bs='re'), data=simdat)

as.data.frame FALSE and rm.ranef=NULL results in fitted():
all(get_fitted(m1) == fitted(m1))

now fitted values without random effects:
all(get_fitted(m1, rm.ranef=TRUE) == fitted(m1))
head(get_fitted(m1, rm.ranef=TRUE))

without summary:
infoMessages("off")
head(get_fitted(m1, rm.ranef=TRUE))
infoMessages("on")

End(Not run)

get_modelterm Get estimated for selected model terms.

Description

Get estimated for selected model terms.

Usage

get_modelterm(model, select, cond = NULL, n.grid = 30, se = TRUE,
f = 1.96, as.data.frame = FALSE,
print.summary = getOption("itsadug_print"))

Arguments

model A gam object, produced by gam or bam.

select A number, indicating the model term to be selected.

cond A named list of the values to restrict the estimates for the predictor terms. When
NULL (default) values are automatically selected. Only relevant for complex
interactions, which involve more than two dimensions.

n.grid Number of data points estimated for each random smooth.

se Logical: whether or not to return the confidence interval or standard error around
the estimates.

30 get_modelterm

f A number to scale the standard error. Defaults to 1.96, resulting in 95% confi-
dence intervals. For 99% confidence intervals use a value of 2.58.

as.data.frame Logical: whether or not to return a data.frame. Default is false, and a list will be
returned.

print.summary Logical: whether or not to print a summary of the values selected for each pre-
dictor. Default set to the print info messages option (see infoMessages).

Value

A data frame with estimates for the selected smooth term.

A list with two or more elements:

• fit: Numeric vector with the fitted values;

• se.fit: Optionally, only with se=TRUE. Numeric vector with the error or confidence interval
values (f*SE);

• f: The multiplication factor for generating the confidence interval values;

• terms: Numeric vector (for 1-dimensional smooth) or data frame (more 2- or more dimen-
sional surfaces) with values of the modelterms.

• title: String with name of the model term.

• xlab, ylab, or labels: Labels for x-axis and optionally y-axis. Precise structure depends on
type of smooth term: for 1-dimensional smooth only x-label is provided, for 2-dimensional
smooths x-label and y-label are provided, for more complex smooths a vector of of labels is
provided.

Author(s)

Jacolien van Rij

See Also

Other Model predictions: get_coefs, get_difference, get_fitted, get_predictions, get_random

Examples

data(simdat)

Not run:
Model with random effect and interactions:
m1 <- bam(Y ~ s(Time) + s(Trial)
+ti(Time, Trial)
+s(Time, Subject, bs='fs', m=1),
data=simdat)

Get list with predictions:
p <- get_modelterm(m1, select=1)
emptyPlot(range(p$terms), range(p$fit), h=0)
plot_error(p$terms, p$fit, p$se.fit, shade=TRUE, xpd=TRUE)

get_pca_predictions 31

Plot random effects in separate panels:
pp <- get_modelterm(m1, select=4, as.data.frame=TRUE)
require(lattice)
lattice::xyplot(fit~Time|Subject,

data=pp, type="l",
xlab="Time", ylab="Partial effect")

Plot selection of subjects:
pp <- get_modelterm(m1, select=4,

cond=list(Subject=c('a01', 'a03', 'c16')),
as.data.frame=TRUE)

lattice::xyplot(fit~Time|Subject,
data=pp, type="l",
xlab="Time", ylab="Partial effect")

Or using the package ggplot2:
require(ggplot2)
pp <- get_modelterm(m1, select=4, as.data.frame=TRUE)
pg <- ggplot2::qplot(Time, fit, data = pp,

geom = c("point", "line"), colour = Subject)
pg + ggplot2::guides(col = guide_legend(nrow = 18))

End(Not run)

get_pca_predictions Return PCA predictions.

Description

Produces perspective or contour plot views of gam model predictions of the additive effects inter-
actions. The code is based on the script for vis.gam, but allows to cancel random effects.

Usage

get_pca_predictions(x, pca.term = NULL, weights = NULL, view = NULL,
cond = list(), select = NULL, n.grid = 30, se = 1.96, xlim = NULL,
ylim = NULL, partial = TRUE, rm.ranef = NULL, as.data.frame = TRUE,
print.summary = getOption("itsadug_print"))

Arguments

x A gam object, produced by gam or bam.

pca.term Text string, name of model predictor that represents a principle component.

weights Named list with the predictors that are combined in the PC and their weights.
See examples.

view A two-value vector containing the names of the two terms to plot. The two
terms should be part of the PC. Note that variables coerced to factors in the
model formula won’t work as view variables.

32 get_pca_predictions

cond A named list of the values to use for the other predictor terms (not in view).
Used for choosing between smooths that share the same view predictors.

select A number, selecting a single model term for printing. e.g. if you want the plot
for the second smooth term set select=2.

n.grid The number of grid nodes in each direction used for calculating the plotted sur-
face.

se If less than or equal to zero then only the predicted surface is plotted, but if
greater than zero, then 3 surfaces are plotted, one at the predicted values minus
se standard errors, one at the predicted values and one at the predicted values
plus se standard errors.

xlim A two item array giving the lower and upper limits for the x- axis scale. NULL
to choose automatically.

ylim A two item array giving the lower and upper limits for the y- axis scale. NULL
to choose automatically.

partial Logical value: whether or not to plot the partial effect (TRUE) or the summed
effect (FALSE, default).

rm.ranef Logical: whether or not to remove random effects. Default is TRUE.

as.data.frame Logical: whether the output is returned as data frame (TRUE, default) or as list
(FALSE).

print.summary Logical: whether or not to print a summary. Default set to the print info mes-
sages option (see infoMessages).

Author(s)

Jacolien van Rij

See Also

plot_pca_surface, prcomp

Other Functions for PCA interpretation: plot_pca_surface

Examples

data(simdat)
add hypothetical correlated term:
simdat$predictor <- (simdat$Trial+10)^.75 + rnorm(nrow(simdat))
principal components analysis:
pca <- prcomp(simdat[, c("Trial", "predictor")])
only first PC term contributes:
summary(pca)
get rotation (weights of predictors in PC):
pcar <- pca$rotation
add PC1 to data:
simdat$PC1 <- pca$x[,1]

Not run:
model:

get_predictions 33

m1 <- bam(Y ~ Group + te(Time, PC1, by=Group)
+ s(Time, Subject, bs='fs', m=1, k=5), data=simdat)

inspect surface:
fvisgam(m1, view=c("Time", "PC1"), cond=list(Group="Children"),

rm.ranef=TRUE)
how does Trial contribute?
p <- get_pca_predictions(m1, pca.term="PC1", weights=pcar[,"PC1"],

view=c("Time", "Trial"), cond=list(Group="Children"),
rm.ranef=TRUE, partial=FALSE)

Note that the range of Trial is estimated based on the values of PC1.
A better solution is to specify the range:
p <- get_pca_predictions(m1, pca.term="PC1", weights=pcar[,"PC1"],

view=list(Time=range(simdat$Time), Trial=range(simdat$Trial)),
cond=list(Group="Children"),rm.ranef=TRUE, partial=FALSE)

plotting of the surface:
plot_pca_surface(m1, pca.term="PC1", weights=pcar[,"PC1"],

view=c("Time", "Trial"), cond=list(Group="Children"),rm.ranef=TRUE)

End(Not run)

get_predictions Get model predictions for specific conditions.

Description

Get model predictions for specific conditions.

Usage

get_predictions(model, cond = NULL, rm.ranef = NULL, se = TRUE,
sim.ci = FALSE, f = 1.96, return.n.posterior = 0,
print.summary = getOption("itsadug_print"))

Arguments

model A gam object, produced by gam or bam.

cond A named list of the values to use for the predictor terms. Variables omitted
from this list will have the closest observed value to the median for continuous
variables, or the reference level for factors.

rm.ranef Logical: whether or not to remove random effects. Default is FALSE. Alterna-
tively a vector with numbers (modelterms) of the random effect(s) to remove.

se Logical: whether or not to return the confidence interval or standard error around
the estimates.

sim.ci Logical: Using simultaneous confidence intervals or not (default set to FALSE).
The implementation of simultaneous CIs follows Gavin Simpson’s blog of De-
cember 15, 2016: http://www.fromthebottomoftheheap.net/2016/12/15/
simultaneous-interval-revisited/. This interval is calculated from sim-
ulations based. Please specify a seed (e.g., set.seed(123)) for reproducable

http://www.fromthebottomoftheheap.net/2016/12/15/simultaneous-interval-revisited/
http://www.fromthebottomoftheheap.net/2016/12/15/simultaneous-interval-revisited/

34 get_predictions

results. In addition, make sure to specify at least 200 points for each smooth
for the simulations when using simultaneous CI. Note: in contrast with Gavin
Simpson’s code, here the Bayesian posterior covariance matrix of the param-
eters is uncertainty corrected (unconditional=TRUE) to reflect the uncertainty
on the estimation of smoothness parameters.

f A number to scale the standard error. Defaults to 1.96, resulting in 95% confi-
dence intervals. For 99% confidence intervals use a value of 2.58.

return.n.posterior

Numeric: N samples from the posterior distribution of the fitted model are re-
turned. Default value is 0 (no samples returned). Only workes when sim.ci=TRUE.

print.summary Logical: whether or not to print a summary of the values selected for each pre-
dictor. Default set to the print info messages option (see infoMessages).

Value

A data frame with estimates and optionally errors.

Author(s)

Jacolien van Rij

See Also

Other Model predictions: get_coefs, get_difference, get_fitted, get_modelterm, get_random

Examples

data(simdat)

Not run:
m1 <- bam(Y ~ Group + s(Time, by=Group), data=simdat)

Time value is automatically set:
pp <- get_predictions(m1, cond=list(Group="Adults"))
head(pp)

Range of time values:
pp <- get_predictions(m1,

cond=list(Group="Adults", Time=seq(0,500,length=100)))
plot:
emptyPlot(500, range(pp$fit), h=0)
plot_error(pp$Time, pp$fit, pp$CI, shade=TRUE, xpd=TRUE)

Warning: also unrealistical values are possible
range(simdat$Time)
pp <- get_predictions(m1,

cond=list(Group="Adults", Time=seq(-500,0,length=100)))
plot of predictions that are not supported by data:
emptyPlot(c(-500,0), range(pp$fit), h=0)
plot_error(pp$Time, pp$fit, pp$CI, shade=TRUE, xpd=TRUE)

get_random 35

m2 <- bam(Y ~ Group + s(Time, by=Group)
+ s(Time, Subject, bs='fs', m=1),
data=simdat, discrete=TRUE)

Simultaneous CI vs pointwise CI
NOTE: USE AT LEST 200 DATAPOINTS FOR SIMULTANEOUS CI
pp <- get_predictions(m2,

cond=list(Group="Adults", Time=seq(0,2000,length=200)),
rm.ranef=TRUE, sim.ci=TRUE)

head(pp)
plot:
emptyPlot(2000, range(pp$fit), h=0)
plot_error(pp$Time, pp$fit, pp$CI, shade=TRUE, xpd=TRUE)
plot_error(pp$Time, pp$fit, pp$sim.CI, shade=FALSE, col=2, xpd=TRUE)

End(Not run)

get_random Get coefficients for the random intercepts and random slopes.

