Package ‘ivmodel’

February 21, 2020

Type Package

Title Statistical Inference and Sensitivity Analysis for Instrumental Variables Model

Version 1.8.1

Date 2020-02-19

Author Hyunseung Kang, Yang Jiang, Qingyuan Zhao, and Dylan Small

Maintainer Hyunseung Kang <hyunseung@stat.wisc.edu>

Imports stats,Matrix,Formula,reshape2,ggplot2

License GPL-2 | file LICENSE

LazyData true

RoxygenNote 6.0.1

NeedsCompilation no

Repository CRAN

Date/Publication 2020-02-21 00:10:02 UTC

R topics documented:

ivmodel-package .. 2
AR.power .. 5
AR.size ... 6
AR.test .. 8
ARsens.power ... 9
ARsens.size ... 10
ARsens.test ... 12
card.data .. 14
CLR ... 15
coef.ivmodel ... 16
ivmodel-package

Statistical Inference and Sensitivity Analysis for Instrumental Variables Model

Description

The package fits an instrumental variables (IV) model of the following type. Let \(Y, D, X, \) and \(Z \) represent the outcome, endogenous variable, \(p \) dimensional exogenous covariates, and \(L \) dimensional instruments, respectively; note that the intercept can be considered as a vector of ones and a part of the exogenous covariates \(X \). The package assumes the following IV model

\[
Y = X\alpha + D\beta + \epsilon, \quad E(\epsilon|X,Z) = 0
\]

It carries out several IV regressions, diagnostics, and tests associated with the parameter \(\beta \) in the IV model. Also, if there is only one instrument, the package runs a sensitivity analysis discussed in Jiang et al. (2015).

The package is robust to most data formats, including factor and character data, and can handle very large IV models efficiently using a sparse QR decomposition.

Details

Supply the outcome \(Y \), the endogenous variable \(D \), and a data frame and/or matrix of instruments \(Z \), and a data frame and/or matrix of exogenous covariates \(X \) (optional) and run \texttt{ivmodel}. Alternatively, one can supply a formula. \texttt{ivmodel} will generate all the relevant statistics for the parameter \(\beta \).

The DESCRIPTION file:

Package: ivmodel
Type: Package
ivmodel-package

Title: Statistical Inference and Sensitivity Analysis for Instrumental Variables Model
Version: 1.8.1
Date: 2020-02-19
Author: Hyunseung Kang, Yang Jiang, Qingyuan Zhao, and Dylan Small
Maintainer: Hyunseung Kang <hyunseung@stat.wisc.edu>
Description: Carries out instrumental variable estimation of causal effects, including power analysis, sensitivity analysis, and diagnostics. See Kang, Jiang, Zhao, and Small (2020) <http://pages.cs.wisc.edu/~hyunseung/> for details.
Imports: stats, Matrix, Formula, reshape2, ggplot2
License: GPL-2 | file LICENSE
LazyData: true
RoxygenNote: 6.0.1
NeedsCompilation: no
Repository: CRAN

Index of help topics:

AR.power Power of the Anderson-Rubin (1949) Test
AR.size Sample Size Calculator for the Power of the Anderson-Rubin (1949) Test
AR.test Anderson-Rubin (1949) Test
ARsens.power Power of the Anderson-Rubin (1949) Test with Sensitivity Analysis
ARsens.size Sample Size Calculator for the Power of the Anderson-Rubin (1949) Test with Sensitivity Analysis
ARsens.test Sensitivity Analysis for the Anderson-Rubin (1949) Test
CLR Conditional Likelihood Ratio Test
Fuller Fuller-k Estimator
IVpower Power calculation for IV models
IVsize Calculating minimum sample size for achieving a certain power
KClass k-Class Estimator
LIML Limited Information Maximum Likelihood Ratio (LIML) Estimator
TSLS.power Power of TSLS Estimator
TSLS.size Sample Size Calculator for the Power of Asymptotic T-test
card.data Card (1995) Data
coeff.ivmodel Coefficients of the Fitted Model in the 'ivmodel' Object
confint.ivmodel Confidence Intervals for the Fitted Model in 'ivmodel' Object
fitted.ivmodel Extract Model Fitted values in the 'ivmodel' Object
iv.diagnosis Diagnostics of instrumental variable analysis
ivmodel Fitting Instrumental Variables (IV) Models
ivmodel-package Statistical Inference and Sensitivity Analysis
ivmodel-package

for Instrumental Variables Model

ivmodelFormula Fitting Instrumental Variables (IV) Models
model.matrix.ivmodel Extract Design Matrix for 'ivmodel' Object
para Parameter Estimation from Ivmodel
residuals.ivmodel Residuals from the Fitted Model in the 'ivmodel' Object
vcov.ivmodel Calculate Variance-Covariance Matrix (i.e. Standard Error) for k-Class Estimators in the 'ivmodel' Object

Author(s)

Hyunseung Kang, Yang Jiang, Qingyuan Zhao, and Dylan Small
Maintainer: Hyunseung Kang <hyunseung@stat.wisc.edu>

References

Examples

```r
data(card.data)
# One instrument #
Y=card.data[,"lwage"]
D=card.data[,"educ"]
Z=card.data[,"nearc4"]
Xname=c("exper", "expersq", "black", "south", "smsa", "reg661",
```
AR.power

Power of the Anderson-Rubin (1949) Test

Description

AR.power computes the power of Anderson-Rubin (1949) test based on the given values of parameters.

Usage

AR.power(n, k, l, beta, gamma, Zadj_sq, sigmav, rho, alpha = 0.05)

Arguments

n Sample size.
k Number of exogenous variables.
l Number of instrumental variables.
beta True causal effect minus null hypothesis causal effect.
gamma Regression coefficient for effect of instruments on treatment.
Zadj_sq Variance of instruments after regressed on the observed variables.
sigmav Standard deviation of error from regressing treatment on instruments.
rho Correlation between u (potential outcome under control) and v (error from regressing treatment on instrument).
alpha Significance level.

Value

Power of the Anderson-Rubin test based on the given values of parameters.

Author(s)

Yang Jiang, Hyunseung Kang, and Dylan Small
References

See Also

See also ivmodel for details on the instrumental variables model.

Examples

Assume we calculate the power of AR test in a study with one IV (l=1)
and the only one exogenous variable is the intercept (k=1).

Suppose the difference between the null hypothesis and true causal effect is 1 (beta=1).
The sample size is 250 (n=250), the IV variance is .25 (Zadj_sq =.25).
The standard deviation of potential outcome is 1(sigmu= 1).
The coefficient of regressing IV upon exposure is .5 (gamma= .5).
The correlation between u and v is assumed to be .5 (rho=.5).
The standard deviation of first stage error is .4 (sigmav=.4).
The significance level for the study is alpha = .05.

power of Anderson-Rubin test:
AR.power(n=250, k=1, l=1, beta=1, gamma=.5, Zadj_sq=.25,
 sigmu=1, sigmav=.4, rho=.5, alpha = 0.05)
gamma Regression coefficient for the effect of instrument on treatment.
Zadj_sq Variance of instruments after regressed on the observed variables.
sigmau Standard deviation of potential outcome under control (structural error for y).
sigmav Standard deviation of error from regressing treatment on instruments
rho Correlation between u (potential outcome under control) and v (error from regressing treatment on instrument).
alpha Significance level.

Value
Minimum sample size required for achieving certain power of Anderson-Rubin (1949) test.

Author(s)
Yang Jiang, Hyunseung Kang, and Dylan Small

References

See Also
See also ivmodel for details on the instrumental variables model.