Description

Get coefficients for the random intercepts and random slopes.

Usage

get_random(model, cond = NULL, print.summary = getOption("itsadug_print"))

Arguments

model A gam object, produced by gam or bam.

cond A named list of the values to restrict the estimates for the random predictor
terms. When NULL (default) all levels are returned. Only relevant for complex
interactions, which involve more than two dimensions.

print.summary Logical: whether or not to print a summary of the values selected for each pre-
dictor. Default set to the print info messages option (see infoMessages).

Value

The coefficients of the random intercepts and slopes.

Author(s)

Jacolien van Rij

36 info

See Also

Other Model predictions: get_coefs, get_difference, get_fitted, get_modelterm, get_predictions

Examples

data(simdat)

Not run:
Condition as factor, to have a random intercept
for illustration purposes:
simdat$Condition <- as.factor(simdat$Condition)

Model with random effect and interactions:
m2 <- bam(Y ~ s(Time) + s(Trial)
+ ti(Time, Trial)
+ s(Condition, bs='re')
+ s(Time, Subject, bs='re'),
data=simdat)

extract all random effects combined:
newd <- get_random(m2)
head(newd)

extract coefficients for the random intercept for Condition:
Make bar plot:
barplot(newd[[1]])
abline(h=0)

or select:
get_random(m2, cond=list(Condition=c('2','3')))

End(Not run)

info Information on how to cite this package

Description

Information on how to cite this package

Usage

info(input = NULL)

Arguments

input Optional parameter. Normally (NULL) the citation info is printed. If value
"version" then only the version is printed.

infoMessages 37

See Also

citation, R.version, sessionInfo

Other Functions for package use: infoMessages

Examples

info()
info("version")
citation(package="itsadug")
To get info about R version:
R.version.string

infoMessages Turn on or off information messages.

Description

Turn on or off information messages.

Usage

infoMessages(input)

Arguments

input Input variable indicating to print info messages ("on", or 1, or TRUE) or not
("off", 0, or FALSE).

See Also

Other Functions for package use: info

Examples

To turn on the info messages (all the same):
infoMessages("on")
infoMessages(1)
infoMessages(TRUE)
To turn off the info messages (all the same):
infoMessages("off")
infoMessages(0)
infoMessages(FALSE)
checking output:
(out <- infoMessages(FALSE))

38 inspect_random

inspect_random Inspection and interpretation of random factor smooths.

Description

Inspection and interpretation of random factor smooths.

Usage

inspect_random(model, select = 1, fun = NULL, cond = NULL, n.grid = 30,
print.summary = getOption("itsadug_print"), plot = TRUE, add = FALSE,
main = NULL, xlab = NULL, ylab = NULL, ylim = NULL, h0 = 0,
v0 = NULL, col = NULL, eegAxis = FALSE, ...)

Arguments

model A gam object, produced by gam or bam.

select A number, indicating the model term to be selected.

fun A string or function description to apply to the random effects estimates. When
NULL (default), the estimates for the random effects are returned.

cond A named list of the values to restrict the estimates for the random predictor
terms. When NULL (default) all levels are returned.

n.grid Number of data points estimated for each random smooth.

print.summary Logical: whether or not to print a summary of the values selected for each pre-
dictor. Default set to the print info messages option (see infoMessages).

plot Logical: whether or not to plot the random effect estimates (TRUE by default).

add Logical: whether or not to add the random effect estimates to an existing plot
(FALSE by default).

main Changing the main title for the plot, see also title.

xlab Changing the label for the x axis, defaults to a description of x.

ylab Changing the label for the y axis, defaults to a description of y.

ylim Changing the y limits of the plot.

h0 A vector indicating where to add solid horizontal lines for reference. By default
0.

v0 A vector indicating where to add dotted vertical lines for reference. By default
no values provided.

col Specifying the colors of the lines.

eegAxis Whether or not to reverse the y-axis (plotting negative upwards).

... other options to pass on to lines, see par

Value

A data frame with estimates for random effects is optionally returned.

inspect_random 39

Author(s)

Jacolien van Rij

See Also

Other Functions for model inspection: fvisgam, gamtabs, plot_data, plot_parametric, plot_smooth,
plot_topo, pvisgam

Examples

load data:
data(simdat)

Not run:
Condition as factor, to have a random intercept
for illustration purposes:
simdat$Condition <- as.factor(simdat$Condition)

Model with random effect and interactions:
m2 <- bam(Y ~ s(Time) + s(Trial)
+ ti(Time, Trial)
+ s(Condition, bs='re')
+ s(Time, Subject, bs='fs', m=1),
data=simdat)

extract with wrong select value:
newd <- inspect_random(m2, select=4)
results in warning, automatically takes select=5
head(newd)
inspect_random(m2, select=5, cond=list(Subject=c('a01','a02','a03')))

Alternatively, fix random effect of Condition, and plot
random effects for subjects with lattice:
newd <- inspect_random(m2, select=5,

cond=list(Subject=unique(simdat[simdat$Condition==0,'Subject'])),
plot=FALSE)

Make lattice plot:
require(lattice)
lattice::xyplot(fit~Time | Subject,

data=newd, type="l",
xlab="Time", ylab="Partial effect")

Using argument 'fun':
inspect_random(m2, select=5, fun=mean,

cond=list(Subject=unique(simdat[simdat$Condition==0,'Subject'])))
inspect_random(m2, select=5, fun=mean,

cond=list(Subject=unique(simdat[simdat$Condition==2,'Subject'])),
col='red', add=TRUE)

End(Not run)

40 itsadug

see the vignette for examples:
vignette("overview", package="itsadug")

itsadug Interpreting Time Series, Autocorrelated Data Using GAMMs (it-
sadug)

Description

Itsadug provides a set of functions that facilitate the evaluation, interpretation, and visualization of
GAMM models that are implemented in the package mgcv.

Tutorials

• vignette("inspect", package="itsadug") - summarizes different functions for visualiz-
ing the model.

• vignette("test", package="itsadug") - summarizes different functions for significance
testing.

• vignette("acf", package="itsadug") - summarizes how to check and account for auto-
correlation in the residuals.

Also available online: www.jacolienvanrij.com/itsadug.

Interpretation and visualization

Main functions that are provided in itsadug for interpretation and visualization of GAMM models:

• pvisgam plots partial interaction surfaces; it also allows for visualizing 3-way or higher inter-
actions.

• fvisgam plots summed interaction surfaces, with the possibility to exclude random effects.

• plot_smooth plots 1D model estimates, and has the possibility to exclude random effects.

• plot_parametric plot group estimates.

• inspect_random plots and optionally averages random smooths

• plot_data plots the data

• plot_topo plots EEG topographies

Testing for significance

• compareML Performs Chisquare test on two models

• plot_diff Calculates and visualizes the difference between two conditions within a model

• plot_diff2 Calculates and visualizes the 2 dimensional difference between two conditions
within a model

www.jacolienvanrij.com/itsadug

itsadug 41

Evaluation of the model

• check_resid plots four different plots to inspect the distribution of and structure in the resid-
uals

• plot_modelfit plots an overlay of the data and the modelfit for randomly selected trials

• diagnostics produces plots of the distributions of residuals and predictors in the model

Checking and handling autocorrelation

• acf_resid different ways to inspect autocorrelation in the residuals

• start_event creates an AR.start column

• resid_gam returns residuals corrected for the AR1 model

Predictions

Further, there are some wrappers around the predict.gam function to facilitate the extraction of
model predictions. These can be used for customized plots. See for an example in the vignette
"plotfunctions" (vignette("plotfunctions", package="itsadug")).

• get_predictions for getting the estimates for given settings of some or all of the model
predictors;

• get_difference for extracting the difference between two conditions or two smooths or two
surfaces.

• get_modelterm for extracting the smooth term (partial) estimates.

• inspect_random and get_random for extracting random effects only.

Notes

• Use infoMessages(FALSE) to suppress all information messages for the current session. This
may be helpful when creating knitr or R markdown reports.

• The vignettes are available via browseVignettes(). When working on a server via the com-
mand line, using ssh -X instead of ssh may make the HTML files available.

• A list of all available functions is provided in help(package="itsadug").

Author(s)

Jacolien van Rij, Martijn Wieling, R.Harald Baayen, Hedderik van Rijn

Maintainer: Jacolien van Rij (<vanrij.jacolien@gmail.com>)

University of Groningen, The Netherlands

42 missing_est

missing_est Return indices of data that were not fitted by the model.

Description

Return indices of data that were not fitted by the model.

Usage

missing_est(model)

Arguments

model A fitted regression model (using lm, glm, gam, or bam).

Value

The indices of the data that were not fitted by the model.

Author(s)

Jacolien van Rij

See Also

Other Utility functions: convertNonAlphanumeric, diff_terms, find_difference, print_summary,
summary_data, timeBins

Examples

data(simdat)

Add missing values:
set.seed(123)
simdat[sample(nrow(simdat), size=20),]$Y <- NA
Fit simple linear model:
lm1 <- lm(Y ~ Time, data=simdat)
na.el <- missing_est(lm1)
length(na.el)

plot_data 43

plot_data Visualization of the model fit for time series data.

Description

Plots the data, fitted values, or residuals.

Usage

plot_data(model, view, split_by = NULL, cond = NULL, input = "data",
rm.ranef = NULL, alpha = NULL, col = NULL, add = FALSE,
eegAxis = FALSE, main = NULL, xlab = NULL, ylab = NULL, ylim = NULL,
h0 = 0, v0 = NULL, hide.label = FALSE, transform = NULL,
transform.view = NULL, print.summary = getOption("itsadug_print"), ...)

Arguments

model A lm or gam object, produced by gam or bam, lm, glm.

view Text string containing the predictor or column in the data to be displayed on the
x-axis. Note that variables coerced to factors in the model formula won’t work
as view variables.

split_by Vector with names of model predictors that determine the time series in the data,
or should be used to split the ACF plot by. Alternatively, split_pred can be a
named list (each with equal length as the data) that group the data, fitted values
or residuals values of x into trials or timeseries events. Generally other columns
from the same data frame as the model was fitted on.

cond A named list of the values to use for the other predictor terms (not in view) or to
select specific trials or time series to plot.

input Text string: "data" (default) plots the data, "resid" plots the model residuals, and
"fitted" plots the fitted values.

rm.ranef Logical: whether or not to include the random effects in the model predic-
tions. Default is TRUE. Relevant for input="fitted" and input="resid"
(i.e., whether or not the residuals contain the random effects, TRUE and FALSE
respectively).

alpha Value between 0 and 1 indicating the transparency. A value of 0 is completely
transparant, whereas a value of 1 is completely untransparant.

col Vector with one color value (i.e., all data points will have the same color), color
values for each grouping condition specified in split_by or a vector with color
values for each data point.

add Logical: whether or not to add the lines/points to an existing plot, or start a new
plot (default).

eegAxis Logical: whether or not to reverse the y-axis, plotting the negative amplitudes
upwards as traditionally is done in EEG research. If eeg.axes is TRUE, labels
for x- and y-axis are provided, when not provided by the user. Default value is
FALSE.

44 plot_data

main Changing the main title for the plot, see also title.

xlab Changing the label for the x axis, defaults to a description of x.

ylab Changing the label for the y axis, defaults to a description of y.

ylim the y limits of the plot.

h0 A vector indicating where to add solid horizontal lines for reference. By default
no values provided.

v0 A vector indicating where to add dotted vertical lines for reference. By default
no values provided.

hide.label Logical: whether or not to hide the label (i.e., "fitted values"). Default is FALSE.

transform Function for transforming the fitted values. Default is NULL.

transform.view Function for transforming the view values. Default is NULL.

print.summary Logical: whether or not to print a summary. Default set to the print info mes-
sages option (see infoMessages).

... other options to pass on to lines and plot, see par

Notes

This function plots the fitted effects, including intercept and other predictors.

Author(s)

Jacolien van Rij, idea of Tino Sering

See Also

Other Functions for model inspection: fvisgam, gamtabs, inspect_random, plot_parametric,
plot_smooth, plot_topo, pvisgam

Examples

data(simdat)

Not run:
Create grouping predictor for time series:
simdat$Event <- interaction(simdat$Subject, simdat$Trial)

model without random effects:
m1 <- bam(Y ~ te(Time, Trial) + s(Subject, bs='re'),

data=simdat)

All data points, without clustering:
plot_data(m1, view="Time")

All data, clustered by Trial (very small dots):
plot_data(m1, view="Time", split_by="Trial",

cex=.25)
Add a smooth for each trial:
plot_smooth(m1, view="Time", plot_all="Trial",

plot_diff 45

add=TRUE, rm.ranef=TRUE)
Add the model predictions in same color:
plot_smooth(m1, view="Time", plot_all="Trial", add=TRUE, rm.ranef=TRUE)

Alternatively, use data to select events:
plot_data(m1, view="Time", split_by=list(Event=simdat$Event),

type='l')
which is the same as:
plot_data(m1, view="Time", split_by=list(Subject=simdat$Subject, Trial=simdat$Trial),

type='l')
Only for Trial=0
plot_data(m1, view="Time", split_by=list(Event=simdat$Event),

cond=list(Trial=0), type='l')
This is the same:
plot_data(m1, view="Time", split_by="Subject",

cond=list(Trial=0), type='l')
Add subject smooths:
plot_smooth(m1, view="Time", plot_all="Subject",

cond=list(Trial=0), add=TRUE)

Change the colors:
plot_data(m1, view="Time", split_by="Subject",

cond=list(Trial=0), type='l', col='gray', alpha=1)

End(Not run)

plot_diff Plot difference curve based on model predictions.

Description

Plot difference curve based on model predictions.

Usage

plot_diff(model, view, comp, cond = NULL, se = 1.96, sim.ci = FALSE,
n.grid = 100, add = FALSE, rm.ranef = NULL, mark.diff = TRUE,
col.diff = "red", col = "black", eegAxis = FALSE,
transform.view = NULL, print.summary = getOption("itsadug_print"),
plot = TRUE, main = NULL, ylab = NULL, xlab = NULL, xlim = NULL,
ylim = NULL, hide.label = FALSE, ...)

Arguments

model A GAMM model, resulting from the functions gam or bam.

view Name of continuous predictor that should be plotted on the x- axis.

comp Named list with the grouping predictor (categorical variable) and the 2 levels to
calculate the difference for.

46 plot_diff

cond A named list of the values to use for the predictor terms. Variables omitted
from this list will have the closest observed value to the median for continuous
variables, or the reference level for factors.

se If less than or equal to zero then only the predicted smooth is plotted, but if
greater than zero, then the predicted values plus confidence intervals are plotted.
The value of se will be multiplied with the standard error (i.e., 1.96 results in
95%CI and 2.58). Default is set to 1.96 (95%CI).

sim.ci Logical: Using simultaneous confidence intervals or not (default set to FALSE).
The implementation of simultaneous CIs follows Gavin Simpson’s blog of De-
cember 15, 2016: http://www.fromthebottomoftheheap.net/2016/12/15/
simultaneous-interval-revisited/. This interval is calculated from simu-
lations based. Please specify a seed (e.g., set.seed(123)) for reproducable re-
sults. Note: in contrast with Gavin Simpson’s code, here the Bayesian posterior
covariance matrix of the parameters is uncertainty corrected (unconditional=TRUE)
to reflect the uncertainty on the estimation of smoothness parameters.

n.grid Number of data points sampled as predictions. Defaults to 100.
add Logical: whether or not to add the line to an existing plot. Default is FALSE.

When no plot window is available and add=TRUE, the function will generate an
error.

rm.ranef Logical: whether or not to remove random effects. Default is FALSE. Alter-
natively a string (or vector of strings) with the name of the random effect(s) to
remove.

mark.diff Logical: whether or not marking where the difference is significantly different
from 0.

col.diff Color to mark differences (red by default).
col Line color. Shading color is derived from line color.
eegAxis Logical: whether or not to reverse the y-axis, plotting negative values upwards.

Default is FALSE.
transform.view Function for transforming the values on the x-axis. Defaults to NULL (no trans-

formation). (See plot_smooth for more info.)
print.summary Logical: whether or not to print the summary. Default set to the print info

messages option (see infoMessages).
plot Logical: whether or not to plot the difference. If FALSE, then the output is

returned as a list, with the estimated difference (est) and the standard error over
the estimate (se.est) and the x-values (x). Default is TRUE.

main Text string, alternative title for plot.
ylab Text string, alternative label for y-axis.
xlab Text string, alternative label for x-axis.
xlim Range of x-axis. If not specified, the function automatically generates an appro-

priate x-axis.
ylim Range of y-axis. If not specified, the function automatically generates an appro-

priate y-axis.
hide.label Logical: whether or not to hide the label (i.e., "difference"). Default is FALSE.
... Optional arguments for emptyPlot, or plot_error.

http://www.fromthebottomoftheheap.net/2016/12/15/simultaneous-interval-revisited/
http://www.fromthebottomoftheheap.net/2016/12/15/simultaneous-interval-revisited/

plot_diff2 47

Value

If the result is not being plotted, a list is returned with the estimated difference (est) and the standard
error over the estimate (se) and the x-values (x) is returned.

Author(s)

Martijn Wieling, Jacolien van Rij

See Also

Other Testing for significance: compareML, plot_diff2, report_stats, wald_gam

Examples

data(simdat)
Not run:
m1 <- bam(Y ~ Group + te(Time, Trial, by=Group)

+ s(Time, Subject, bs='fs', m=1),
data=simdat, discrete=TRUE)

plot_diff(m1, view='Time', comp=list(Group=c("Children", "Adults")))
in this model, excluding random effects does not change the difference:
plot_diff(m1, view='Time', comp=list(Group=c("Children", "Adults")),

rm.ranef=TRUE)
simultaneous CI:
plot_diff(m1, view='Time', comp=list(Group=c("Children", "Adults")),

rm.ranef=TRUE, sim.ci=TRUE)
Reversed y-axis (for EEG data) and no shading:
plot_diff(m1, view='Time', comp=list(Group=c("Children", "Adults")),

eegAxis=TRUE, shade=FALSE)
plot_diff(m1, view='Time', comp=list(Group=c("Children", "Adults")),
density=15, angle=90, ci.lwd=3)
Retrieving plot values...
out <- plot_diff(m1, view='Time', comp=list(Group=c("Children", "Adults")),

plot=FALSE)
#... which might be used for indicating differences:
x <- find_difference(outest, outse, f=1.96, xVals=out$xVals)
add lines:
arrows(x0=x$start, x1=x$end, y0=0, y1=0,code=3, length=.1, col='red')

End(Not run)

plot_diff2 Plot difference surface based on model predictions.

Description

Plot difference surface based on model predictions.

48 plot_diff2

Usage

plot_diff2(model, view, comp, cond = NULL, color = "topo", nCol = 100,
col = NULL, add.color.legend = TRUE, se = 1.96, sim.ci = FALSE,
show.diff = FALSE, col.diff = 1, alpha.diff = 0.5, n.grid = 30,
nlevels = 10, zlim = NULL, xlim = NULL, ylim = NULL, main = NULL,
xlab = NULL, ylab = NULL, rm.ranef = NULL, transform.view = NULL,
hide.label = FALSE, dec = NULL,
print.summary = getOption("itsadug_print"), ...)