Examples
Assume we performed an AR test in a study with one IV (l=1) and the only one exogenous variable is the intercept (k=1). We want to know the minimum sample size for this test to have an at least 0.8 power.

Suppose the difference between the null hypothesis and true causal effect is 1 (beta=1).
The IV variance is .25 (Zadj_sq =.25).
The standard deviation of potential outcome is 1(sigmu= 1).
The coefficient of regressing IV upon exposure is .5 (gamma=.5).
The correlation between u and v is assumed to be .5 (rho=.5).
The standard deviation of first stage error is .4 (sigmav=.4).
The significance level for the study is alpha = .05.

minimum sample size required for Anderson-Rubin test:
AR.size(power=0.8, k=1, l=1, beta=1, gamma=.5, Zadj_sq=.25, sigmau=1, sigmav=.4, rho=.5, alpha = 0.05)
Description

AR.test computes the Anderson-Rubin (1949) test for the ivmodel object as well as the associated confidence interval.

Usage

AR.test(ivmodel, beta0 = 0, alpha = 0.05)

Arguments

- ivmodel: ivmodel object
- beta0: Null value β_0 for testing null hypothesis $H_0: \beta = \beta_0$ in ivmodel. Default is 0.
- alpha: The significance level for hypothesis testing. Default is 0.05.

Value

AR.test returns a list containing the following components:

- Fstat: The value of the test statistic for testing the null hypothesis $H_0: \beta = \beta_0$ in ivmodel
- df: degree of freedom for the test statistic
- p.value: The p value of the test under the null hypothesis $H_0: \beta = \beta_0$ in ivmodel
- ci: A matrix of two columns, each row contains an interval associated with the confidence interval
- ci.info: A human-readable string describing the confidence interval

Author(s)

Yang Jiang, Hyunseung Kang, and Dylan Small

References

See Also

See also ivmodel for details on the instrumental variables model.
Examples

```r
data(card.data)
Y=card.data[,"lwage"]
D=card.data[,"educ"]
Z=card.data[,"nearc4"]
Xname=c("exper", "expersq", "black", "south", "smsa", "reg661",
"reg668", "smsa66")
X=card.data[,Xname]
foo = ivmodel(Y=Y,D=D,Z=Z,X=X)
AR.test(foo)
```

ARsens.power

Power of the Anderson-Rubin (1949) Test with Sensitivity Analysis

Description

ARsens.power computes the power of sensitivity analysis, which is based on an extension of Anderson-Rubin (1949) test and allows IV be possibly invalid within a certain range.

Usage

```r
ARsens.power(n, k, beta, gamma, Zadj_sq, sigmau, sigmav, rho,
alpha = 0.05, deltarange = deltarange, delta = NULL)
```

Arguments

- `n` Sample size.
- `k` Number of exogenous variables.
- `beta` True causal effect minus null hypothesis causal effect.
- `gamma` Regression coefficient for effect of instruments on treatment.
- `Zadj_sq` Variance of instruments after regressed on the observed variables.
- `sigmau` Standard deviation of potential outcome under control (structural error for y).
- `sigmav` Standard deviation of error from regressing treatment on instruments.
- `rho` Correlation between u (potential outcome under control) and v (error from regressing treatment on instrument).
- `alpha` Significance level.
- `delta` True value of sensitivity parameter when calculating the power. Usually take delta = 0 for the favorable situation or delta = NULL for unknown delta.

Value

Power of sensitivity analysis for the proposed study, which extends the Anderson-Rubin (1949) test with possibly invalid IV. The power formula is derived in Jiang, Small and Zhang (2015).
Author(s)

Yang Jiang, Hyunseung Kang, and Dylan Small

References

See Also

See also ivmodel for details on the instrumental variables model.

Examples

Assume we calculate the power of sensitivity analysis in a study with one IV (l=1) and the only exogenous variable is the intercept (k=1).
Suppose the difference between the null hypothesis and true causal effect is 1 (beta=1).
The sample size is 250 (n=250), the IV variance is .25 (Zadj_sq =.25).
The standard deviation of potential outcome is 1 (sigmau= 1).
The coefficient of regressing IV upon exposure is .5 (gamma=.5).
The correlation between u and v is assumed to be .5 (rho=.5).
The standard deviation of first stage error is .4 (sigmav=.4).
The significance level for the study is alpha = .05.

power of sensitivity analysis under the favorable situation,
assuming the range of sensitivity allowance is (-0.1, 0.1)
ARsens.power(n=250, k=1, beta=1, gamma=.5, Zadj_sq=.25, sigmau=1, sigmav=.4, rho=.5, alpha = 0.05, deltarange=c(-0.1, 0.1), delta=0)

power of sensitivity analysis with unknown delta,
assuming the range of sensitivity allowance is (-0.1, 0.1)
ARsens.power(n=250, k=1, beta=1, gamma=.5, Zadj_sq=.25, sigmau=1, sigmav=.4, rho=.5, alpha = 0.05, deltarange=c(-0.1, 0.1))
Usage

ARsens.size(power, k, beta, gamma, Zadj_sq, sigmau, sigmav, rho,
 alpha = 0.05, deltarange = deltarange, delta = NULL)

Arguments

- **power**: The desired power over a constant.
- **k**: Number of exogenous variables.
- **beta**: True causal effect minus null hypothesis causal effect.
- **gamma**: Regression coefficient for effect of instruments on treatment.
- **Zadj_sq**: Variance of instruments after regressed on the observed covariates.
- **sigmau**: Standard deviation of potential outcome under control (structural error for y).
- **sigmav**: Standard deviation of error from regressing treatment on instruments.
- **rho**: Correlation between u (potential outcome under control) and v (error from regressing treatment on instruments).
- **alpha**: Significance level.
- **deltarange**: Range of sensitivity allowance. A numeric vector of length 2.
- **delta**: True value of sensitivity parameter when calculating power. Usually take delta = 0 for the favorable situation or delta = NULL for unknown delta.

Value

Minimum sample size required for achieving certain power of sensitivity analysis for the proposed study, which extends the Anderson-Rubin (1949) test with possibly invalid IV. The power formula is derived in Jiang, Small and Zhang (2015).

Author(s)

Yang Jiang, Hyunseung Kang, and Dylan Small

References

See Also

See also `ivmodel` for details on the instrumental variables model.
Examples

Assume we performed a sensitivity analysis in a study with one
IV (l=1) and the only exogenous variable is the intercept (k=1).
We want to calculate the minimum sample size needed for this
sensitivity analysis to have an at least 0.8 power.

Suppose the difference between the null hypothesis and true causal
effect is 1 (beta=1).
The IV variance is .25 (Zadj_sq =.25).
The standard deviation of potential outcome is 1 (sigmau = 1).
The coefficient of regressing IV upon exposure is .5 (gamma = .5).
The correlation between u and v is assumed to be .5 (rho = .5).
The standard deviation of first stage error is .4 (sigmav = .4).
The significance level for the study is alpha = .05.

minimum sample size for sensitivity analysis under the favorable
situation, assuming the range of sensitivity allowance is (-0.1, 0.1)
ARsens.size(power=0.8, k=1, beta=1, gamma=.5, Zadj_sq=.25, sigmav=1,
 sigmav=.4, rho=.5, alpha = 0.05, deltarange=c(-0.1, 0.1), delta=0)

minimum sample size for sensitivity analysis with unknown delta,
assuming the range of sensitivity allowance is (-0.1, 0.1)
ARsens.size(power=0.8, k=1, beta=1, gamma=.5, Zadj_sq=.25, sigmav=1,
 sigmav=.4, rho=.5, alpha = 0.05, deltarange=c(-0.1, 0.1))

ARsens.test

Sensitivity Analysis for the Anderson-Rubin (1949) Test

Description

ARsens.test computes sensitivity analysis with possibly invalid instruments, which is an extension of the Anderson-Rubin (1949) test. The formula for sensitivity analysis is derived in Jiang, Small and Zhang (2015).