Arguments

model A GAMM model, resulting from the functions gam or bam.

view Name of continuous predictors that should be plotted on the x- and y-axes. Vec-
tor of two values.

comp Named list with the grouping predictor (categorical variable) and the 2 levels to
calculate the difference for.

cond Named list of the values to use for the other predictor terms (not in view).

color The color scheme to use for plots. One of "topo", "heat", "cm", "terrain", "gray"
or "bw". Alternatively a vector with some colors can be provided for a custom
color palette.

nCol Range of colors of background of contour plot.

col Line color.
add.color.legend

Logical: whether or not to add a color legend. Default is TRUE. If FALSE
(omitted), one could use the function gradientLegend to add a legend manually
at any position.

se If less than or equal to zero then only the predicted surface is plotted, but if
greater than zero, then the predicted values plus confidence intervals are plotted.
The value of se will be multiplied with the standard error (i.e., 1.96 results in
95%CI and 2.58). Default is set to 1.96 (95%CI).

sim.ci Logical: Using simultaneous confidence intervals or not (default set to FALSE).
The implementation of simultaneous CIs follows Gavin Simpson’s blog of De-
cember 15, 2016: http://www.fromthebottomoftheheap.net/2016/12/15/
simultaneous-interval-revisited/. This interval is calculated from simu-
lations based. Please specify a seed (e.g., set.seed(123)) for reproducable re-
sults. Note: in contrast with Gavin Simpson’s code, here the Bayesian posterior
covariance matrix of the parameters is uncertainty corrected (unconditional=TRUE)
to reflect the uncertainty on the estimation of smoothness parameters.

show.diff Logical: whether or not to indicate the regions that are significantly different
from zero. Note that these regions are just an indication and dependent on the
value of n.grid. Defaults to FALSE.

col.diff Color to shade the nonsignificant areas.

alpha.diff Level of transparency to mark the nonsignificant areas.

n.grid Resolution.

http://www.fromthebottomoftheheap.net/2016/12/15/simultaneous-interval-revisited/
http://www.fromthebottomoftheheap.net/2016/12/15/simultaneous-interval-revisited/

plot_diff2 49

nlevels Levels of contour lines.

zlim A two item array giving the lower and upper limits for the z- axis scale. NULL
to choose automatically.

xlim A two item array giving the lower and upper limits for the x- axis scale. NULL
to choose automatically.

ylim A two item array giving the lower and upper limits for the y- axis scale. NULL
to choose automatically.

main Title of plot.

xlab Label x-axis.

ylab Label y-axis.

rm.ranef Logical: whether or not to remove random effects. Default is FALSE. Alter-
natively a string (or vector of strings) with the name of the random effect(s) to
remove.

transform.view List with two functions for transforming the values on the x- and y-axis respec-
tively. If one of the axes need to be transformed, set the other to NULL (no
transformation). (See fvisgam for more info.)

hide.label Logical: whether or not to hide the label (i.e., "difference"). Default is FALSE.

dec Numeric: number of decimals for rounding the color legend. When NULL
(default), no rounding. If -1 (default), automatically determined. Note: if value
= -1 (default), rounding will be applied also when zlim is provided.

print.summary Logical: whether or not to print a summary. Default set to the print info mes-
sages option (see infoMessages).

... Optional arguments for plotsurface.

Value

If the result is not being plotted, a list is returned with the estimated difference (est) and the standard
error over the estimate (se.est) and the x-values (x) is returned.

Warning

When the argument show.diff is set to TRUE a shading area indicates where the confidence inter-
vals include zero. Or, in other words, the areas that are not significantly different from zero. Be care-
ful with the interpretation, however, as the precise shape of the surface is dependent on model con-
straints such as the value of choose.k and the smooth function used, and the size of the confidence
intervals are dependent on the model fit and model characteristics (see vignette('acf', package='itsadug')).
In addition, the value of n.grid determines the precision of the plot.

Author(s)

Martijn Wieling, reimplemented by Jacolien van Rij

See Also

Other Testing for significance: compareML, plot_diff, report_stats, wald_gam

50 plot_modelfit

Examples

data(simdat)
Not run:
m1 <- bam(Y ~ Group + te(Time, Trial, by=Group),

data=simdat)
plot_diff2(m1, view=c('Time', 'Trial'),

comp=list(Group=c("Children", "Adults")))

End(Not run)

plot_modelfit Visualization of the model fit for time series data.

Description

Plots the fitted values and the data for n trials of time series data. For example, plots n trials of the
same participant.

Usage

plot_modelfit(x, view, event = NULL, n = 3, random = TRUE, cond = NULL,
col = c(alpha(1), "red"), add = FALSE, eegAxis = FALSE, fill = FALSE,
main = NULL, xlab = NULL, ylab = NULL, ylim = NULL, h0 = 0,
v0 = NULL, transform = NULL, hide.label = FALSE, hide.legend = FALSE,
print.summary = getOption("itsadug_print"), ...)

Arguments

x A lm or gam object, produced by gam or bam, lm, glm.

view Text string containing the predictor or column in the data to be displayed on the
x-axis. Note that variables coerced to factors in the model formula won’t work
as view variables.

event column name from the data that specifies the time series from which n are being
plotted.

n Number of time series to plot. Default is 3. Set to -1 for plotting all time series
(which may take a considerable time).

random Numeric: if set to TRUE (default), n random events are selected to plot. If set
to FALSE, the first n events are selected to plot. The events could be precisely
controlled with the argument cond.

cond A named list of the values to use for the other predictor terms (not in view) or to
select specific trials or time series to plot.

col Two value vector specifiying the colors for the data and the modelfit respectively.

add Logical: whether or not to add the lines to an existing plot, or start a new plot
(default).

plot_modelfit 51

eegAxis Logical: whether or not to reverse the y-axis, plotting the negative amplitudes
upwards as traditionally is done in EEG research. If eeg.axes is TRUE, labels
for x- and y-axis are provided, when not provided by the user. Default value is
FALSE.

fill Logical: whether or not to fill the area between the data and the fitted values
with shading. Default is FALSE.

main Changing the main title for the plot, see also title.

xlab Changing the label for the x axis, defaults to a description of x.

ylab Changing the label for the y axis, defaults to a description of y.

ylim the y limits of the plot.

h0 A vector indicating where to add solid horizontal lines for reference. By default
no values provided.

v0 A vector indicating where to add dotted vertical lines for reference. By default
no values provided.

transform Function for transforming the fitted values. Default is NULL.

hide.label Logical: whether or not to hide the label (i.e., "fitted values"). Default is FALSE.

hide.legend Logical: whether or not to hide the legend. Default is FALSE.

print.summary Logical: whether or not to print a summary. Default set to the print info mes-
sages option (see infoMessages).

... other options to pass on to lines and plot, see par

Notes

This function plots the fitted effects, including intercept and other predictors.

Author(s)

Jacolien van Rij

See Also

Other Model evaluation: check_resid, diagnostics

Examples

data(simdat)

Create grouping predictor for time series:
simdat$Event <- interaction(simdat$Subject, simdat$Trial)

model without random effects:
m1 <- bam(Y ~ te(Time, Trial),

data=simdat)
plot_modelfit(m1, view="Time", event=simdat$Event)

colorizing residuals:
plot_modelfit(m1, view="Time", event=simdat$Event, fill=TRUE)

52 plot_parametric

All trials of one subject:
Not run:
this produces error:
plot_modelfit(m1, view="Time", event=simdat$Event,

cond=list(Subject="a01"), n=-1)

End(Not run)
instead try this:
simdat$Subj <- ifelse(simdat$Subject=="a01", TRUE, FALSE)
plot_modelfit(m1, view="Time", event=simdat$Event,

cond=list(Subject=simdat$Subj), n=-1)

Not run:
Model with random intercepts for subjects:
m2 <- bam(Y ~ te(Time, Trial)+s(Subject, bs='re'),

data=simdat)
now selecting a subject works, because it is in the model:
plot_modelfit(m2, view="Time", event=simdat$Event,

cond=list(Subject="a01"), n=-1, ylim=c(-13,13))

Model with random effect and interactions:
m3 <- bam(Y ~ te(Time, Trial)+s(Time, Subject, bs='fs', m=1),

data=simdat)
plot_modelfit(m3, view="Time", event=simdat$Event,

cond=list(Subject="a01"), n=-1, ylim=c(-13,13))

End(Not run)

plot_parametric Visualization of group estimates.

Description

Plots a smooth from a gam or bam model based on predictions. In contrast with the default plot.gam,
this function plots the summed effects and optionally removes the random effects.

Usage

plot_parametric(x, pred, cond = list(), parametricOnly = FALSE,
rm.ranef = NULL, col = "black", se = 1.96,
print.summary = getOption("itsadug_print"), main = NULL, xlab = NULL,
...)

Arguments

x A gam object, produced by gam or bam.

pred A named list of the values to use for the predictor terms to plot.

plot_parametric 53

cond A named list of the values to use for the other predictor terms (not in view).
Used for choosing between smooths that share the same view predictors.

parametricOnly Logical: whether or not to cancel out all smooth terms and only use the predic-
tors in the parametric summary.

rm.ranef Logical: whether or not to remove random effects. Default is TRUE.

col The colors for the lines and the error bars of the plot.

se If less than or equal to zero then only the predicted surface is plotted, but if
greater than zero, then the predicted values plus confidence intervals are plotted.
The value of se will be multiplied with the standard error (i.e., 1.96 results in
95%CI and 2.58).

print.summary Logical: whether or not to print summary. Default set to the print info messages
option (see infoMessages).

main Changing the main title for the plot, see also title.

xlab Changing the label for the x axis, defaults to a description of x.

... other options to pass on to dotplot_error, see par

Warning

Use parametricOnly with care! When set to TRUE, all smooth predictors are set to 0. Note that
this might result in strange predictions, because a value of 0 does not always represents a realistic
situation (e.g., body temperature of 0 is highly unlikely). Note that linear slopes are not set to
zero, because they are considered as parametric terms. If cond does not specify a value for these
continuous predictors, the closes value to the mean is automatically selected.

Author(s)

Jacolien van Rij, based on a function of Fabian Tomaschek

See Also

plot.gam

Other Functions for model inspection: fvisgam, gamtabs, inspect_random, plot_data, plot_smooth,
plot_topo, pvisgam

Examples

data(simdat)
Not run:
m1 <- bam(Y ~ Group + te(Time, Trial, by=Group)

+ s(Time, Subject, bs='fs', m=1), data=simdat)
plot_parametric(m1, pred=list(Group=c('Adults', 'Children')))
Note the summary that is printed.

use rm.ranef to cancel random effects:
plot_parametric(m1, pred=list(Group=c('Adults', 'Children')),

rm.ranef = TRUE)

It is possible to get estimates that do not make sense:

54 plot_pca_surface

out <- plot_parametric(m1,
pred=list(Group=c('Adults', 'Children'), Subject=c('a01', 'a02', 'c01')))

print(out)

End(Not run)

see the vignette for examples:
vignette("overview", package="itsadug")

plot_pca_surface Visualization of the effect predictors in nonlinear interactions with
principled components.

Description

Produces perspective or contour plot views of gam model predictions of the additive effects inter-
actions. The code is based on the script for vis.gam, but allows to cancel random effects.

Usage

plot_pca_surface(x, pca.term = NULL, weights = NULL, view = NULL,
cond = list(), partial = FALSE, select = NULL, se = -1, n.grid = 30,
too.far = 0, rm.ranef = NULL, col = NA, color = "topo",
contour.col = NULL, nCol = 50, plotCI = FALSE,
add.color.legend = TRUE, plot.type = "contour", xlim = NULL,
ylim = NULL, zlim = NULL, print.summary = getOption("itsadug_print"),
transform = NULL, transform.view = NULL, hide.label = FALSE,
dec = NULL, ...)