Usage

ARsens.test(ivmodel, beta0 = 0, alpha = 0.05, deltarange = NULL)

Arguments

ivmodel ivmodel object.
beta0 Null value β_0 for testing null hypothesis $H_0 : \beta = \beta_0$ in ivmodel
alpha The significance level for hypothesis testing. Default is 0.05.
deltarange Range of sensitivity allowance. A numeric vector of length 2.
Value

`ARSens.test` returns a list containing the following components

- `ncFstat`: The value of the test statistic for testing the null hypothesis $H_0: \beta = \beta_0$ in `ivmodel`
- `df`: degree of freedom for the test statistic
- `ncp`: non-central parameter for the test statistic
- `p.value`: The p value of the test under the null hypothesis $H_0: \beta = \beta_0$ in `ivmodel`
- `ci`: A matrix of two columns, each row contains an interval associated with the confidence interval
- `ci.info`: A human-readable string describing the confidence interval
- `deltarange`: The inputted range of sensitivity allowance.

Author(s)

Yang Jiang, Hyunseung Kang, and Dylan Small

References

See Also

See also `ivmodel` for details on the instrumental variables model.

Examples

```r
data(card.data)
Y=card.data[, "lwage"]
D=card.data[, "educ"]
Z=card.data[, "nearc4"]
Xname=c("exper", "expersq", "black", "south", "smsa", "reg661",
"reg668", "smsa66")
X=card.data[,Xname]
foo = ivmodel(Y=Y,D=D,Z=Z,X=X)
ARSens.test(foo, deltarange=c(-0.03, 0.03))
```
Description

Data from the National Longitudinal Survey of Young Men (NLSYM) that was used by Card (1995).

Usage

data(card.data)

Format

A data frame with 3010 observations on the following 35 variables.

- id: subject id
- nearc2: indicator for whether a subject grew up near a two-year college
- nearc4: indicator for whether a subject grew up near a four-year college
- educ: subject's years of education
- age: subject's age at the time of the survey in 1976
- fatheduc: subject's father's years of education
- motheduc: subject's mother's years of education
- weight: sampling weight
- momdad14: indicator for whether subject lived with both mother and father at age 14
- sinmom14: indicator for whether subject lived with single mom at age 14
- step14: indicator for whether subject lived with step-parent at age 14
- reg661: indicator for whether subject lived in region 1 (New England) in 1966
- reg662: indicator for whether subject lived in region 2 (Middle Atlantic) in 1966
- reg663: indicator for whether subject lived in region 3 (East North Central) in 1966
- reg664: indicator for whether subject lived in region 4 (West North Central) in 1966
- reg665: indicator for whether subject lived in region 5 (South Atlantic) in 1966
- reg666: indicator for whether subject lived in region 6 (East South Central) in 1966
- reg667: indicator for whether subject lived in region 7 (West South Central) in 1966
- reg668: indicator for whether subject lived in region 8 (Mountain) in 1966
- reg669: indicator for whether subject lived in region 9 (Pacific) in 1966
- south66: indicator for whether subject lived in South in 1966
- black: indicator for whether subject's race is black
- smsa: indicator for whether subject lived in SMSA in 1976
- south: indicator for whether subject lived in the South in 1976
- smsa66: indicator for whether subject lived in SMSA in 1966
wage subject’s wage in cents per hour in 1976
enroll indicator for whether subject is enrolled in college in 1976
KWW subject’s score on the Knowledge of the World of Work (KWW) test in 1966
IQ IQ-type test score collected from the high school of the subject.
marrried indicator for whether the subject was married in 1976.
libcrd14 indicator for whether subject had library card at age 14.
expers subject’s years of labor force experience in 1976
l wage subject’s log wage in 1976
expersq square of subject’s years of labor force experience in 1976
region region in which subject lived in 1976

Source

Examples

data(card.data)
 CLR Conditional Likelihood Ratio Test

Description
CLR computes the conditional likelihood ratio test (Moreira, 2003) for the ivmodel object as well as the associated confidence interval.

Usage
CLR(ivmodel, beta0 = 0, alpha = 0.05)

Arguments
ivmodel ivmodel object
beta0 Null value β_0 for testing null hypothesis $H_0: \beta = \beta_0$ in ivmodel. Default is 0
alpha The significance level for hypothesis testing. Default is 0.05

Details
CLR.test computes the conditional likelihood ratio test for the instrumental variables model in ivmodel object, specifically for the parameter β. It also computes the $1 - \alpha$ confidence interval associated with it by inverting the test. The test is fully robust to weak instruments (Moreira 2003). We use the approximation suggested in Andrews et al. (2006) to evaluate the p value and the confidence interval.
Value

CLR returns a list containing the following components

test.stat The value of the test statistic for testing the null hypothesis $H_0: \beta = \beta_0$ in ivmodel

p.value The p value of the test under the null hypothesis $H_0: \beta = \beta_0$ in ivmodel

ci A matrix of two columns, each row contains an interval associated with the confidence interval

ci.info A human-readable string describing the confidence interval

Author(s)

Yang Jiang, Hyunseung Kang, and Dylan Small

References

See Also

See also ivmodel for details on the instrumental variables model.

Examples

data(card.data)
Y=card.data[,"lwage"]
D=card.data[,"educ"]
Z=card.data[,c("nearc4","nearc2")]
Xname=c("exper", "expersq", "black", "south", "smsa", "reg661",
"reg668", "smsa66")
X=card.data[,Xname]
card.model2IV = ivmodel(Y=Y,D=D,Z=X)
CLR(card.model2IV, alpha=0.01)
confint.ivmodel

Usage

S3 method for class 'ivmodel'
coef(object,...)

Arguments

object ivmodel object.
...
Additional arguments to \texttt{coef}.

Value

A matrix summarizes all the k-Class estimations.

Author(s)

Yang Jiang, Hyunseung Kang, and Dylan Small

See Also

See also \texttt{ivmodel} for details on the instrumental variables model.

Examples

data(card.data)
Y=card.data[, "lwage"]
D=card.data[, "educ"]
Z=card.data[, "nearc4"]
Xname=c("exper", "expersq", "black", "south", "smsa", "reg661",
 "reg668", "smsa66")
X=card.data[,Xname]
foo = ivmodel(Y=Y,D=D,Z=Z,X=X)
coef(foo)

confint.ivmodel: Confidence Intervals for the Fitted Model in ivmodel Object

Description

This \texttt{confint} methods returns a matrix of two columns, each row represents a confident interval for different IV approaches, which include k-Class, AR (Anderson and Rubin 1949) and CLR (Moreira 2003) estimations.

Usage

S3 method for class 'ivmodel'
confint(object, parm, level=NULL,...)
Arguments

object ivmodel object.
parm Ignored for our code.
level The confidence level.
... Additional argument(s) for methods.

Value

A matrix, each row represents a confidence interval for different IV approaches.

Author(s)

Yag Jiang, Hyunseung Kang, and Dylan Small

References

See Also

See also ivmodel for details on the instrumental variables model.

Examples

data(card.data)
Y=card.data[,"lwage"]
D=card.data[,"educ"]
Z=card.data[,"nearc4"]
Xname=c("exper", "expersq", "black", "south", "smsa", "reg661",
"reg668", "smsa66")
X=card.data[,Xname]
foo = ivmodel(Y=Y,D=D,Z=Z,X=X)
confint(foo)
Description

This fitted method returns the fitted values from k-Class estimators inside ivmodel.

Usage

```r
## S3 method for class 'ivmodel'
fitted(object,...)
```

Arguments

- `object`: ivmodel object.
- `...`: Additional arguments to fitted.

Value

A matrix of fitted values from the k-Class estimations.

Author(s)

Yang Jiang, Hyunseung Kang, and Dylan Small

See Also

See also `ivmodel` for details on the instrumental variables model.

Examples

```r
data(card.data)
Y=card.data[,"lwage"]
D=card.data[,"educ"]
Z=card.data[,"nearc4"]
Xname=c("exper", "expersq", "black", "south", "smsa", "reg661",
         "reg668", "smsa66")
X=card.data[,Xname]
foo = ivmodel(Y=Y,D=D,Z=Z,X=X)
fitted(foo)
```
Fuller computes the Fuller-k (Fuller 1977) estimate for the ivmodel object.

Usage

Fuller(ivmodel,
 beta0 = 0, alpha = 0.05, b = 1,
 manyweakSE = FALSE, heteroSE = FALSE, clusterID = NULL)

Arguments

- ivmodel: ivmodel object.
- beta0: Null value β_0 for testing null hypothesis $H_0 : \beta = \beta_0$ in ivmodel. Default is 0.
- alpha: The significance level for hypothesis testing. Default is 0.05.
- b: Positive constant b in Fuller-k estimator. Default is 1.
- manyweakSE: Should many weak instrument (and heteroscedastic-robust) asymptotics in Hansen, Hausman and Newey (2008) be used to compute standard errors? Default is FALSE.
- heteroSE: Should heteroscedastic-robust standard errors be used? Default is FALSE.
- clusterID: If cluster-robust standard errors are desired, provide a vector of length that's identical to the sample size. For example, if $n = 6$ and clusterID = c(1,1,1,2,2,2), there would be two clusters where the first cluster is formed by the first three observations and the second cluster is formed by the last three observations. clusterID can be numeric, character, or factor.

Details

Fuller computes the Fuller-k estimate for the instrumental variables model in ivmodel, specifically for the parameter β. The computation uses KClass with the value of $k = k_{LIML} - b/(n - L - p)$. It generates a point estimate, a standard error associated with the point estimate, a test statistic and a p value under the null hypothesis $H_0 : \beta = \beta_0$ in ivmodel along with a $1 - \alpha$ confidence interval.

Value

Fuller returns a list containing the following components

- k: The k value used when computing the Fuller estimate with the k-Class estimator.
- point.est: Point estimate of β.
- std.err: Standard error of the estimate.
- test.stat: The value of the test statistic for testing the null hypothesis $H_0 : \beta = \beta_0$ in ivmodel.
- p.value: The p value of the test under the null hypothesis $H_0 : \beta = \beta_0$ in ivmodel.
- ci: A matrix of one row by two columns specifying the confidence interval associated with the Fuller estimator.
iv.diagnosis

Diagnostics of instrumental variable analysis

Description

Diagnostics of instrumental variable analysis

Usage

```r
iv.diagnosis(Y, D, Z, X)
```

```r
diagnostics.plot(output, bias.ratio = TRUE, base_size = 15, text_size = 5)
```

Arguments

- **Y**: A numeric vector of outcomes.
- **D**: A vector of endogenous variables.
- **Z**: A vector of instruments.
- **X**: A vector, matrix or data frame of (exogenous) covariates.
- **output**: Output from `iv.diagnosis`.

Author(s)

Yang Jiang, Hyunseung Kang, Dylan Small

References

See Also

See also `ivmodel` for details on the instrumental variables model. See also `KClass` for more information about the k-Class estimator.

Examples

```r
data(card.data)
Y = card.data[, "lwage"]
D = card.data[, "educ"]
Z = card.data[, c("nearc4","nearc2")]
Xname = c("exper", "expersq", "black", "south", "smsa", "reg661",
"reg668", "smsa66")
X = card.data[, Xname]
card.model2IV = ivmodel(Y=Y, D=D, Z=Z, X=X)
Fuller(card.model2IV, alpha=0.01)
```
bias.ratio Add bias ratios (text) to the plot?
base_size size of the axis labels
text_size size of the text (bias ratios)

Value

a list or data frame

x.mean1 Mean of X under Z = 1 (reported if Z is binary)
x.mean0 Mean of X under Z = 0 (reported if Z is binary)
coef OLS coefficient of X ~ Z (reported if Z is not binary)
se Standard error of OLS coefficient (reported if Z is not binary)
p.val p-value of the independence of Z and X (Fisher’s test if both are binary, logistic regression if Z is binary, linear regression if Z is continuous)
stand.diff Standardized difference (reported if Z is binary)
bias.ratio Bias ratio
bias.amplify Amplification of bias ratio
bias.ols Bias of OLS
bias.2sls Bias of two stage least squares

Functions

• iv.diagnosis.plot: IV diagnostic plot

Author(s)

Qingyuan Zhao

References

Examples

n <- 10000
Z <- rbinom(n, 1, 0.5)
X <- data.frame(matrix(c(rnorm(n), rbinom(n * 5, 1, 0.5)), n))
D <- rbinom(n, 1, plogis(Z + X[, 1] + X[, 2] + X[, 3]))
Y <- D + X[, 1] + X[, 2] + rnorm(n)
print(output <- iv.diagnosis(Y, D, Z, X))
iv.diagnosis.plot(output)
ivmodel fits an instrumental variables (IV) model with one endogenous variable and a continuous outcome. It carries out several IV regressions, diagnostics, and tests associated this IV model. It is robust to most data formats, including factor and character data, and can handle very large IV models efficiently.

Usage

ivmodel(Y, D, Z, X, intercept = TRUE,
 beta0 = 0, alpha = 0.05, k = c(0, 1),
 manyweakSE = FALSE, heteroSE = FALSE, clusterID = NULL,
 deltarange = NULL, na.action = na.omit)

Arguments

Y A numeric vector of outcomes.
D A vector of endogenous variables.
Z A matrix or data frame of instruments.
X A matrix or data frame of (exogenous) covariates.
intercept Should the intercept be included? Default is TRUE.
beta0 Null value β_0 for testing null hypothesis $H_0 : \beta = \beta_0$ in ivmodel. Default is 0.
alpha The significance level for hypothesis testing. Default is 0.05.
k A numeric vector of k values for k-class estimation. Default is 0 (OLS) and 1 (TSLS).
manyweakSE Should many weak instrument (and heteroscedastic-robust) asymptotics in Hansen, Hausman and Newey (2008) be used to compute standard errors? (Not supported for k ==0)
heteroSE Should heteroscedastic-robust standard errors be used? Default is FALSE.
clusterID If cluster-robust standard errors are desired, provide a vector of length that’s identical to the sample size. For example, if n = 6 and clusterID = c(1,1,1,2,2,2), there would be two clusters where the first cluster is formed by the first three observations and the second cluster is formed by the last three observations. clusterID can be numeric, character, or factor.
deltarange Range of \(\delta \) for sensitivity analysis with the Anderson-Rubin (1949) test.

na.action NA handling. There are na.fail, na.omit, na.exclude, na.pass available. Default is na.omit.