Arguments

x A gam object, produced by gam or bam.

pca.term Text string, name of model predictor that represents a principle component.

weights Named list with the predictors that are combined in the PC and their weights.
See examples.

view A two-value vector containing the names of the two terms to plot. The two
terms should be part of the PC. Note that variables coerced to factors in the
model formula won’t work as view variables.

cond A named list of the values to use for the other predictor terms (not in view).
Used for choosing between smooths that share the same view predictors.

partial Logical value: whether or not to plot the partial effect (TRUE) or the summed
effect (FALSE, default).

select Numeric value, model term. In case partial=TRUE a model term needs to be
selected.

plot_pca_surface 55

se If less than or equal to zero then only the predicted surface is plotted, but if
greater than zero, then 3 surfaces are plotted, one at the predicted values minus
se standard errors, one at the predicted values and one at the predicted values
plus se standard errors.

n.grid The number of grid nodes in each direction used for calculating the plotted sur-
face.

too.far Plot grid nodes that are too far from the points defined by the variables given in
view can be excluded from the plot. too.far determines what is too far. The grid
is scaled into the unit square along with the view variables and then grid nodes
more than too.far from the predictor variables are excluded.

rm.ranef Logical: whether or not to remove random effects. Default is TRUE.

col The colors for the facets of the plot.

color The color scheme to use for plots. One of "topo", "heat", "cm", "terrain", "gray"
or "bw".

contour.col sets the color of contours when using plot.

nCol The number of colors to use in color schemes.

plotCI Logical: whether or not to plot the confidence intervals. The value of se deter-
mines the size of the CI.

add.color.legend

Logical: whether or not to add a color legend. Default is TRUE. If FALSE
(omitted), one could use the function gradientLegend to add a legend manually
at any position.

plot.type one of "contour" or "persp" (default is "contour").

xlim A two item array giving the lower and upper limits for the x- axis scale. NULL
to choose automatically.

ylim A two item array giving the lower and upper limits for the y- axis scale. NULL
to choose automatically.

zlim A two item array giving the lower and upper limits for the z- axis scale. NULL
to choose automatically.

print.summary Logical: whether or not to print a summary. Default set to the print info mes-
sages option (see infoMessages).

transform Function for transforming the fitted values. Default is NULL.

transform.view List with two functions for transforming the values on the x- and y-axis respec-
tively. If one of the axes need to be transformed, set the other to NULL (no
transformation). See examples below.

hide.label Logical: whether or not to hide the label (i.e., "fitted values"). Default is FALSE.

dec Numeric: number of decimals for rounding the color legend. When NULL,
no rounding (default). If -1, automatically determined. Note: if value = -1,
rounding will be applied also when zlim is provided.

... other options to pass on to persp, image or contour. In particular ticktype="detailed"
will add proper axes labeling to the plots.

56 plot_smooth

Author(s)

Jacolien van Rij data(simdat) # add hypothetical correlated term: simdat$predictor <- (simdat$Trial+10)^.75
+ rnorm(nrow(simdat)) # principal components analysis: pca <- prcomp(simdat[, c("Trial", "pre-
dictor")]) # only first PC term contributes: summary(pca) # get rotation (weights of predictors in
PC): pcar <- pca$rotation # add PC1 to data: simdat$PC1 <- pca$x[,1]

model: m1 <- bam(Y ~ Group + te(Time, PC1, by=Group) + s(Time, Subject, bs=’fs’, m=1, k=5),
data=simdat) # inspect surface: fvisgam(m1, view=c("Time", "PC1"), cond=list(Group="Children"),
rm.ranef=TRUE) # how does Trial contribute? plot_pca_surface(m1, pca.term="PC1", weights=pcar[,"PC1"],
view=c("Time", "Trial"), cond=list(Group="Children"),rm.ranef=TRUE) # Note that the range of
Trial is estimated based on the values of PC1. # A better solution is to specify the range: plot_pca_surface(m1,
pca.term="PC1", weights=pcar[,"PC1"], view=list(Time=range(simdat$Time), Trial=range(simdat$Trial)),
cond=list(Group="Children"),rm.ranef=TRUE)

Partial effects: pvisgam(m1, view=c("Time", "PC1"), cond=list(Group="Children"), select=1,
rm.ranef=TRUE) # PCA: plot_pca_surface(m1, pca.term="PC1", weights=pcar[,"PC1"], partial=TRUE,
select=1, view=list(Time=range(simdat$Time), Trial=range(simdat$Trial)), cond=list(Group="Children"))

See Also

fvisgam, pvisgam

Other Functions for PCA interpretation: get_pca_predictions

plot_smooth Visualization of smooths.

Description

Plots a smooth from a gam or bam model based on predictions. In contrast with the default plot.gam,
this function plots the summed effects and optionally removes the random effects.

Usage

plot_smooth(x, view = NULL, cond = list(), plot_all = NULL,
rm.ranef = NULL, n.grid = 30, rug = NULL, add = FALSE, se = 1.96,
sim.ci = FALSE, shade = TRUE, eegAxis = FALSE, col = NULL,
lwd = NULL, lty = NULL, print.summary = getOption("itsadug_print"),
main = NULL, xlab = NULL, ylab = NULL, xlim = NULL, ylim = NULL,
h0 = 0, v0 = NULL, transform = NULL, transform.view = NULL,
legend_plot_all = NULL, hide.label = FALSE, ...)

Arguments

x A gam object, produced by gam or bam.

view Text string containing the name of the smooth to be displayed. Note that vari-
ables coerced to factors in the model formula won’t work as view variables.

cond A named list of the values to use for the other predictor terms (not in view).
Used for choosing between smooths that share the same view predictors.

plot_smooth 57

plot_all A vector with a name / names of model predictors, for which all levels should
be plotted.

rm.ranef Logical: whether or not to remove random effects. Default is TRUE.

n.grid The number of grid nodes in each direction used for calculating the plotted sur-
face.

rug Logical: when TRUE then the covariate to which the plot applies is displayed
as a rug plot at the foot of each plot. By default set to NULL, which sets rug
to TRUE when the dataset size is <= 10000 and FALSE otherwise. Setting to
FALSE will speed up plotting for large datasets.

add Logical: whether or not to add the lines to an existing plot, or start a new plot
(default).

se If less than or equal to zero then only the predicted surface is plotted, but if
greater than zero, then the predicted values plus confidence intervals are plotted.
The value of se will be multiplied with the standard error (i.e., 1.96 results in
95%CI and 2.58). Default is set to 1.96 (95%CI).

sim.ci Logical: Using simultaneous confidence intervals or not (default set to FALSE).
The implementation of simultaneous CIs follows Gavin Simpson’s blog of De-
cember 15, 2016: http://www.fromthebottomoftheheap.net/2016/12/15/
simultaneous-interval-revisited/. This interval is calculated from simu-
lations based. Please specify a seed (e.g., set.seed(123)) for reproducable re-
sults. Note: in contrast with Gavin Simpson’s code, here the Bayesian posterior
covariance matrix of the parameters is uncertainty corrected (unconditional=TRUE)
to reflect the uncertainty on the estimation of smoothness parameters.

shade Logical: Set to TRUE to produce shaded regions as confidence bands for smooths
(not avaliable for parametric terms, which are plotted using termplot).

eegAxis Logical: whether or not to reverse the y-axis, plotting the negative amplitudes
upwards as traditionally is done in EEG research. If eeg.axes is TRUE, labels
for x- and y-axis are provided, when not provided by the user. Default value is
FALSE.

col The colors for the lines and the error bars of the plot.

lwd The line width for the lines of the plot.

lty The line type for the lines of the plot.

print.summary Logical: whether or not to print summary. Default set to the print info messages
option (see infoMessages).

main Changing the main title for the plot, see also title.

xlab Changing the label for the x axis, defaults to a description of x.

ylab Changing the label for the y axis, defaults to a description of y.

xlim the x limits of the plot.

ylim the y limits of the plot.

h0 A vector indicating where to add solid horizontal lines for reference. By default
no values provided.

v0 A vector indicating where to add dotted vertical lines for reference. By default
no values provided.

http://www.fromthebottomoftheheap.net/2016/12/15/simultaneous-interval-revisited/
http://www.fromthebottomoftheheap.net/2016/12/15/simultaneous-interval-revisited/

58 plot_smooth

transform Function for transforming the fitted values. Default is NULL.

transform.view Function for transforming the values on the x-axis. Defaults to NULL (no trans-
formation).

legend_plot_all

Legend location. This could be a keyword from the list "bottomright", "bottom",
"bottomleft", "left", "topleft", "top", "topright", "right" and "center", or a list
with x and y coordinate (e.g., list(x=0,y=0)).

hide.label Logical: whether or not to hide the label (i.e., "fitted values"). Default is FALSE.

... other options to pass on to lines and plot, see par

Notes

This function plots the summed effects, including intercept and other predictors. For plotting partial
effects, see the function plot.gam, or see the examples with get_modelterm for more flexibility
(e.g., plotting using the lattice package or ggplots).

Author(s)

Jacolien van Rij and Martijn Wieling.