Details

Let \(Y, D, X, \) and \(Z \) represent the outcome, endogenous variable, \(p \) dimensional exogenous covariates, and \(L \) dimensional instruments, respectively; note that the intercept can be considered as a vector of ones and a part of the exogenous covariates \(X \). \texttt{ivmodel} assumes the following IV model

\[
Y = X\alpha + D\beta + \epsilon, E(\epsilon|X, Z) = 0
\]

and produces statistics for \(\beta \). In particular, \texttt{ivmodel} computes the OLS, TSLS, k-class, limited information maximum likelihood (LIML), and Fuller-k (Fuller 1977) estimates of \(\beta \) using \texttt{KClass}, \texttt{LIML}, and \texttt{codeFuller}. Also, \texttt{ivmodel} computes confidence intervals and hypothesis tests of the type \(H_0 : \beta = \beta_0 \) versus \(H_0 : \beta \neq \beta_0 \) for the said estimators as well as two weak-IV confidence intervals, Anderson and Rubin (Anderson and Rubin 1949) confidence interval (Anderson and Rubin 1949) and the conditional likelihood ratio confidence interval (Moreira 2003). Finally, the code also conducts a sensitivity analysis if \(Z \) is one-dimensional (i.e. there is only one instrument) using the method in Jiang et al. (2015).

Some procedures (e.g. conditional likelihood ratio test, sensitivity analysis with Anderson-Rubin) assume an additional linear model

\[
D = Z\gamma + X\kappa + \xi, E(\xi|X, Z) = 0
\]

Value

\texttt{ivmodel} returns an object of class "ivmodel".

An object class "ivmodel" is a list containing the following components

- \texttt{alpha} Significance level for the hypothesis tests.
- \texttt{beta0} Null value of the hypothesis tests.
- \texttt{kClass} A list from \texttt{KClass} function.
- \texttt{LIML} A list from \texttt{LIML} function.
- \texttt{Fuller} A list from \texttt{Fuller} function.
- \texttt{AR} A list from \texttt{AR.test}.
- \texttt{CLR} A list from \texttt{CLR}.

In addition, if there is only one instrument, \texttt{ivreg} will generate an "ARsens" list within "ivmodel" object.

Author(s)

Yang Jiang, Hyunseung Kang, and Dylan Small
ivmodel

References

See Also

See also `KClass`, `LIML`, `Fuller`, `AR.test`, and `CLR` for individual methods associated with `ivmodel`. For sensitivity analysis with the AR test, see `ARsens.test`. `ivmodel` has methods associated with it.

Examples

data(card.data)
One instrument
Y=card.data[,"lwage"]
D=card.data[,"educ"]
Z=card.data[,"nearc4"]
Xname=c("exper", "expersq", "black", "south", "smsa", "reg661",
 "reg668", "smaa66")
X=card.data[,Xname]
card.model1IV = ivmodel(Y=Y,D=D,Z=Z,X=X)
card.model1IV

Multiple instruments
Z = card.data[,c("nearc4","nearc2")]
card.model2IV = ivmodel(Y=Y,D=D,Z=Z,X=X)
card.model2IV
ivmodelFormula fits an instrumental variables (IV) model with one endogenous variable and a continuous outcome. It carries out several IV regressions, diagnostics, and tests associated with this IV model. It is robust to most data formats, including factor and character data, and can handle very large IV models efficiently.

Usage

```r
ivmodelFormula(formula, data, subset,
    beta0=0, alpha=0.05, k=c(0,1),
    heteroSE = FALSE, clusterID = NULL,
    deltarange=NULL, na.action = na.omit)
```

Arguments

- `formula`: a formula describing the model to be fitted. For example, the formula `Y ~ D + X1 + X2 | Z1 + Z2 + X1 + X2` describes the mode where

 \[
 Y = \alpha_0 + D\beta + X_1\alpha_1 + X_2\alpha_2 + \epsilon
 \]

 and

 \[
 D = \gamma_0 + Z_1\gamma_1 + Z_2\gamma_2 + X_1\kappa_1 + X_2\kappa_2 + \xi
 \]

 The outcome is `Y`, the endogenous variable is `D`. The exogenous covariates are `X1` and `X2`. The instruments are `Z1` and `Z2`. The formula environment follows the formula environment in the `ivreg` function in the AER package.

- `data`: an optional data frame containing the variables in the model. By default, the variables are taken from the environment which ivmodel is called from.

- `subset`: an index vector indicating which rows should be used.

- `beta0`: Null value β_0 for testing null hypothesis $H_0 : \beta = \beta_0$ in ivmodel. Default is 0.

- `alpha`: The significance level for hypothesis testing. Default is 0.05.

- `k`: A numeric vector of k values for k-class estimation. Default is 0 (OLS) and 1 (TSLS).

- `heteroSE`: Should heteroscedastic-robust standard errors be used? Default is FALSE.

- `clusterID`: If cluster-robust standard errors are desired, provide a vector of length that’s identical to the sample size. For example, if `n = 6` and `clusterID = c(1,1,2,2,2,2)`, there would be two clusters where the first cluster is formed by the first three observations and the second cluster is formed by the last three observations. clusterID can be numeric, character, or factor.

- `deltarange`: Range of δ for sensitivity analysis with the Anderson-Rubin (1949) test.

- `na.action`: NA handling. There are `na.fail`, `na.omit`, `na.exclude`, `na.pass` available. Default is `na.omit`.
Details

Let Y, D, X, and Z represent the outcome, endogenous variable, p dimensional exogenous covariates, and L dimensional instruments, respectively; note that the intercept can be considered as a vector of ones and a part of the exogenous covariates X. \texttt{ivmodel} assumes the following IV model

$$Y = X\alpha + D\beta + \epsilon, E(\epsilon|X, Z) = 0$$

and produces statistics for β. In particular, \texttt{ivmodel} computes the OLS, TSLS, k-class, limited information maximum likelihood (LIML), and Fuller-k (Fuller 1977) estimates of β using \texttt{KClass}, \texttt{LIML}, and \texttt{codeFuller}. Also, \texttt{ivmodel} computes confidence intervals and hypothesis tests of the type $H_0 : \beta = \beta_0$ versus $H_0 : \beta \neq \beta_0$ for the said estimators as well as two weak-IV confidence intervals, Anderson and Rubin (Anderson and Rubin 1949) confidence interval (Anderson and Rubin 1949) and the conditional likelihood ratio confidence interval (Moreira 2003). Finally, the code also conducts a sensitivity analysis if Z is one-dimensional (i.e. there is only one instrument) using the method in Jiang et al. (2015).

Some procedures (e.g. conditional likelihood ratio test, sensitivity analysis with Anderson-Rubin) assume an additional linear model

$$D = Z\gamma + X\kappa + \xi, E(\xi|X, Z) = 0$$

Value

\texttt{ivmodel} returns an object of class "ivmodel".

An object class "ivmodel" is a list containing the following components

- \texttt{alpha}Significance level for the hypothesis tests.
- \texttt{beta0}Null value of the hypothesis tests.
- \texttt{kClass}A list from \texttt{KClass} function.
- \texttt{LIML}A list from \texttt{LIML} function.
- \texttt{Fuller}A list from \texttt{Fuller} function.
- \texttt{AR}A list from \texttt{AR.test}.
- \texttt{CLR}A list from \texttt{CLR}.

In addition, if there is only one instrument, \texttt{ivreg} will generate an "ARsens" list within "ivmodel" object.

Author(s)

Yang Jiang, Hyunseung Kang, and Dylan Small

References

42(4), 1157-1163.

See Also

See also `KClass`, `LIML`, `Fuller`, `AR.test`, and `CLR` for individual methods associated with `ivmodel`. For sensitivity analysis with the AR test, see `ARsens.test`. `ivmodel` has `vcov.ivmodel`, `model.matrix.ivmodel`, `summary.ivmodel`, `confint.ivmodel`, `fitted.ivmodel`, `residuals.ivmodel` and `coef.ivmodel` methods associated with it.

Examples

data(card.data)

One instrument
Y = card.data[, "lwage"]
D = card.data[, "educ"]
Z = card.data[, "nearc4"]
Xname = c("exper", "expersq", "black", "south", "smsa", "reg661",
 "reg668", "smsa66")
X = card.data[, Xname]

card.model1IV = ivmodelFormula(lwage ~ educ + exper + expersq + black +
 south + smsa + reg661 +
 reg662 + reg663 + reg664 +
 reg665 + reg666 + reg667 +
 reg668 + smsa66 | nearc4 +
 exper + expersq + black +
 south + smsa + reg661 +
 reg662 + reg663 + reg664 +
 reg665 + reg666 + reg667 +
 reg668 + smsa66, data=card.data)

card.model1IV

Multiple instruments
Z = card.data[, c("nearc4","nearc2")]

card.model2IV = ivmodelFormula(lwage ~ educ + exper + expersq + black +
 south + smsa + reg661 +
 reg662 + reg663 + reg664 +
 reg665 + reg666 + reg667 +
 reg668 + smsa66, data=card.data)
IVpower

Description

IVpower computes the power for one of the following tests: two stage least square estimates; Anderson-Rubin (1949) test; Sensitivity analysis.

Usage

\[
\text{IVpower}(\text{ivmodel}, n = \text{NULL}, \alpha = 0.05, \beta = \text{NULL}, \text{type} = "\text{TSLS}" , \\
\text{deltarange} = \text{NULL}, \delta = \text{NULL})
\]

Arguments

- **ivmodel**: ivmodel object.
- **n**: number of sample size, if missing, will use the sample size from the input ivmodel object.
- **alpha**: The significance level for hypothesis testing. Default is 0.05.
- **beta**: True causal effect minus null hypothesis causal effect. If missing, will use the beta calculated from the input ivmodel object.
- **type**: Determines which test will be used for power calculation. "TSLS" for two stage least square estimates; "AR" for Anderson-Rubin test; "ARsens" for sensitivity analysis.
- **deltarange**: Range of sensitivity allowance. A numeric vector of length 2. If missing, will use the deltarange from the input ivmodel object.
- **delta**: True value of sensitivity parameter when calculating the power. Usually take \(\delta = 0 \) for the favorable situation or \(\delta = \text{NULL} \) for unknown delta.

Details

IVpower computes the power for one of the following tests: two stage least square estimates; Anderson-Rubin (1949) test; Sensitivity analysis. The related value of parameters will be inferred from the input of ivmodel object.

Value

A power value for the specified type of test.
Author(s)
Yang Jiang, Hyunseung Kang, Dylan Small

References

See Also
See also ivmodel for details on the instrumental variables model. See also TSLS.power, AR.power, ARsens.power for details on the power calculation.

Examples
data(card.data)
Y=card.data[,"lwage"]
D=card.data[,"educ"]
Z=card.data[,"nearc4"]
X=card.data[,Xname]
card.model = ivmodel(Y=Y,D=D,Z=Z,X=X)

IVpower(card.model)
IVpower(card.model, n=10^4, type="AR")

IVsize

Calculating minimum sample size for achieving a certain power

Description
IVsize calculates the minimum sample size needed for achieving a certain power in one of the following tests: two stage least square estimates; Anderson-Rubin (1949) test; Sensitivity analysis.

Usage
IVsize(ivmodel, power, alpha = 0.05, beta = NULL, type = "TSLS", deltarange = NULL, delta = NULL)
Arguments

ivmodel ivmodel object.

power The power threshold to achieve.

alpha The significance level for hypothesis testing. Default is 0.05.

beta True causal effect minus null hypothesis causal effect. If missing, will use the beta calculated from the input ivmodel object.

type Determines which test will be used for power calculation. "TSLS" for two stage least square estimates; "AR" for Anderson-Rubin test; "ARsens" for sensitivity analysis.

deltarange Range of sensitivity allowance. A numeric vector of length 2. If missing, will use the deltarange from the input ivmodel object.

delta True value of sensitivity parameter when calculating the power. Usually take delta = 0 for the favorable situation or delta = NULL for unknown delta.

Details

IVsize calculates the minimum sample size needed for achieving a certain power for one of the following tests: two stage least square estimates; Anderson-Rubin (1949) test; Sensitivity analysis. The related value of parameters will be inferred from the input of ivmodel object.

Value

minimum sample size needed for achieving a certain power

Author(s)

Yang Jiang, Hyunseung Kang, Dylan Small

References

See Also

See also ivmodel for details on the instrumental variables model. See also TSLS.size, AR.size, ARsens.size for calculation details.
Examples

data(card.data)
Y=card.data[,"lwage"]
D=card.data[,"educ"]
Z=card.data[,"nearc4"]
Xname=c("exper", "expersq", "black", "south", "smsa", "reg661",
"reg668", "smsa66")
X=card.data[,Xname]
card.model = ivmodel(Y=Y,D=D,Z=Z,X=X, deltarange=c(-0.01, 0.01))

IVsize(card.model, power=0.8)
IVsize(card.model, power=0.8, type="AR")
IVsize(card.model, power=0.8, type="ARsens", deltarange=c(-0.01, 0.01))

KClass

k-Class Estimator

Description

KClass computes the k-Class estimate for the ivmodel object.

Usage

KClass(ivmodel,
 beta0 = 0, alpha = 0.05, k = c(0, 1),
 manyweakSE = FALSE, heteroSE = FALSE, clusterID = NULL)

Arguments

ivmodel ivmodel object.
beta0 Null value β_0 for testing null hypothesis $H_0 : \beta = \beta_0$ in ivmodel. Default is 0.
alpha The significance level for hypothesis testing. Default is 0.05.
k A vector of k values for the k-Class estimator. Default is 0 (OLS) and 1 (TSLS).
manyweakSE Should many weak instrument (and heteroscedastic-robust) asymptotics in Hansen,
 Hausman and Newey (2008) be used to compute standard errors? (Not sup-
 ported for k=0)
heteroSE Should heteroscedastic-robust standard errors be used? Default is FALSE.
clusterID If cluster-robust standard errors are desired, provide a vector of length that’s
 identical to the sample size. For example, if n = 6 and clusterID = c(1,1,1,2,2,2),
 there would be two clusters where the first cluster is formed by the first three
 observations and the second cluster is formed by the last three observations.
 clusterID can be numeric, character, or factor.
KClass

Details

KClass computes the k-Class estimate for the instrumental variables model in ivmodel, specifically for the parameter β. It generates a point estimate, a standard error associated with the point estimate, a test statistic and a p value under the null hypothesis $H_0: \beta = \beta_0$ in ivmodel along with a $1 - \alpha$ confidence interval.

Value

KClass returns a list containing the following components

- **k** A row matrix of k values supplied to KClass.
- **point.est** A row matrix of point estimates of β, with each row corresponding to the k values supplied.
- **std.err** A row matrix of standard errors of the estimates, with each row corresponding to the k values supplied.
- **test.stat** A row matrix of test statistics for testing the null hypothesis $H_0: \beta = \beta_0$ in ivmodel, with each row corresponding to the k values supplied.
- **p.value** A row matrix of p value of the test under the null hypothesis $H_0: \beta = \beta_0$ in ivmodel, with each row corresponding to the k values supplied.
- **ci** A matrix of two columns specifying the confidence interval, with each row corresponding to the k values supplied.