See Also

plot.gam, plot_diff

Other Functions for model inspection: fvisgam, gamtabs, inspect_random, plot_data, plot_parametric,
plot_topo, pvisgam

Examples

data(simdat)

Not run:
Model with random effect and interactions:
m1 <- bam(Y ~ te(Time, Trial)+s(Time, Subject, bs='fs', m=1),

data=simdat, discrete=TRUE)

Default plot produces only surface of Time x Trial:
plot(m1, select=1)
Only the Time component:
plot_smooth(m1, view="Time")
Note the summary that is printed.

without random effects:
plot_smooth(m1, view="Time", rm.ranef=TRUE)

Plot summed effects:
dev.new(width=8, height=4) # use x11(,8,4) on Linux
par(mfrow=c(1,2))
fvisgam(m1, view=c("Time", "Trial"),

plot.type='contour', color='topo', main='interaction',
rm.ranef=TRUE)

plot_smooth 59

arrows(x0=0, x1=2200, y0=-5, y1=-5, col='red',
code=2, length=.1, lwd=2, xpd=TRUE)

plot_smooth(m1, view='Time', cond=list(Trial=-5),
main='Trial=-5', rm.ranef=TRUE)

Model with random effect and interactions:
m2 <- bam(Y ~ Group + s(Time, by=Group)

+s(Time, Subject, bs='fs', m=1),
data=simdat, discrete=TRUE)

Plot all levels of a predictor:
plot_smooth(m2, view='Time', plot_all="Group",

rm.ranef=TRUE)
It also possible to combine predictors in plot_all.
Note: this is not a meaningfull plot, because Subjects
fall in only one group. Just for illustration purposes!
plot_smooth(m2, view='Time', plot_all=c("Group", "Subject"))
Clearly visible difference in confidence interval, because
a01 does not occur in Group "Children":
(Note that this plot generates warning)
plot_smooth(m2, view='Time', plot_all=c("Group", "Subject"), cond=list(Subject="a01"))

Using sim.ci: simultaneous CI instead of pointwise CI
dev.new(width=8, height=4) # use x11(,8,4) on Linux
par(mfrow=c(1,2))
plot_smooth(m2, view='Time', plot_all="Group", rm.ranef=TRUE)
plot_smooth(m2, view='Time', rm.ranef=TRUE, plot_all="Group", sim.ci=TRUE,

add=TRUE, shade=FALSE, xpd=TRUE)
plot_smooth(m2, view='Time', rm.ranef=TRUE, sim.ci=TRUE, col='red')

Using transform
Plot log-transformed dependent predictor on original scale:
plot_smooth(m1, view="Time", rm.ranef=TRUE, transform=exp)

Notes on transform.view:
This will generate an error, because x-values <= 0 will result in NaN:
plot_smooth(m1, view="Time", rm.ranef=TRUE, transform.view=log)
adjusting the x-axis helps:
plot_smooth(m1, view="Time", rm.ranef=TRUE, transform.view=log,

xlim=c(1,2000))

End(Not run)

and for a quick overview of plotfunctions:
vignette("overview", package="itsadug")

60 plot_topo

plot_topo Visualization of EEG topo maps.

Description

Visualization of EEG topo maps.

Usage

plot_topo(model, view, el.pos = NULL, fun = "fvisgam",
add.color.legend = TRUE, size = 5, n.grid = 100, col = 1, pch = 21,
bg = alpha(1), color = "topo", xlab = "", ylab = "",
setmargins = TRUE, ...)

Arguments

model A gam object, produced by gam or bam.

view A two-value vector containing the names of the two main effect terms to be
displayed on the x and y dimensions of the plot. Note that variables coerced to
factors in the model formula won’t work as view variables.

el.pos A list with X and Y positions and Electrodes, which are used for fitting the
model.

fun Text string, "fvisgam", "pvisgam", or "plot_diff2" signalling which function to
use for plotting.

add.color.legend

Logical: whether or not to add a color legend. Default is TRUE. If FALSE
(omitted), one could use the function gradientLegend to add a legend manually
at any position.

size Size in inch of plot window.

n.grid The number of grid nodes in each direction used for calculating the plotted sur-
face.

col The colors for the background of the plot.

pch The type of points as indications for the electrode positions. The value NA will
suppress the plotting of electrode positions.

bg The background color of the points.

color The color scheme to use for plots. One of "topo", "heat", "cm", "terrain", "gray"
or "bw".

xlab Label x-axis. Default excluded.

ylab Label y-axis. Default excluded.

setmargins Logical: whether or not to automatically set the margins. By default set to
TRUE. If set to false, the size can

... other options to pass on to fvisgam, pvisgam, or plot_diff2.

plot_topo 61

Notes

X-positions of electrodes should have lower values for electrodes on the left hemisphere (e.g. T7)
than for electrodes on the right hemisphere. Y-positions of electrodes should have lower values for
electrodes at the back of the head than for the frontal electrodes.

Author(s)

Jacolien van Rij

See Also

Other Functions for model inspection: fvisgam, gamtabs, inspect_random, plot_data, plot_parametric,
plot_smooth, pvisgam

Examples

data(eeg)

Not run:
simple GAMM model:
m1 <- gam(Ampl ~ te(Time, X, Y, k=c(10,5,5),

d=c(1,2)), data=eeg)

topo plot, by default uses fvisgam
and automatically selects a timestamp (270ms):
plot_topo(m1, view=c("X", "Y"))
or:
plot_topo(m1, view=c("X", "Y"), setmargins=FALSE, size=1)

add electrodes:
electrodes <- eeg[,c('X','Y','Electrode')]
electrodes <- as.list(electrodes[!duplicated(electrodes),])
plot_topo(m1, view=c("X", "Y"), el.pos=electrodes)

some formatting options:
plot_topo(m1, view=c("X", "Y"), el.pos=electrodes,

main="Topo plot", zlim=c(-.5,.5),
pch=15, col='red', color='terrain')

plotting more than one panel only works if
each figure region is a square:
dev.new(width=12, height=4)
par(mfrow=c(1,3))

for(i in c(100, 200, 300)){
make sure to keep zlim constant:
plot_topo(m1, view=c('X', 'Y'), zlim=c(-.5, .5),
cond=list(Time=i), el.pos=electrodes,
main=i)

}

62 print_summary

dev.new(width=12, height=4)
par(mfrow=c(1,3), cex=1.1)
The three different functions for plotting:
plot_topo(m1, view=c('X', 'Y'), zlim=c(-.5, .5),

el.pos=electrodes,
fun='fvisgam', main='fvisgam',
cond=list(Time=200), rm.ranef=TRUE)

plot_topo(m1, view=c('X', 'Y'), zlim=c(-.5, .5),
el.pos=electrodes, select=1,
fun='pvisgam', main='pvisgam',
cond=list(Time=200))

plot_topo(m1, view=c('X', 'Y'), zlim=c(-.5, .5),
el.pos=electrodes, comp=list(Time=c(300,100)),
fun='plot_diff2', main='plot_diff2',
plotCI=TRUE)

Add labels:
plot_topo(m1, view=c('X', 'Y'), zlim=c(-.5, .5),

fun='fvisgam', main='',
cond=list(Time=200), add.color.legend=FALSE)

text(electrodes[['X']], electrodes[['Y']],
labels=electrodes[['Electrode']], cex=.75,
xpd=TRUE)

End(Not run)

print_summary Print a named list of strings, output from summary_data.

Description

Print a named list of strings, output from summary_data.

Usage

print_summary(sumlist, title = NULL)

Arguments

sumlist Named list, output of summary_data.
title Optional, text string that will be printed as title.

Author(s)

Jacolien van Rij

See Also

Other Utility functions: convertNonAlphanumeric, diff_terms, find_difference, missing_est,
summary_data, timeBins

pvisgam 63

pvisgam Visualization of partial nonlinear interactions.

Description

Produces perspective or contour plot views of gam model predictions of the partial effects interac-
tions. Combines the function plot.gam for interaction surfaces with the function vis.gam. Similar
to plot.gam, pvisgam plots the partial interaction surface, without including values for other pre-
dictors that are not being shown. Similar to vis.gam the user can set the two predictors to be viewed,
and colors are added behind the contours to facilitate interpretation. In contrast to plot.gam, this
function allows to plotting of interactions with three of more continuous predictors by breaking it
down in two-dimensional surfaces. The code is derivated from the script for vis.gam.

Usage

pvisgam(x, view = NULL, select = NULL, cond = list(), n.grid = 30,
too.far = 0, col = NA, color = "topo", contour.col = NULL,
add.color.legend = TRUE, se = -1, plot.type = "contour", zlim = NULL,
xlim = NULL, ylim = NULL, nCol = 50, labcex = 0.6,
hide.label = FALSE, print.summary = getOption("itsadug_print"),
show.diff = FALSE, col.diff = 1, alpha.diff = 0.5, dec = NULL, ...)

Arguments

x A gam object, produced by gam or bam.

view A two-value vector containing the names of the two main effect terms to be
displayed on the x and y dimensions of the plot. Note that variables coerced to
factors in the model formula won’t work as view variables.

select A number, selecting a single model term for printing. e.g. if you want the plot
for the second smooth term set select=2.

cond A named list of the values to use for the other predictor terms (not in view).
Used for choosing between smooths that share the same view predictors.

n.grid The number of grid nodes in each direction used for calculating the plotted sur-
face.

too.far Plot grid nodes that are too far from the points defined by the variables given in
view can be excluded from the plot. too.far determines what is too far. The grid
is scaled into the unit square along with the view variables and then grid nodes
more than too.far from the predictor variables are excluded.

col The colors for the facets of the plot.

color The color scheme to use for plots. One of "topo", "heat", "cm", "terrain", "gray"
or "bw". Alternatively a vector with some colors can be provided for a custom
color palette (see examples).

contour.col sets the color of contours when using plot.

64 pvisgam

add.color.legend

Logical: whether or not to add a color legend. Default is TRUE. If FALSE
(omitted), one could use the function gradientLegend to add a legend manually
at any position.

se If less than or equal to zero then only the predicted surface is plotted, but if
greater than zero, then 3 surfaces are plotted, one at the predicted values minus
se standard errors, one at the predicted values and one at the predicted values
plus se standard errors.

plot.type one of "contour" or "persp" (default is "contour").
zlim A two item array giving the lower and upper limits for the z- axis scale. NULL

to choose automatically.
xlim A two item array giving the lower and upper limits for the x- axis scale. NULL

to choose automatically.
ylim A two item array giving the lower and upper limits for the y- axis scale. NULL

to choose automatically.
nCol The number of colors to use in color schemes.
labcex Size of the contour labels.
hide.label Logical: whether or not to hide the label (i.e., "partial effect"). Default is

FALSE.
print.summary Logical: whether or not to print summary. Default set to the print info messages

option (see infoMessages).
show.diff Logical: whether or not to indicate the regions that are significantly different

from zero. Note that these regions are just an indication and dependent on the
value of n.grid. Defaults to FALSE.

col.diff Color to shade the nonsignificant areas.
alpha.diff Level of transparency to mark the nonsignificant areas.
dec Numeric: number of decimals for rounding the color legend. When NULL

(default), no rounding. If -1 the values are automatically determined. Note: if
value = -1 (default), rounding will be applied also when zlim is provided.

... other options to pass on to persp, image or contour. In particular ticktype="detailed"
will add proper axes labeling to the plots.

Warnings

• In contrast to vis.gam, do not specify other predictors in cond that are not to be plotted.
• When the argument show.diff is set to TRUE a shading area indicates where the confidence

intervals include zero. Or, in other words, the areas that are not significantly different from
zero. Be careful with the interpretation, however, as the precise shape of the surface is depen-
dent on model constraints such as the value of choose.k and the smooth function used, and
the size of the confidence intervals are dependent on the model fit and model characteristics
(see vignette('acf', package='itsadug')). In addition, the value of n.grid determines
the precision of the plot.

Author(s)

Jacolien van Rij. Modification of vis.gam from package mgcv of Simon N. Wood.

report_stats 65

See Also

vis.gam, plot.gam

Other Functions for model inspection: fvisgam, gamtabs, inspect_random, plot_data, plot_parametric,
plot_smooth, plot_topo

Examples

data(simdat)

Not run:
Model with random effect and interactions:
m1 <- bam(Y ~ te(Time, Trial)+s(Time, Subject, bs='fs', m=1),

data=simdat, discrete=TRUE)

Plot summed effects:
vis.gam(m1, view=c("Time", "Trial"), plot.type='contour', color='topo')
Partial effect of interaction:
pvisgam(m1, view=c("Time", "Trial"), select=1)
Same:
plot(m1, select=1, scheme=2)
plot(m1, select=1)
Alternatives:
pvisgam(m1, view=c("Trial", "Time"), select=1)
pvisgam(m1, view=c("Trial", "Time"), select=1, zlim=c(-20,20))
pvisgam(m1, view=c("Trial", "Time"), select=1, zlim=c(-20,20),

color="terrain")
pvisgam(m1, view=c("Trial", "Time"), select=1, zlim=c(-20,20),

color=c("blue", "white", "red"))

Notes on the color legend:
Labels can easily fall off the plot, therefore the numbers are
automatically rounded.
To undo the rounding, set dec=NULL:
pvisgam(m1, view=c("Time", "Trial"), dec=NULL)
For custom rounding, set dec to a value:
pvisgam(m1, view=c("Time", "Trial"), dec=3)
To increase the left marging of the plot (so that the numbers fit):
oldmar <- par()$mar
par(mar=oldmar + c(0,0,0,1)) # add one line to the right
pvisgam(m1, view=c("Time", "Trial"), dec=3)
par(mar=oldmar) # restore to default settings

End(Not run)
see the vignette for examples:
vignette("overview", package="itsadug")

report_stats Returns a description of the statistics of the smooth terms for report-
ing.

66 resid_gam

Description

Returns a description of the statistics of the smooth terms for reporting.

Usage

report_stats(model, summary = NULL,
print.summary = getOption("itsadug_print"))

Arguments

model A gam or bam object, produced by gam or bam.

summary Optionally include the summary of the model when available, which may speed
up the process for large models.

print.summary Logical: whether or not to print the output. Default set to the print info messages
option (see infoMessages).

Author(s)

Jacolien van Rij

See Also

Other Testing for significance: compareML, plot_diff2, plot_diff, wald_gam

Examples

data(simdat)

model without random effects:
m1 <- bam(Y ~ te(Time, Trial), data=simdat)
report_stats(m1)
save report for later use:
report <- report_stats(m1, print.summary=FALSE)
report[3,2]

resid_gam Extract model residuals and remove the autocorrelation accounted for.

Description

Extract model residuals and remove the autocorrelation accounted for.

Usage

resid_gam(model, AR_start = NULL, incl_na = FALSE, return_all = FALSE)

resid_gam 67

Arguments

model A GAMM model build with gam or bam.

AR_start Optional: vector with logicals, indicating the start of events. Default is NULL,
because generally the function can retrieve all necessary information from the
model.

incl_na Whether or not to include missing values (NA)when returning the residuals.
Defaults to FALSE.

return_all Default is FALSE. Returns a list with normal residuals, corrected residuals, and
the value of rho.

Value

Corrected residuals.

Author(s)

Jacolien van Rij

See Also

resid, missing_est

Other functions for model criticism: acf_n_plots, acf_plot, acf_resid, derive_timeseries,
start_event, start_value_rho

Examples

data(simdat)

Not run:
Add start event column:
simdat <- start_event(simdat, event=c("Subject", "Trial"))
head(simdat)
bam model with AR1 model (toy example, not serious model):
m1 <- bam(Y ~ Group + te(Time, Trial, by=Group),

data=simdat, rho=.5, AR.start=simdat$start.event)
Standard residuals:
res1 <- resid(m1)
Corrected residuals:
res2 <- resid_gam(m1)

Result in different ACF's:
par(mfrow=c(1,2))
acf(res1)
acf(res2)

Without AR.start included in the model:
m2 <- bam(Y ~ Group + te(Time, Trial, by=Group),

data=simdat)
acf(resid_gam(m2), plot=F)
Same as resid(m2)!

68 rug_model

acf(resid(m2), plot=F)

MISSING VALUES
Note that corrected residuals cannot be calculated for the last
point of each time series. These missing values are by default
excluded.

Therefore, this will result in an error...
simdat$res <- resid_gam(m1)
... and this will give an error too:
simdat$res <- NA
simdat[!is.na(simdat$Y),] <- resid_gam(m1)
... but this works:
simdat$res <- resid_gam(m1, incl_na=TRUE)

The parameter incl_na will NOT add missing values
for missing values in the *data*.
Example:
simdat[sample(nrow(simdat), 15),]$Y <- NA
Without AR.start included in the model:
m2 <- bam(Y ~ Group + te(Time, Trial, by=Group),

data=simdat)
This works:
acf(resid_gam(m2))
...but this results in error, although no AR1 model specified:
simdat$res <- resid_gam(m2)
... for this type of missing data, this does not solve the problem:
simdat$res <- resid_gam(m2, incl_na=TRUE)
instead try this:
simdat$res <- NA
simdat[-missing_est(m2),]$res <- resid_gam(m2)

With AR.start included in the model:
m1 <- bam(Y ~ Group + te(Time, Trial, by=Group),

data=simdat, rho=.5, AR.start=simdat$start.event)
This works (incl_na=TRUE):
simdat$res <- NA
simdat[-missing_est(m2),]$res <- resid_gam(m2, incl_na=TRUE)

End(Not run)

rug_model Add rug to plot, based on model.

Description

Add rug based on model data.

rug_model 69

Usage

rug_model(model, view, cond = NULL, data.rows = NULL, rm.ranef = NULL,
print.summary = getOption("itsadug_print"), ...)

Arguments

model gam or bam object.

view Text string containing the name of the smooth to be displayed. Note that vari-
ables coerced to factors in the model formula won’t work as view variables.

cond A named list of the values to use for the other predictor terms (not in view).
Used for choosing between smooths that share the same view predictors.

data.rows Vector of numbers (indices of rows in data) or vector of logical vales (same
length as rows in data) for selecting specific data points.

rm.ranef Logical: whether or not to remove random effects. Default is TRUE.

print.summary Logical: whether or not to print information messages. Default set to the print
info messages option (see infoMessages).

... Optional graphical parameters (see rug).

Author(s)

Jacolien van Rij

See Also

Other Functions for plotting: fadeRug

Examples

plot(cars$speed, cars$dist, pch=16, col=alpha(1))
lm1 <- lm(dist ~ speed, dat=cars)
abline(lm1, col='red', lwd=2)
rug_model(lm1, view="speed")
rug_model(lm1, view="dist", side=2)

Not run:
library(itsadug)
data(simdat)
m1 <- bam(Y ~ Group + te(Time, Trial, by=Group), data=simdat)
plot:
fvisgam(m1, view=c("Time", "Trial"), cond=list(Group="Adults"))
rug_model(m1, view="Time", cond=list(Group="Adults"))
rug_model(m1, view="Trial", cond=list(Group="Adults"), side=2)

End(Not run)

70 start_event

simdat Simulated time series data.

Description

A dataset containing the sine wave data with random noise added.

Usage

simdat

Format

A data frame with 75600 rows and 6 variables:

Group Age group of participants: Adults or Children.

Time Time, time measure from start of each time series.

Trial Trial in the experiment, centered around zero.

Condition Continuous variable, ranging from -1 to 4. For example, stimulus onset asynchrony.

Subject Code for individual participants.

Y Time series measure. Similar to pupil size, sensor position, or voltage.

Author(s)

Jacolien van Rij

start_event Determine the starting point for each time series.

Description

Determine the starting point for each time series.

Usage

start_event(data, column = "Time", event = "Event", label = "start.event",
label.event = NULL, order = TRUE)

start_event 71

Arguments

data A data frame.

column Test string, name of the column that describes the order withing the time series.
Default is "Time".

event A text string or vector indicating the columns that define the unique time series.
Default is "Event".

label The name of the new column with the start point of each time series. Default is
"start.event".

label.event In case event is not a single column, providing a text string will add a column
with this name that defines unique time series. Default is NULL (no new column
for time series is created).

order Logical: whether or not to order each time series. Default is TRUE, maybe set
to FALSE with large data frames that are already ordered.

Value

Data frame.

Note

When working with large data frames, it may be worth installing the package data.table. Al-
though not required for the package, the function start_event will check if data.table is avail-
able and will use it’s much faster function rbindlist. This speeds up the function start_event.
Run the command install.packages("data.table", repos="http://cran.us.r-project.org")
in the command window for installing the package data.table.

Author(s)

Jacolien van Rij

See Also

Other functions for model criticism: acf_n_plots, acf_plot, acf_resid, derive_timeseries,
resid_gam, start_value_rho

Examples

data(simdat)
head(simdat)
test <- start_event(simdat, event=c("Subject", "Trial"), label.event="Event")
head(test)

72 start_value_rho

start_value_rho Extract the Lag 1 value from the ACF of the residuals of a gam, bam,
lm, lmer model, ...

Description

Wrapper around acf_plot for regression models.

Usage

start_value_rho(model, plot = FALSE, lag = 2, main = NULL, ...)

Arguments

model A regression model generated by lm, glm, lmer, glmer, gam, or bam. (See ex-
amples for how to avoid errors due to missing values.)

plot Logical: whether or not to produce plot. Default is TRUE.

lag Numeric value, indicating the lag. Default is 2.

main Text string, title of ACF plot.

... Other arguments for plotting the acf, see acf.

Value

The autocorrelation value of data points with the data points at lag lag.

Author(s)

Jacolien van Rij

See Also

Use acf for the original ACF function, and acf_plot, or acf_resid.

Other functions for model criticism: acf_n_plots, acf_plot, acf_resid, derive_timeseries,
resid_gam, start_event

Examples

data(simdat)

add missing values to simdat:
simdat[sample(nrow(simdat), 15),]$Y <- NA

Not run:
Run GAMM model:
m1 <- bam(Y ~ te(Time, Trial)+s(Subject, bs='re'), data=simdat)

No plotting:

summary_data 73

start_value_rho(m1)
With plot:
rhom1 <- start_value_rho(m1, plot=TRUE)

End(Not run)
see the vignette for examples:
vignette("acf", package="itsadug")

summary_data Print a descriptive summary of a data frame.

Description

The function prints a summary of the data. Similar to the function str, but easier readable.

Usage

summary_data(data, print = TRUE, n = 10)

Arguments

data A data frame.

print Logical: whether or not to print the summary.

n Number: maximum number of values being mentioned in the summary. If
NULL all values are being mentioned. Defaults to 10.