Author(s)

Yang Jiang, Hyunseung Kang, and Dylan Small

See Also

See also ivmodel for details on the instrumental variables model.

Examples

```r
data(card.data)
Y=card.data[,"lwage"]
D=card.data[,"educ"]
Z=card.data[,c("nearc4","nearc2")]
Xname=c("exper", "expersq", "black", "south", "sma", "reg661",
"reg668", "sma66")
X=card.data[,Xname]
card.model2IV = ivmodel(Y=Y,D=D,Z=Z,X=X)
KClass(card.model2IV,
k=c(0,1,length(Y)/(length(Y) - ncol(X) - ncol(Z) + 1)))))
```

```r
# Not run:
# The following code tests the mank weak IV standard error for LIML and Fuller.
eexample <- function(q = 10, rho1 = 0.5, n1 = 10000,
sigma.uv = 0.5, beta = 1, gamma = rep(1/sqrt(q), q)) {
```
LIML <- outer(1:q, 1:q, function(i, j) rho1^abs(i - j))

library(MASS)
Z1 <- mvrnorm(n1, rep(1, q), Sigma1)
Z1 <- matrix(2 * as.numeric(Z1 > 0) - 1, nrow = n1)
UV1 <- mvrnorm(n1, rep(0, 2), matrix(c(1, sigma.uv, sigma.uv, 1), 2))
X1 <- Z1
Y1 <- X1

list(Z1 = Z1, X1 = X1, Y1 = Y1)

one.sim <- function(manyweakSE) {
 data <- example(q = 100, n1 = 200)
 fit <- ivmodel(data$Y1, data$X1, data$Z1, manyweakSE = manyweakSE)
 1 > coef(fit)[, 2] - 1.96 * coef(fit)[, 3] & 1 < coef(fit)[, 2] + 1.96 * coef(fit)[, 3]
}

res <- replicate(200, one.sim(TRUE))
apply(res, 1, mean)
res <- replicate(200, one.sim(FALSE))
apply(res, 1, mean)

End(Not run)

LIML

Limited Information Maximum Likelihood Ratio (LIML) Estimator

Description

LIML computes the LIML estimate for the `ivmodel` object.

Usage

```r
LIML(ivmodel, beta0 = 0, alpha = 0.05, manyweakSE = FALSE, heteroSE = FALSE, clusterID = NULL)
```

Arguments

- `ivmodel` : ivmodel object.
- `beta0` : Null value β_0 for testing null hypothesis $H_0 : \beta = \beta_0$ in `ivmodel`. Default is 0.
- `alpha` : The significance level for hypothesis testing. Default is 0.05.
- `manyweakSE` : Should many weak instrument (and heteroscedastic-robust) asymptotics in Hansen, Hausman and Newey (2008) be used to compute standard errors?
heteroSE Should heteroscedastic-robust standard errors be used? Default is FALSE.
clusterID If cluster-robust standard errors are desired, provide a vector of length that’s identical to the sample size. For example, if n = 6 and clusterID = c(1,1,1,2,2,2), there would be two clusters where the first cluster is formed by the first three observations and the second cluster is formed by the last three observations. clusterID can be numeric, character, or factor.

Details
LIML computes the LIML estimate for the instrumental variables model in ivmodel, specifically for the parameter beta. The computation uses KClass with the value of \(k = k_{LIML} \), which is the smallest root of the equation

\[
det(L^T L - k L^T R_Z L) = 0
\]

where \(L \) is a matrix of two columns, the first column consisting of the outcome vector, \(Y \), and the second column consisting of the endogenous variable, \(D \), and \(R_Z = I - Z(Z^T Z)^{-1}Z^T \) with \(Z \) being the matrix of instruments. LIML generates a point estimate, a standard error associated with the point estimate, a test statistic and a p value under the null hypothesis \(H_0 : \beta = \beta_0 \) in ivmodel along with a \(1 - \alpha \) confidence interval.

Value
LIML returns a list containing the following components

- \(k \) The k value for LIML.
- point.est Point estimate of beta.
- std.err Standard error of the estimate.
- test.stat The value of the test statistic for testing the null hypothesis \(H_0 : \beta = \beta_0 \) in ivmodel.
- p.value The p value of the test under the null hypothesis \(H_0 : \beta = \beta_0 \) in ivmodel.
- ci A matrix of one row by two columns specifying the confidence interval associated with the Fuller estimator.

Author(s)
Yang Jiang, Hyunseung Kang, Dylan Small

See Also
See also ivmodel for details on the instrumental variables model. See also KClass for more information about the k-Class estimator.

Examples
```r
data(card.data)
Y=card.data[,"lwage"]
D=card.data[,"educ"]
Z=card.data[,c("nearc4","nearc2")]
Xname=c("exper", "expersq", "black", "south", "smsa", "reg661")
```
model.matrix.ivmodel

Extract Design Matrix for ivmodel Object

Description

This method extracts the design matrix inside ivmodel.

Usage

S3 method for class 'ivmodel'
model.matrix(object,...)

Arguments

object ivmodel object.

... Additional arguments to fitted.

Value

A design matrix for the ivmodel object.

Author(s)

Yang Jiang, Hyunseung Kang, and Dylan Small

See Also

See also ivmodel for details on the instrumental variables model.

Examples

data(card.data)
Y=card.data[,"lwage"]
D=card.data[,"educ"]
Z=card.data[,"nearc4"]
Xname=c("exper", "expersq", "black", "south", "smsa", "reg661",
 "reg668", "smsa66")
X=card.data[,Xname]
foo = ivmodel(Y=Y,D=D,Z=Z,X=X)
model.matrix(foo)
Parameter Estimation from ivmodel

Description

para computes the estimation of several parameters for the ivmodel object.

Usage

para(ivmodel)

Arguments

ivmodel ivmodel object.

Details

para computes the coefficients of 1st and 2nd stage regression (gamma and beta). It also computes the covariance matrix of the error term of 1st and 2nd stage. (sigmau, sigmav, and rho)

Value

para returns a list containing the following components

gamma The coefficient of IV in first stage, calculated by linear regression
beta The TSLS estimator of the exposure effect
sigmau Standard deviation of potential outcome under control (structural error for y).
sigmav Standard deviation of error from regressing treatment on instruments
rho Correlation between u (potential outcome under control) and v (error from regressing treatment on instrument).

Author(s)

Yang Jiang, Hyunseung Kang, Dylan Small

See Also

See also ivmodel for details on the instrumental variables model.

Examples

data(card.data)
Y=card.data[,"lwage"]
D=card.data[,"educ"]
Z=card.data[,"nearc4"]
Xname=c("exper", "expersq", "black", "south", "smsa", "reg661",
 "reg668", "smsa66")
residuals.ivmodel

Residuals from the Fitted Model in the ivmodel Object

Description

This function returns the residuals from the k-Class estimators inside the ivmodel object.

Usage

```r
## S3 method for class 'ivmodel'
residuals(object,...)
## S3 method for class 'ivmodel'
resid(object,...)
```

Arguments

- `object` ivmodel object.
- `...` Additional arguments to `residuals` or `resid`.

Value

A matrix of residuals for each k-Class estimator.

Author(s)

Yang Jiang, Hyunseung Kang, and Dylan Small

See Also

See also `ivmodel` for details on the instrumental variables model.

Examples

```r
data(card.data)
Y=card.data[,"lwage"]
D=card.data[,"educ"]
Z=card.data[,"nearc4"]
Xname=c("exper", "expersq", "black", "south", "smsa", "reg661",
    "reg668", "smsa66")
X=card.data[,Xname]
foo = ivmodel(Y=Y,D=D,Z=Z,X=X)
resid(foo)
residuals(foo)
```
TSLS.power

Power of TSLS Estimator

Description

TSLS.power computes the power of the asymptotic t-test of TSLS estimator.

Usage

TSLS.power(n, beta, rho_ZD, sigmau, sigmaDsq, alpha = 0.05)

Arguments

n Sample size.
beta True causal effect minus null hypothesis causal effect.
 rho_ZD Correlation between the IV Z and the exposure D.
sigmau Standard deviation of potential outcome under control. (structural error for y)
sigmaDsq The variance of the exposure D.
alpha Significance level.

Details

The power formula is given in Freeman (2013).

Value

Power of the asymptotic t-test of TSLS estimator based on given values of parameters.

Author(s)

Yang Jiang, Hyunseung Kang, and Dylan Small

References

See Also

See also ivmodel for details on the instrumental variables model.
Examples

Assume we calculate the power of asymptotic t-test of TSLS estimator
in a study with one IV (l=1) and the only one exogenous variable is
the intercept (k=1).

Suppose the difference between the null hypothesis and true causal
effect is 1 (beta=1).
The sample size is 250 (n=250).
The correlation between the IV and exposure is .5 (rho_ZD=.5).
The standard deviation of potential outcome is 1 (sigmau=1).
The variance of the exposure is 1 (sigmaDsq=1).
The significance level for the study is alpha = .05.

power of asymptotic t-test of TSLS estimator
TSLS.power(n=250, beta=1, rho_ZD=.5, sigmau=1, sigmaDsq=1, alpha = 0.05)

TSLS.size

Sample Size Calculator for the Power of Asymptotic T-test

Description

TSLS.size computes the minimum sample size required for achieving certain power of asymptotic
t-test of TSLS estimator.

Usage

TSLS.size(power, beta, rho_ZD, sigmau, sigmaDsq, alpha = 0.05)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>power</td>
<td>The desired power over a constant.</td>
</tr>
<tr>
<td>beta</td>
<td>True causal effect minus null hypothesis causal effect.</td>
</tr>
<tr>
<td>rho_ZD</td>
<td>Correlation between the IV Z and the exposure D.</td>
</tr>
<tr>
<td>sigmau</td>
<td>Standard deviation of potential outcome under control. (structural error for y)</td>
</tr>
<tr>
<td>sigmaDsq</td>
<td>The variance of the exposure D.</td>
</tr>
<tr>
<td>alpha</td>
<td>Significance level.</td>
</tr>
</tbody>
</table>

Details

The calculation is based on inverting the power formula given in Freeman (2013).

Value

Minimum sample size required for achieving certain power of asymptotic t-test of TSLS estimator.

Author(s)

Yang Jiang, Hyunseung Kang, and Dylan Small
References

See Also
See also `ivmodel` for details on the instrumental variables model.

Examples

Assume we performed an asymptotic t-test of TSLS estimator in a study
with one IV (l=1) and the only one exogenous variable is the intercept
(k=1). We want to calculate the minimum sample size needed for this
test to have an at least 0.8 power.

Suppose the null hypothesis causal effect is 0 and the true causal
effect is 1 (beta=1-0=1).
The correlation between the IV and exposure is .5 (rho_ZD= .5).
The standard deviation of potential outcome is 1 (sigmu= 1).
The variance of the exposure is 1 (sigmaDsq=1).
The significance level for the study is alpha = .05.

minimum sample size required for asymptotic t-test
TSLS.size(power=.8, beta=1, rho_ZD=.5, sigmu=1, sigmaDsq=1, alpha =.05)

vcov.ivmodel

Calculate Variance-Covariance Matrix (i.e. Standard Error) for k-Class Estimators in the ivmodel Object

Description
This `vcov` method returns the variance-covariance matrix, or equivalently the standard errors, for all specified k-Class estimation from an `ivmodel` object.

Usage

```r
## S3 method for class 'ivmodel'
vcov(object,...)
```

Arguments

- `object` ivmodel object.
- `...` Additional arguments to `vcov`.

Value
A matrix of standard error estimates for each k-Class estimator.
Author(s)

Yang Jiang, Hyunseung Kang, and Dylan Small

See Also

See also `ivmodel` for details on the instrumental variables model.

Examples

data(card.data)
Y=card.data[,"lwage"]
D=card.data[,"educ"]
Z=card.data[,"nearc4"]
Xname=c("exper", "expersq", "black", "south", "smsa", "reg661",
 "reg668", "smsa66")
X=card.data[,Xname]
foo = ivmodel(Y=Y, D=D, Z=Z, X=X)
vcov(foo)
Index

*Topic Anderson-Rubin (1949) test
 AR.power, 5
 AR.size, 6
 AR.test, 8
 ARsens.power, 9
 ARsens.size, 10
 ARsens.test, 12

*Topic Anderson-Rubin test
 ivmodel, 23
 ivmodelFormula, 26

*Topic Card (1995) data
 card.data, 14

*Topic Conditional likelihood ratio test
 CLR, 15
 ivmodel, 23
 ivmodelFormula, 26

*Topic Fuller-k estimator
 Fuller, 20

*Topic Instrumental variables
 CLR, 15
 Fuller, 20
 ivmodel, 23
 ivmodel-package, 2
 ivmodelFormula, 26
 KClass, 32
 LIML, 34

*Topic Limited information maximum likelihood (LIML) estimator
 LIML, 34

*Topic Power
 AR.power, 5
 AR.size, 6
 ARsens.power, 9
 ARsens.size, 10
 TLSL.power, 39

*Topic Sample size
 AR.size, 6
 ARsens.size, 10

*Topic Sensitivity analysis with Anderson-Rubin test
 ivmodel, 23
 ivmodelFormula, 26

*Topic Sensitivity analysis
 ARsens.power, 9
 ARsens.size, 10
 ARsens.test, 12

*Topic datasets
 card.data, 14

*Topic k-Class estimator
 KClass, 32

*Topic kClass estimation
 ivmodel, 23
 ivmodelFormula, 26

*Topic minimum sample size
 IVsize, 30

*Topic package
 ivmodel-package, 2

*Topic power
 IVpower, 29
 IVsize, 30

 AR.power, 5, 30
 AR.size, 6, 31
 AR.test, 8, 25, 28
 ARsens.power, 9, 30
 ARsens.size, 10, 31
 ARsens.test, 12, 25, 28

 card.data, 14
 CLR, 15, 25, 28
 coef.ivmodel, 16, 25, 28
 confint.ivmodel, 17, 25, 28

 fitted.ivmodel, 19, 25, 28
 Fuller, 20, 25, 28

 iv.diagnosis, 21
ivmodel, 6–8, 10, 11, 13, 16–19, 21, 23, 30, 31, 33, 35–39, 41, 42
ivmodel-package, 2
ivmodelFormula, 26
IVpower, 29
IVsize, 30

KClass, 21, 25, 28, 32, 35

LIML, 25, 28, 34

model.matrix.ivmodel, 25, 28, 36

para, 37

resid.ivmodel(residuals.ivmodel), 38
residuals.ivmodel, 25, 28, 38

summary.ivmodel, 25, 28

TSLS.power, 30, 39
TSLS.size, 31, 40

vcov.ivmodel, 25, 28, 41