Value

Optionally returns a named list with info.

Author(s)

Jacolien van Rij

See Also

Other Utility functions: convertNonAlphanumeric, diff_terms, find_difference, missing_est,
print_summary, timeBins

Examples

data(simdat)
summary_data(simdat)

74 timeBins

timeBins Label timestamps as timebins of a given binsize.

Description

Function for calculating timebins.

Usage

timeBins(x, binsize, pos = 0.5)

Arguments

x Numerical vector with timestamp information.

binsize Size of the timebin, measured in the same units (often ms) as x.

pos Numerical value that determines the label of the binsize as proportion of the
binsize. A value of 0 will provide the minimum timestamp within the bin as
label, a value of 1 will provide the maximum value within the bin as label.
Defaults to 0.5, the center of the bin.

Value

Anumerical vector of the same size as x with timebin information.

Author(s)

Jacolien van Rij

See Also

Other Utility functions: convertNonAlphanumeric, diff_terms, find_difference, missing_est,
print_summary, summary_data

Examples

data(simdat)
grouping Time values in bins:
simdat$Timebin <- timeBins(simdat$Time, 200)
head(simdat)

different labels:
simdat$Timebin2 <- timeBins(simdat$Time, 200, pos=0)
head(simdat)

wald_gam 75

wald_gam Function for post-hoc comparison of the contrasts in a single GAMM
model.

Description

Function for post-hoc comparison of the intercept differences for different factors in a single GAMM
model.

Usage

wald_gam(model, comp = NULL, select = NULL, t.test = FALSE,
null.hypothesis = 0, summ = NULL, signif.stars = TRUE,
print.output = getOption("itsadug_print"))

Arguments

model Model, currently only implemented for models generated with bam or gam.

comp Named list with predictors (specified as names) and their levels to compare.
Defaults to NULL, which returns all comparisons, unless select is specified.

select Contrast matrix for manually specified contrasts. Alternatively, a vector or list
could be provided as input. See examples below.

t.test Logical default = FALSE), whether or not to return the t-test scores instead
of the Wald test. Only implemented for Gaussian models. This option is not
implemented for use with select.

null.hypothesis

Numeric, value of null hypothesis. Defaults to 0 and is generally not changed.

summ Optional summary object. Defaults to NULL. For very large GAMM models it
takes a long time to retrieve the summary. In these cases the summary could be
provided to reduce processing time. However, it is generally recommended not
to specifify a summary object, to reduce the chance of mismatch errors.

signif.stars Logical (default = TRUE). Whether or not to display stars indicating the level
of significance on 95% confidence level.

print.output Logical: whether or not to print the output. By default controlled globally in
the package options: If the function infoMessages is set to TRUE, the output
will be automatically printed. Could be also set by explicitly providing TRUE
or FALSE. See examples.

Value

Optionally returns a data frame with test statistics.

76 wald_gam

Warning

This function is intended for testing intercept differences only. This function compares purely the
parametric components, without considering any interactions with smooth terms. So this could be
considered as a partial effect comparison. For comparing the averages of conditions use get_difference,
which outputs the difference in summed effects for different factor levels.

Author(s)

Petar Milin and Jacolien van Rij.

See Also

plot_parametric, plot_diff, plot_diff2

Other Testing for significance: compareML, plot_diff2, plot_diff, report_stats

Examples

data(simdat)
Convert Condition to factorial predictor for illustration purposes:
simdat$Condition <- as.factor(simdat$Condition)

infoMessages("on")

Not run:
some arbitrary model:
m1 <- bam(Y ~ Condition*Group
+ s(Time, by=Condition)
+ s(Time, by=Group)
+ s(Subject, bs='re'),
data=simdat)

print summary to inspect parametric terms:
summary(m1)

return all contrasts:
wald_gam(m1)

USE OF COMP
return only contrasts for Adults:
wald_gam(m1, comp=list(Condition=levels(simdat$Condition)))
return specific contrasts:
wald_gam(m1, comp=list(Condition=c("-1", "0", "1"),

Group=c("Adults", "Children")))

USE OF SELECT
Specify contrast matrix.
Note that intercept should be 0.
Example: Compare Condition 0 with Conditions 2 and 3 for children.
Method 1: matrix or vector:
R = matrix(c(0,-2,0,1,1,0,0,0,0,0,0,0), nrow=1)
wald_gam(m1, select=R)

wald_gam 77

wald_gam(m1, select=c(0,-2,0,1,1,0,0,0,0,0,0,0))
Method 2: list
first list element are reference coefficients,
second list element are coefficients to compare
wald_gam(m1, select=list(2, c(4,5)))
Replication of contrasts given in summary:
wald_gam(m1, select=c(0,1,0,0,0,0,0,0,0,0,0,0))

USE OF T.TEST
This option is not implemented for use with select
Compare with second line of parametric summary:
wald_gam(m1, comp=list(Condition=c("-1", "0"),

Group="Children"), t.test=TRUE)
Compare with Wald test:
wald_gam(m1, comp=list(Condition=c("-1", "0"),

Group="Children"))

exclude significance stars:
wald_gam(m1, comp=list(Condition=c("-1", "0"),

Group="Children"), signif.stars=FALSE)

do not print output, but save table for later use:
test <- wald_gam(m1, comp=list(Condition=c("-1", "0"),

Group="Children"), print.output=FALSE)
test
alternative way:
infoMessages('off')
test2 <- wald_gam(m1, comp=list(Condition=c("-1", "0"),

Group="Children"))
infoMessages('on')

End(Not run)

Index

∗Topic datasets
eeg, 17
simdat, 70

acf, 4, 6, 7, 72
acf_n_plots, 3, 6, 7, 13, 67, 71, 72
acf_plot, 4, 5, 7, 13, 67, 71, 72
acf_resid, 4, 6, 7, 13, 15, 41, 67, 71, 72
AIC, 11

bam, 7, 9, 14, 21, 24, 25, 27–29, 31, 33, 35, 38,
43, 45, 48, 50, 52, 54, 56, 60, 63, 66,
67, 72, 75

check_resid, 8, 15, 41, 51
choose.k, 22, 49, 64
citation, 37
coef, 25
compareML, 10, 40, 47, 49, 66, 76
contour, 18
convertNonAlphanumeric, 12, 16, 20, 42, 62,

73, 74

derive_timeseries, 4, 6, 7, 13, 67, 71, 72
diagnostics, 9, 14, 41, 51
diff_terms, 12, 16, 20, 42, 62, 73, 74
dotplot_error, 53

eeg, 17
emptyPlot, 46
exclude.too.far, 18

fadeRug, 18, 69
find_difference, 12, 16, 19, 42, 62, 73, 74
fvisgam, 21, 25, 39, 40, 44, 49, 53, 56, 58, 60,

61, 65

gam, 7, 9, 14, 21, 24, 25, 27–29, 31, 33, 35, 38,
43, 45, 48, 50, 52, 54, 56, 60, 63, 66,
67, 72, 75

gamtabs, 23, 24, 39, 44, 53, 58, 61, 65

get_coefs, 25, 28–30, 34, 36
get_difference, 26, 26, 29, 30, 34, 36, 41, 76
get_fitted, 26, 28, 28, 30, 34, 36
get_modelterm, 26, 28, 29, 29, 34, 36, 41, 58
get_pca_predictions, 31, 56
get_predictions, 26, 28–30, 33, 36, 41
get_random, 26, 28–30, 34, 35, 41
glm, 14, 43, 50
gradientLegend, 21, 48, 55, 60, 64

image, 18
info, 36, 37
infoMessages, 3, 10, 14, 22, 27, 28, 30, 32,

34, 35, 37, 37, 38, 41, 44, 46, 49, 51,
53, 55, 57, 64, 66, 69, 75

inspect_random, 23, 25, 38, 40, 41, 44, 53,
58, 61, 65

itsadug, 40
itsadug-package (itsadug), 40

lines, 38
lm, 14, 43, 50

mgcv, 23, 24, 40, 64
missing_est, 12, 16, 20, 42, 62, 67, 73, 74

par, 3, 5, 38, 44, 51, 53, 58
pdf, 18
plot.gam, 23, 52, 53, 56, 58, 63, 65
plot_data, 23, 25, 39, 40, 43, 53, 58, 61, 65
plot_diff, 11, 40, 45, 49, 58, 66, 76
plot_diff2, 11, 40, 47, 47, 60, 66, 76
plot_error, 46
plot_modelfit, 9, 15, 41, 50
plot_parametric, 23, 25, 39, 40, 44, 52, 58,

61, 65, 76
plot_pca_surface, 32, 54
plot_smooth, 23, 25, 39, 40, 44, 46, 53, 56,

61, 65
plot_topo, 23, 25, 39, 40, 44, 53, 58, 60, 65

78

INDEX 79

plotDiff (plot_diff), 45
plotDiff2D (plot_diff2), 47
plotsurface, 49
png, 18
prcomp, 32
predict.gam, 41
print_summary, 12, 16, 20, 42, 62, 73, 74
pvisgam, 23, 25, 39, 40, 44, 53, 56, 58, 60, 61,

63

quantile, 3

R.version, 37
report_stats, 11, 47, 49, 65, 76
resid, 67
resid.gam (resid_gam), 66
resid_gam, 4, 6, 7, 13, 41, 66, 71, 72
rug, 18, 69
rug_model, 18, 68

sessionInfo, 37
simdat, 70
start_event, 4, 6, 7, 13, 41, 67, 70, 72
start_value_rho, 4, 6, 7, 13, 67, 71, 72
str, 73
summary.gam, 25
summary_data, 12, 16, 20, 42, 62, 73, 74
suppressWarnings, 11

timeBins, 12, 16, 20, 42, 62, 73, 74

vis.gam, 21, 23, 31, 54, 63–65

wald_gam, 11, 47, 49, 66, 75

x11, 18

	acf_n_plots
	acf_plot
	acf_resid
	check_resid
	compareML
	convertNonAlphanumeric
	derive_timeseries
	diagnostics
	diff_terms
	eeg
	fadeRug
	find_difference
	fvisgam
	gamtabs
	get_coefs
	get_difference
	get_fitted
	get_modelterm
	get_pca_predictions
	get_predictions
	get_random
	info
	infoMessages
	inspect_random
	itsadug
	missing_est
	plot_data
	plot_diff
	plot_diff2
	plot_modelfit
	plot_parametric
	plot_pca_surface
	plot_smooth
	plot_topo
	print_summary
	pvisgam
	report_stats
	resid_gam
	rug_model
	simdat
	start_event
	start_value_rho
	summary_data
	timeBins
	wald_gam
	Index

